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SUMMARY. In the present paper, Dimensional Analysis is applied to a numerical approach based 
on Nonlinear Fracture Mechanics in order to obtain a synthetic description of the rotational 
capacity of reinforced concrete beams in bending, otherwise impossible to be achieved due to the 
presence of lots of variables and mechanical nonlinearities. Although the proposed model relies on 
several mechanical properties of concrete and steel and on the beam size, it is demonstrated that 
only two nondimensional parameters, NP and NC, are responsible for the available ductility. 
Experimental confirmations to the numerical approach are also proposed. 

1 INTRODUCTION 
A detailed analysis of the mechanical behaviour of reinforced concrete structures during the 

loading process evidences a series of complex phenomena characterizing the global nonlinearity, 
namely the concrete fracturing and/or crushing and the steel yielding and/or slippage. For this 
reason the problem of the rotational capacity of reinforced concrete beams in bending has been 
faced, both theoretically and experimentally, by several studies each of them focusing on a 
different aspect. This makes difficult to give a unified and exhaustive description of the physical 
phenomenon. So far, for instance, the relative neutral axis position at the ultimate condition, x/d, 
has been chosen as a governing parameter for the rotational capacity. According to this choice, the 
results of different experimental campaigns have been merged in a ϑPL versus x/d diagram, as an 
attempt to obtain a practical design prescription. However, the wide scattering of the results in 
such a diagram, clearly evidenced in [1], suggests that the nondimensional parameter x/d does not 
completely describe the considered phenomenon. 

In order to overcome such drawbacks, relevant contributions may be given by Dimensional 
Analysis, based on Buckingham's Π-Theorem [2,3], which permits to clearly connect the 
mechanical response to dimensionless groups of the variables involved in the phenomenon, rather 
than to the individual values of them. The most relevant applications in Solids and Fracture 
Mechanics have concerned the analysis of complete and incomplete physical similarity of strength 
and toughness in disordered materials [4-9] as well as the study of the incomplete self-similarity in 
fatigue crack growth [10,11]. According to such studies, different dimensionless numbers have 
been proposed to govern the stability of progressive cracking: 

- the stress brittleness number in the case of brittle materials [4]: 
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- the reinforcement brittleness number in the case of lightly reinforced concrete elements [5]: 
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- and the energy brittleness number for quasi-brittle materials [6]: 
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where KIC is the material fracture toughness, σu is its ultimate tensile strength, GF is the fracture 
energy, ρt and σy are, respectively, the percentage and the yielding strength of steel reinforcement, 
and h is a characteristic linear size of the specimen. In all these cases a transition from ductile to 
softening, or even snap-back, failure is evidenced by decreasing the brittleness number. 

In the present paper, Dimensional Analysis is applied to the model proposed by Carpinteri et al. 
[12,13], for the assessment of the rotational capacity of reinforced concrete beams in bending. In 
particular, it will be demonstrated that only two nondimensional parameters, NP and NC, are 
responsible for the available ductility. Then, experimental confirmations to the numerical approach 
are also proposed [14]. 

2 MATHEMATICAL AND NUMERICAL FORMULATION 
In this section, the numerical algorithm proposed by Carpinteri et al. [12,13] for the analysis of 

the behaviour of reinforced concrete elements in bending is briefly introduced. This model permits 
to study a portion of a reinforced concrete beam subjected to a constant bending moment M, as 
that shown in Fig. 1. This element, having a span to depth ratio equal to unity, is representative of 
the zone of a beam where a plastic hinge formation takes place. It is assumed that fracturing and 
crushing processes are fully localized along the mid-span cross-section of the element. This 
assumption, fully consistent with the crushing phenomenon, also implies that only one equivalent 
main tensile crack is considered. The loading process is characterized by a crack propagation in 
tension, a steel yielding and/or slippage and a concrete crushing in compression. 

 

  
 Figure 1: Scheme of a reinforced concrete element. 

