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SUMMARY. In the paper some preliminary results are shown about the elaboration of a behaviour 
model of a structure reinforced with composites. For modelling the structure the NRT material is 
used. The aim of the research is to design the best distribution of reinforcement over the existing 
structure and some basics of Limit Analysis and of Topology Optimization are used. Finally a first 
implementation of a search procedure has been performed, with reference to the location and 
shaping of the steel bars.  

1 INTRODUCTION 
The complexity in the behavior of a masonry fabric and the relatively recent application of 

composites in the refurbishment of ancient fabrics in the last tens of years is so that many technical 
characteristics of the materials are well known, but their application as reinforcement intervention 
is often casual. The absence of a basic project for the application of a FRP reinforcement (Fiber-
Reinforced-Polymers) or a much wide intervention often breaks off the sense in the composites 
useful as removing materials, in some cases beginning a reinforcement opera much more invasive 
of the classical one.  

Since some years a research about the optimization of the FRP reinforcement applied on a 
masonry fabric is developed (see e.g. [1]) and in the paper are shown some results about this study. 
The problem is approached with reference to a two-dimensional continuum Not Resisting Tension 
(NRT, for details see e.g. [2]) body, that is intended to be assimilated to a masonry wall or to a 
reinforced concrete beam and/or panel. The structure is modelled through the assumption that the 
basic material (e.g. masonry or concrete pr anything else) is an elastic material not resisting 
tension (NRT material) and the reinforcement is an indefinitely elastic sheet, possibly with 
variable thickness, to be glued over the panel. Moreover by means of the Structural Topology 
Optimization it is looking for the optimal distribution of resisting material in the interior of a given 
domain, able to resist given loads, subject to some constraints (e.g. the quantity of material 
involved, and/or the maximum stress/strain in the material) and aiming at optimizing some 
performance index or some design objectives. In the topology optimization approach for discrete 
structures, or for structures conceived as the assemblage of a number of connected components, 
the problem is set with the objective to identify the number, the dimensions and the arrangement 
of the members. For continuum systems, essentially the shape of the body able to resist the loads is 
optimized, and the solution consists in deciding whether any point in the domain Ω where the 
structure must be included is filled with material or not. This last approach leads to a 0-1 
optimization, that may be not always tractable from the point of view of mathematical 



 

programming; the problem can be regularized by making recourse to a density function ρ(x), that 
distributes the material with continuity over the domain, despite the fact that in solution the 
optimal layout may nevertheless be of a well-defined 0-1 type (for more details see e.g. [3, 4, 5]). 

In the optimization process, some additional difficulties may arise from the fact that at some 
steps of the process the absence of material at some key points in the domain may produce 
singularities in the constitutive equations of the system, thus blocking the solution process. For the 
case of the reinforcement that is the object of the present paper, this problem should be mitigated, 
in that the structure to be reinforced is basically existent, and optimization only regards the 
addition of material. For the case of no-tension panels, anyway, the applied load pattern might be 
out the load-carrying capacity of the unreinforced body, or even at some intermediate stage of the 
procedure, and the optimization should be carried on following admissible paths. Similar problems 
are met with other instances of topology optimization when the structural response is governed by 
nonlinear relationships (see e.g. [6]). 

In the following the fundamentals for reinforced NRT panels will be outlined, and the 
extension to reinforcement will be treated. The optimum problem for the distribution of the 
reinforcement will be set up, and some preliminary solution strategies will be outlined. 

2 BASICS OF THE NRT PANEL WITH REINFORCEMENT 

2.1 NRT model basics and reinforcement condition 
Let consider the domain Ω, that is occupied by the considered NRT material, subject to 

surface tractions p and body forces f, and the contour Γ of the domain Ω, that is subdivided in the 
constrained part Γu, where displacements are imposed and forces correspond to the reactions, and 
the part Γp, where displacements are free and forces are data. 

Moreover, let u(x) and ε(x) be respectively the displacement field and the total strain field 
relevant to the current point x in Ω, coincident both in the basic body and in the reinforcement, and 
denote by the suffix "b" the basic structural body and the relevant material, and by the suffix "r" 
the reinforcing material. After the reinforcement has been added, possibly with some graduation, 
and the forces are applied again, the response of the system is ruled by the following usual 
compatibility and equilibrium equations. 

If εb(x) and εr(x) are the total strain field in the basic body and in the reinforcement, εbe(x) and 
εbf (x) are the elastic strain field in the basic body and the fracture strain field in the basic body, 
σ(x) is the total stress in the reinforced body, σb(x) and σr(x) are the stress in the basic body and 
the stress in the reinforcement, ρ(x) is the density function of the reinforcement which can be zero 
in absence of reinforcement and equal to 1 with the reinforcement, so one can write 
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where the symbols σb < 0 or εbf > 0 simply mean that the relevant tensors possess non positive or 
non-negative eigen-values. 