 
In the proposed algorithm, the behaviour of concrete in tension is described by means of the 

well established Cohesive Crack Model [15-17], largely used, in the past, to study the ductile-to-
brittle transition in plain concrete beams in bending. According to this model, the adopted 
constitutive law is a stress–strain linear-elastic relationship up to the achievement of the tensile 
strength, σu, for the undamaged zone, and a stress–displacement linear relationship describing the 



material in the process zone. The critical crack opening displacement is t
crw  ≈ 0.1 mm, and the 

fracture energy, GF, is assumed to vary from 0.050 N/mm to 0.150 N/mm, depending on concrete 
strength and maximum aggregate diameter, according to the prescriptions in Model Code 90 [18]. 

As far as modelling of concrete crushing failure is concerned, the Overlapping Crack Model 
introduced by Carpinteri et al. [12,13] is adopted. According to such an approach, strongly 
confirmed by experimental results [19,20], the inelastic deformation in the post-peak regime is 
described by a fictitious interpenetration of the material, while the remaining part of the specimen 
undergoes an elastic unloading. As a result, a pair of constitutive laws for concrete in compression 
is introduced, in close analogy with the Cohesive Crack Model: a stress–strain relationship until 
the compressive strength is achieved (Fig. 2a), and a stress–displacement (overlapping) 
relationship describing the phenomenon of concrete crushing (Fig. 2b). The latter law describes 
how the stress in the damaged material decreases from its maximum value to zero as the fictitious 
interpenetration increases from zero to the critical value, c

crw . It is worth noting that the crushing 
energy, GC, which is a surface dissipated energy, defined as the area below the post-peak softening 
curve in Fig. 2b, can be assumed as a true material property, since it is not affected by the 
structural size. An empirical equation for calculating the crushing energy has been recently 
proposed by Suzuki et al. [21], taking into account the confined concrete compression strength by 
means of the stirrups yield strength and the stirrups volumetric content. By varying the concrete 
compressive strength from 20 to 90 MPa, the crushing energy ranges from 30 to 58 N/mm. The 
critical value for the crushing interpenetration is experimentally found to be approximately equal 
to 1 mm (see also [20]). It is worth noting that this value is a decreasing function of the 
compressive strength, in agreement with the more brittle response exhibited by high strength 
concrete. On the contrary, we observe that, in the case of concrete confinement, the crushing 
energy, and the corresponding critical value for crushing interpenetration, considerably increase. 

As far as the behaviour of steel reinforcement is concerned, a constitutive relationship between 
the reinforcement reaction and the crack opening displacement is introduced instead of the 
classical σ−ε laws, since the kinematics of the mid-span cross-section is described by means of 
displacements, and not by strains. In the proposed model, stress vs. crack opening displacement 
relationships have been obtained through a bond-slip analysis between concrete and steel. In 
particular, the integration of the differential slip over the transfer length, ltr, is equal to half the 
crack opening at the reinforcement level, whereas the integration of the bond stresses gives the 
reinforcement reaction. In order to simplify the calculation, the obtained stress-displacement laws 
are transformed into elastic-perfectly plastic relationships, with a linear branch until the yield 
stress –corresponding to the critical crack opening for steel, wy– is achieved, followed by a plateau. 

 

 
 

Figure 2: Overlapping Crack Model for concrete in compression: linear-elastic σ−ε law (a); post-
peak softening σ−w relationship (b). 

c

c c
cr

1 w
w

σ σ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠



2.1  Numerical algorithm 
A discrete form of the elastic equations governing the mechanical response of the two half-

beams is herein introduced. The reinforced concrete member shown in Fig. 1 is considered as 
constituted by two symmetrical elements characterized by an elastic behavior, and connected by 
means of n pairs of nodes. (Fig. 3a). In this approach, all the mechanical nonlinearities are 
localized in the mid-span cross-section, where cohesive and overlapping stresses are replaced by 
equivalent nodal forces, Fi, by integrating the corresponding stresses over the nodal spacing. Such 
nodal forces depend on the nodal opening or closing displacements according to the cohesive or 
overlapping softening laws previously introduced. 

With reference to Fig. 3a, the horizontal forces, Fi, acting at the i-th node along the mid-span 
cross-section can be computed as follows: 

 
 { } [ ]{ } { }MKwKF Mw +=   (4) 

 
where {F} is the vector of nodal forces, [Kw] is the matrix of the coefficients of influence for the 
nodal displacements, {w} is the vector of nodal displacements, {KM} is the vector of the 
coefficients of influence for the applied moment M. 

In the generic situation shown in Fig. 3b, the following equations can be considered: 
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where: j represents the real crack tip, m represents the fictitious crack tip, p is the fictitious 
overlapping tip and r is the node corresponding to the steel reinforcement (see Fig. 3b).  
 

 
 

Figure 3: Finite element nodes (a); and force distribution with cohesive crack in tension and 
crushing in compression (b) along the mid-span cross-section. 



Equations (4) and (5) constitute a linear algebraic system of (2n) equations in (2n+1) 
unknowns, namely {F}, {w} and M. The necessary additional equation derives from the strength 
criterion adopted for crack or crushing propagation. At each step of the loading process, in fact, 
either the force in the fictitious crack tip, m, equals the ultimate tensile force, or the force in the 
fictitious crushing tip, p, equals the ultimate compressive force. It is important to note that the 
condition for crack propagation (corresponding to the achievement of the tensile strength at the 
fictitious crack tip, m) does not imply that the compressive strength is reached at the 
corresponding overlapping crack tip, p, and viceversa. Hence, the driving parameter of the process 
is the tip that in the considered step has reached the limit resistance. Only this tip is moved when 
passing to the next step. This criterion will ensure the uniqueness of the solution on the basis of 
physical arguments. 

Finally, at each step of the algorithm, the localized beam rotation, ϑ, is computed as follows: 
 

 { } { } MDwD M
T

w +=ϑ  (6) 
 

where {Dw} is the vector of the coefficients of influence for the nodal displacements and DM is the 
coefficient of influence for the applied moment. 

It is worth noting that Eqs. (4) and (6) permit to analyse the fracturing and crushing processes 
of the mid-span cross-section taking into account the elastic behaviour of the reinforced concrete 
member. To this aim, all the coefficients are computed a priori using a finite element analysis. 

3 APPLICATION OF DIMENSIONAL ANALYSIS TO THE FLEXURAL BEHAVIOUR 
OF REINFORCED CONCRETE BEAMS 

In any practical physical study, we attempt to obtain relationships among the quantities that 
characterise the phenomenon being studied. Thus, the problem always reduces to determine 
relationships of the form: 

 
 q = Φ (q1, q2, …, qn; r1, r2, …, rk) (7) 

 
where q is the quantity being determined in the study, qi and ri are, respectively, dimensional and 
nondimensional quantities that are assumed to be given. It is worth noting that, generally, function 
Φ is not analytically obtainable, although an empirical relationship may be obtained by means of 
best-fitting procedure, if several results are available varying the parameters of the problem (see 
[8,9]). On the other hand, we can reduce the number of the governing parameters in order to obtain 
a synthetic description of the problem. The application of Buckingham’s Π-Theorem for physical 
similitude and scale modelling, in particular, permits to minimize the dimension space of the 
primary variables, in which the physical phenomenon might be studied, by combining them into 
dimensionless groups. 

When flexural behaviour of reinforced concrete beams is studied, according to the numerical 
model proposed in the previous section, the functional relationship is the following: 

 
 M = Φ (σu, GF, σc, GC, Ec, σy, ρt, h; b/h, L/h, ϑ), (8) 
 
where M is the resistant bending moment, σu, GF, σc, GC and Ec are, respectively, the tensile 
strength, the fracture energy, the compressive strength, the crushing energy, and the elastic 
modulus of concrete, σy and ρt represent the yield strength and the percentage of the tensile 



reinforcement, h is the characteristic size of the body, b/h and L/h define the geometry of the 
sample according to Fig. 1, and ϑ is the local rotation of the element. Since we are interested in the 
rotational capacity of over-reinforced concrete beams, the set of variables can be reduced as 
follows: 

 
 M = Φ (σc, GC, Ec, σy, ρt, h; ϑ), (9) 

 
where the parameters describing the behaviour of concrete in tension, σu and GF, are not 

explicitly considered, since they affect only the ascending branch of the moment versus rotation 
response and they not influence the level and the extension of the plastic plateau. On the other 
hand, only the beam depth, h, is considered, since the geometrical ratios of the samples , b/h and 
L/h, are assumed to be constant in the present study. 