Being ut(x) the displacements of the constrained part, and Db, Dr the elastic tensors of the basic 
material and of the reinforcement, the basic conditions are 

1) the compatibility condition: 
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2) the stress and strain admissibility conditions: 
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3) the constitutive relations: 
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For the equilibrium 

( ) ( )
( ) ( ) ( )




Γ∈∀=
Ω∈∀=+

p

Div
xxpxnxσ

x0xfxσ
    →    

( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( ) ( )




Γ∈∀=ρ+
Ω∈∀=+ρ+

prb

rb DivDiv
xxpxnxσxxσ

x0xfxσxxσ
 (5) 

with the strength constraint ( ) 0xσ ≤b . 
Generally some statements can be enunciated:  i) compatible displacement fields are the fields 

u(x) obeying the constraint boundary conditions, i.e. u(x) = ut(x)  ∀x ∈ Γu;  ii) statically 
admissible stress fields are defined such that equilibrium and admissibility stress conditions are 
fully verified;  iii) kinematically compatible strain fields are defined such that compatibility (i.e. 

( ) ( ) ( ) ( ) ( )xuxεxεxεxε ∇=+== bfbeb )  and admissibility (i.e. εbf (x) > 0)  strain conditions are 
fully verified.  

For any couple of admissible stress and fracture fields σb(x) and εbf(x) the inequality 
( ) ( ) 0xεxσ ≤⋅ bfb  holds. 

2.2 Limit Analysis approach for the solution of a reinforced NRT panel problem 
On the basis of the relations governing the problem, the conditions for equilibrium or collapse 

under given forces p, f can treated by an extension of the basic theorems for Limit Analysis of 
reinforced NRT panels. 

Consider basically that any displacement field u(x), associated to a compatible strain field 
( ) 0xε ≥bf , is a potential collapse mechanism. So 
1) a kinematically possible mechanism exists if the external work is positive 
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p
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2) a statically possible mechanism exists if the external work is non-positive 
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or considering any compatible mechanism (u, εbf) with ( ) ( )xuxε ∇=bf  and ( ) Ω∈∀≥ xxε 0bf , 
for the Principle of Virtual Work  

1’) ( ) ( ) ( ) 0dVL bfe >⋅= ∫
Ω

xεxσu  (8) 

2’) ( ) ( ) ( ) 0dAL bfe ≤⋅= ∫
Ω

xεxσu  (9) 

In synthesis, two criteria are stated as basis for deciding if collapse occurs or not: 
1) if no statically admissible stress field exists under the given forces, collapse occurs; 



 

2) if no kinematically possible displacement field exists, collapse cannot occur.  
Moreover, consider that the reinforcement is assumed to enjoy very large strength, infinite in 

the limit. Therefore fractures cannot occur where the reinforcement is applied and the equality 
( ) ( ) 0xεx =ρ bf  holds everywhere in the solid. 

3 L.A. SOLUTION FOR THE OPTIMAL REINFORCEMENT OF A NRT PANEL 
The problem consists in finding the optimal distribution of ρ(x) such that all above conditions 

are satisfied and can be approached in very different ways. 
Basically the objective function is considered as the quantity of reinforcement that is applied 

to the basic material void volume produced by fractures in the basic body, so that its minimum 
value is searched. 

3.1 The problem layout by the static approach 

Being ρ(x) the local density of the reinforcement with values in (0, 1), the problem consists on 
finding the optimal distribution of ρ(x) as 

( ) ( ) mindAF =ρ=ρ ∫
Ω

x  (10) 

By static approach the constraints are: 
a) Equilibrium is to be supplied by a stress field 
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b) The reaction on the constrained contour Γu is equal to 

( ) ( ) ( ) ( )[ ] ( ) prb Γ∈∀ρ+= xxnxσxxσxr  (12) 

c) The stress field must be admissible (i.e. σb(x) < 0 in Ω) 
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with I1b and I2b the first and second invariant of the stresses σb(x).  

d) The reinforcement density ρ(x) is everywhere a function in (0,1) 
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The problem has been dealt with in detail in Ref. [1], yielding the following results with 
reference to the optimal solution: 

a) In correspondence of the optimal reinforcement, a admissible displacement field exists such 
that the fracture strain is zero where the reinforcement is applied; 

b) The reinforcement is zero, ρ(x) = 0, everywhere the product ( ) ( ) 0fr <⋅ xεxσ . 
C) The reinforcement ρ(x) turns out to be 0 or 1. 
The method has been applied to the reinforcement of a concrete beam, yielding as output the 



 

well known reinforcement with lower and folded steel bars and stirrups.  
Anyway, the same results suggest that the problem can be also approached from the 

kinematical point of view, as follows. 
 