The application of Buckingham’s Π-Theorem to Eq. (9) yields the following relationship: 
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if h and C cEG  are assumed as the dimensionally independent variables. It is worth noting that 
the former parameter is representative of the size-scale of the specimen, whereas the latter is a 
material property. In particular, C cEG  can be physically interpreted as the concrete toughness in 
compression. Its expression, in fact, is analogously to that of the fracture toughness, KIC, defined in 
terms of the fracture energy and the elastic modulus of the material. As a consequence, the 
dimensionless functional relationship for the proposed model becomes: 
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are the governing nondimensional numbers, M  is the nondimensional bending moment, and ϑn is 
the normalized local rotation. As a result of the Dimensional Analysis, according to Eq. (11), we 
expect that the structural response, in terms of nondimensional moment versus normalized rotation, 
is only a function of the dimensionless numbers NP and NC. 

4 INTERPRETATION OF NUMERICAL AND EXPERIMENTAL RESULTS BASED ON 
DIMENSIONAL ANALYSIS 

In this section, an original interpretation of numerical and experimental results is proposed in 
order to obtain a unified and exhaustive description of the effects of materials and geometrical 
properties on the flexural behaviour of reinforced concrete beams. As a confirmation of the 
analytical results obtained through dimensional analysis, numerical simulations have been carried 



out on beams characterised by values of NP = 0.074 and NC = 0.630, although different geometrical 
and mechanical parameters have been assigned, as reported in Fig. 4a. As we can expect, the 
obtained numerical results, expressed by the nondimensional moment versus normalised rotation 
diagram shown in Fig. 4b, converge to a single curve, putting into evidence a complete physical 
similarity in the flexural behaviour by varying the structural dimensions, when NP and NC are kept 
constant. This implies that the analysis of the mechanical behaviour can be profitably carried out 
on the basis of the two nondimensional numbers, instead of the single geometrical and mechanical 
parameters. According to this, the numerical simulations for values of NP ranging from 0.049 up to 
0.329, NC being kept equal to 0.791, are shown in Fig. 5. It is worth noting that, in practical 
applications, typical values for NP range from 0.004 up to 0.360, whereas NC varies from 0.2 up to 
3.5. A clear decrement in the rotational capacity is evidenced with a reduction in the plastic 
plateau as the value of NP increases. Such a trend can be easily interpreted through an increment in 
the steel percentage, ρt, which appears only in the expression of NP and not in that of NC. Note that 
the ultimate rotation is clearly identified by a softening or even a snap-back branch at the end of 
the plastic plateau, due to the nonlinear behaviour of concrete in compression. 

 

    
 

Figure 4: Mechanical and geometrical parameters (a); and nondimensional moment vs. normalised 
rotation response (b) of beams characterised by NP = 0.074 and NC = 0.630. 

 

  
Figure 5: Dimensionless moment vs. normalized rotation diagrams for NC = 0.791 and different NP. 

b h σy ρt σc GC Ec 
beam 

[m] [m] [MPa] [%] [MPa] [N/mm] [GPa]

A  0.05 0.1  2.94 100.0 55.0 46.32 
B 0.1 0.2  1.77 60.0 46.9 39.07 
C 0.2 0.4 400 1.35 46.0 60.0 35.76 
D 0.4 0.8  0.90 30.5 60.0 31.18 
E 0.5 1.0  0.58 20.0 37.0 27.09 

(a) (b) 



On the other hand, the curves in Fig. 6 are related to values of NC varying from 0.303 up to 
2.385 and NP = 0.109. In this case, the rotational capacity is an increasing function of NC, as well 
as of the concrete compressive strength, σc. Correspondingly, a more unstable response after the 
ultimate rotation is also predicted by a more severe snap-back branch. 

In order to give an experimental validation to the analytical and numerical approach proposed 
in the present paper, the bending tests carried out by Bosco and Debernardi [14] on simply 
supported reinforced concrete beams –loaded by three equal loads arranged symmetrically to the 
mid-span– are herein considered. The mechanical and geometrical parameters are reported in Tab. 
1. The plastic rotations, ϑPL, of the central beam portion characterised by a length to depth ratio 
equal to unity, as a function of the relative neutral axis position, x/d, are shown in Fig. 7a. Such 
results evidence a different trend of the rotational capacity by varying the beam depth from 0.2 m 
up to 0.6 m. The shallower beams, in fact, exhibit a higher ductility than the deeper ones. These 
different results collapse onto a single curve in the normalised plastic rotation vs. NP diagram 
shown in Fig. 7b. In this case, based on the curves shown in Fig. 6, the nondimensional parameter 
NC is not considered, since it exhibits a small variation for the considered beams. The results of the

 

  
Figure 6. Dimensionless moment vs. normalized rotation diagrams for NP = 0.109 and different NC. 

 
beam b h σy ρt σc GC Ec NP NC x/d ϑPL 

 [mm] [mm] [MPa] [%] [MPa] [N/mm] [MPa]  [mrad] 
T1A3 0.57 0.039  0.226 73.93 
T2A3 1.13 0.078 0.282 0.335 64.64 
T3A3 

 100 200 600 
1.70

30.9 50.0 30000
0.118  0.600 7.56 

T4A3 0.28 0.033 0.115 67.06 
T5A3 0.57 0.067 0.229 122.39 
T6A3 1.13 0.013 0.462 14.82 
T7A3 

200 400 600 

1.70

30.9 35.0 30000

0.199

0.564 

0.636 2.50 
T8A3 0.13 0.016 0.108 23.47 
T9A3 0.25 0.031 0.147 52.30 

T10A3 0.57 0.069 0.237 32.41 
T11A3 

300 600 600 

1.13

30.9 48.0 30000

0.138

0.496 

0.488 8.50 
 
Table 1. Mechanical and geometrical parameters of the beams tested by Bosco and Debernardi[14]. 

 



numerical simulations carried out with the proposed model are also represented in Fig. 7b by the 
not filled in symbols. Generally, a good agreement is obtained between numerical and 
experimental results. For low values of NP, up to about 0.03, the global collapse is due to steel 
failure, and ϑPL,n is an increasing function of size and steel reinforcement. On the contrary, for 
higher values of NP, when the collapse is due to concrete crushing, ϑPL,n becomes a decreasing 
function of size and steel reinforcement. 
 

  
   (a)                                                                           (b) 

 
Figure 7: Experimental [14] plastic rotations vs. x/d diagram (a); experimental [14] and numerical  

normalised rotations vs. nondimensional number NP diagram (b). 
 

5 CONCLUSIONS 
The application of Dimensional Analysis to the study of the rotational capacity of plastic 

hinges permits to govern the flexural behaviour of over-reinforced concrete beams by means of 
two nondimensional numbers, NP and NC, combinations of the mechanical and the geometrical 
parameters. The physical similitude in the nondimensional moment versus normalized rotation 
diagram evidenced when the two brittleness numbers are kept constant can be profitably used to 
give new interpretation of experimental results, as proved in Fig. 7a,b. In particular, the diagram in 
Fig. 7b, permits to describe with a single curve the effect of the structural dimension and the steel 
reinforcement on the rotational capacity, whereas the analogous ones proposed by Model Code 90 
[18], with different variables on the horizontal and vertical axis, completely disregard the size-
scale effects. The normalized rotation is a decreasing function of NP, NC being kept constant, 
whereas it increases by increasing the value of NC, NP being kept constant. 

Finally, Dimensional Analysis is a useful tool in experimental investigations. According to Fig. 
4, for instance, we can assert that, in order to predict the structural behaviour of a beam element 
with depth h = 1 m, bar reinforcement percentage ρt = 0.58%, concrete compressive strength σc = 
20 MPa, crushing energy GC = 37 N/mm and elastic modulus Ec = 27088 N/mm2, by an 
experimental test on a beam scaled 1:10 (h = 0.1 m), the latter should have ρt = 2.94%, σc = 100 
MPa, GC = 55 N/mm, Ec = 46320 N/mm2. 
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