3.2 The problem layout by the kinematic approach 
The problem can be approached in different ways, one of these is to consider the objective 

function as the maximum quantity of reinforcement that can be applied to the basic material 
volume produced by fractures in the basic body still leaving the structure prone to collapse. So, 
being ρ(x) the local density of the reinforcement with 0-1 values 

( ) ( ) maxdAF =ρ=ρ ∫
Ω

x  (15) 

By the kinematic approach the constraints are: 
a) the compatibility conditions of the strain field, which is required to be compatible with the 

displacements field 
( ) ( ) ( ) ( ) ( )xuxεxεxεxε ∇=+== bfbeb  (16) 

b) the strain field must be admissible (i.e. ( ) 0bf ≥xε  in Ω) and such that a collapse mechanism 
can be activated 
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with J1b and J2b the first and second invariant of the displacements in the basic material 
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c) The reinforcement density ρ(x) is invariant with respect to the static approach and is 
everywhere not smaller than 0 and not larger than 1 

( ) ( )[ ] Ω∈∀=−ρρ xxx 01  (14') 
The Lagrange functional of the problem set up in the previous section, with the introduction of 
suitable multipliers, can be written down as follows 
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where it is intended that ν(x) and υ(x) and ω(x) are Lagrange multipliers without any constraint on 

their sign, whilst k is a non-negative constant being ( ) ( ) ( ) ( )dAds
p

∫∫
ΩΓ

⋅+⋅ xuxfxuxp  a scalar 

quantity, and η(x) and χ(x) are scalar non-negative multipliers, since they are related to the 
inequality constraints of the problem in Eqs (15) to (18).  

Therefore one has 
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Moreover, the variational conditions must be fulfilled in solution. 
 
1) For independent variation of the displacement field u(x): 
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After some algebra and by the conditions in Eq, (18), one gets 
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If Sb(x) is a no-tension stress field, because of the non-negative character of η(x) and χ(x) and of 
the tensors ∆ and εt(x), and is expressed as 
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the Eq, (21) becomes 
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which, by the PVW, means that the external forces are in equilibrium with a stress field that is 
non-negative semi-definite where ρ(x) = 0. 

 
2) For independent variation of the reinforcement distribution: 
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and after some algebra 
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The third addend in the coefficient of  δρ(x) in the integrals is always positive. So ω(x) shall be 
positive where ρ(x) = 0 and we tend to add the reinforcement, while it shall be negative where the 
reinforcement exists and we want to drop it out.  

4 EXAMPLE: APPLICATION OF THE LIMIT ANALYSIS OPTIMIZATION APPROACH 
 
As an example, the problem of the reinforcement of a panel with a rectangular hole is 

considered. The panel is complemented by a horizontal girder on the top and by a steel platband 
on the hole (Fig. 1). The load pattern is given by the self-weight of the panel and by a horizontal 
force at the left end of the girder, that cannot be resisted by the simple unreinforced system. 
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Figure 1: The FEM model of the considered panel 
 
The procedure has been implemented by means of a Basic program built ad-hoc for the 



 

problem and  the optimal design of the reinforcement is shown (Fig. 2) with the proceeding of the 
calculations. 

 

     

  
Figure 2: Samples of optimal reinforcement distribution (signed by the black points) 

during four phases of the proceeding. 
 
It is easy to understand that the procedure yields a resistant mechanism, able to neutralize the 

collapsing action of the horizontal force as in Fig. 3, where the reinforcement acts as a tie-rod. 
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Figure 3: Resistant mechanism after the reinforcement 



 

This interpretation is confirmed also looking at the results of the FEM-NRT reinforced panel, 
and in particular to the isostatic compression lines (Fig. 4). 

 
 

 
Figure 4: Results from FEM analysis of the reinforced panel.  

Compressive stresses in the basic NRT material 
 

5 CONCLUSIONS 
In the paper some results are shown about the elaboration of a design strategy for 

reinforcement of a structure. For modelling the structure the NRT material is used. NRT models 
are recognized as an effective tool for analyzing a large class of Civil Engineering Structures (say 
e.g. masonry and reinforced concrete members), so that the problem is strongly felt also from the 
point of view of practical technique. The reinforcement of NRT panels by the application of 
superposed high-strength sheets or insertion of tensile bars, has been considered, with the purpose 
to set up a design path aiming to distribute the new material according to some optimal criterion. 
This aim has been taken applying the basics of Limit Analysis, with the static and kinematic 



 

theorems, and of Topology Optimization. The optimal reinforcement is approached by stating one 
possible criterion that would allow to design the best distribution of reinforcement over the 
existing body structure, and the relevant objective function and constraints have been formulated. 
An implementation of a search procedure on the basis of the Kinematical Approach has been 
performed, aiming at finding the most efficient distribution of the reinforcement. 
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