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SUMMARY. The paper focuses on the problem of the assessment of the response  of structures 
behaving like rocking rigid blocks acted on by dynamic loading. The response of such a system is 
poorly robust, and results can be very different in dependence of a number of factors thus making 
final assessment rather uncertain. After defining the class of possible forcing functions, obeying 
some suitable constraints, a procedure is developed aimed at searching for the worst possible 
response; the worst scenario is evaluated by implementing an iterative optimization procedure in 
an ad-hoc calculus code, involving the calculus of complex block dynamics approached by a 
distributional approach developed by the authors. 
 

1 INTRODUCTION 
The analysis of rocking motion (RM) response of rigid blocks (Fig.1) has attracted the attention of 
many researchers [1]-[8], especially from a theoretical point of view, starting  from the reference 
analytical frame for the study of RM (Rocking Motion) dynamics based on the formulation 
introduced by Housner [1] which refers to the equation for the period of the system, depending on 
the amplitude of rocking, and the equation for the restitution coefficient. 
As concerns the vulnerability of systems behaving like rigid blocks, one should first emphasize the 
poor robustness of analysis of rocking blocks. Even if non-linear dynamics of rigid blocks have 
been widely investigated in literature, the RM dynamics of rigid blocks are less understood than in 
many other non-linear vibration problems [3], since, despite the apparent simplicity, the motion of 
rigid blocks poses difficult problems to solve. 
The block is shown to posses extremely complicated dynamics, with many different types of 
response being revealed [4]. Periodic responses were shown which appear to violate West's 
formula and some steady state responses of the forced system were shown to be so large as to 
produce toppling of the block even if the system were unforced [5]. 
In literature, the sensitivity to initial conditions is widely shown to play a central role and leads to 
uncertainty in the prediction of the asymptotic dynamics. Therefore safety issues cannot be 
satisfactorily resolved until an agreed set of conditions is established [4]. Moreover it has been 
demonstrated that damping has only a qualitative effect on the block motion and that none of the 
multiple solutions or chaotic responses are radically changed. 
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Figure 1: Plane rocking of a rigid block model around its base corners A and B. 

 
Recently the authors have definitively proven the low robustness of the dynamic behaviour of 
rigid blocks, showing that the introduction of a null distribution such that the time-displacement of 
the system is not formally altered produces non-null effects on the response of the system, with the 
impact obeying now to a strongly non-linear equation [6]; the additional null term is able to 
produce an effect similar to the one of the restitution coefficient, thus pointing out its very aleatory 
nature [6]. This result is somehow confirmed by the tracing of overturning domains, which have 
been shown to exhibit significantly irregular shapes [7].  
Moreover, one should consider all the problems of practical nature that deeply influence the 
dynamics of rigid blocks, such as imperfections in the geometry of the base section with non 
perfect angles of the parallelepiped, imperfections in the level surface of the block basis, and 
imperfections in the orthogonality of the excitation with respect to the middle plane of the block. 
Without considering the problems related to the analysis of blocks with non-rectangular basis and 
other problems possibly occurring during the motion also depending on the material composing 
the block itself and other phenomena, such as the blunting of the base edges, which has been 
shown to be able to deeply change the dynamic properties of the block, significantly affecting its 
response [8].   
All of these features characterizing the behaviour of rocking rigid structures, i.e. the low 
robustness of their response and the high sensitivity of their dynamics to imperfections, make the  
problem of their vulnerability highly felt in seismic areas, where the forcing function may be very 
uncertain in its details. 
A possible approach to stabilize the forecasting capacity is to assume a “worst scenario” position, 
that makes the response substantially independent on the details of the excitation. The method was 
set forth by Drenick in the 70’s [9]-[12] and by Shinozuka in the early 80’s [13] with particular 
reference to linear structures, and more recently by Elishakoff and Pletner [14] and by Baratta and 
Zuccaro [15]-[17].   
Starting from previous papers [15]-[20] focusing on the cases of indefinitely elastic and elastic-
plastic structures subjected to dynamic actions, the paper addresses the possibility of defining the 
theoretical bounds on the maximum value of the structural response under dynamic loading, for 
non linear structures behaving like rigid blocks rocking around their base edges under dynamic 
shaking.  
 

2 THE WORST SCENARIO APPROACH 
Very often objects that can be assimilated to rigid blocks are simply supported on some plane 



surface. They may be subject to some disturbance triggering oscillations that can be modelled as a 
kind of rocking motion. Most often such disturbance can be viewed at as a base acceleration 
whose time-history (the accelerogram) is known in its general characters but is subject to 
desultory variations in its details. For instance vibrations induced by some rotating machine can be 
known with respect to its basic frequency range, but a number of other effects may be quite 
random, like the filtering through the supporting structural organism, the influence of ageing, of 
imperfect alignment of the shafts and so on. The problem is mostly felt in the area of seismic 
excitation, where objects or walls simply resting on tables or on foundations are exposed to be 
overturned down by earthquake-induced base shaking. 
Generally speaking, basic characters of the excitation can be identified in the average power 
spectrum, in its maximum value, its duration and so on. So a suitable class of forcing functions 
can be reliably defined, by building up a functional space where it is assumed it must be contained. 
All the accelerograms in the class differ from each other by random quantities that cannot be 
predicted in details. In other words the accelerograms in the class form a stochastic process that 
could be treated by means of the methods and procedures of the relevant theory to produce the 
probability distribution of the maximum response. Apart from the difficulty to treat the response 
of a highly nonlinear system in a stochastic context, probabilistic results may be quite illusory 
depending on the acquisition of statistical data for the parameters of the stochastic process.  
A different approach is to search for the worst response produced by accelerograms fitting the 
basic properties, that can be assumed to be collected in a vector l, but subject to random 
realizations of the details, that can be collected into a vector x containing the n realizations of the 
random variable generating the ordinates of the forcing function at different time instants. 
Let x = (x1, x2, …., xn) be the sample of n realizations of a basic random variable x~  and l the 
assigned local characteristics reflecting the statistics of the admissible accelerograms: the 
component  of the structure response can be evaluated by iterated sampling of the random vector x 
in a very large range (n=1000 or more).  
Since the modalities of their generation, such numbers should verify the following relationships, 
the closer the larger n is  
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where µx and 2

xσ  are respectively the expected value and variance of  x~ ,  n(a,b) is a number of 
components of x falling in the interval (a,b), X is the range of the values of x, and P(x) is the 
distribution function of x~ . 
In the case when one is interested, as it is the case here, in the worst situation that can occur for a 
structure when it is acted on by badly defined forcing time-histories, apart from the decision 
concerned with gross shaking parameters like the maximum instantaneous accelerations, or total 
energy and so on. 
Having assumed the above scenario, for a given structure any component R of the structural 
response will be a function of the sample vector x, conditioned on the assumed value of l and the 
problem reduces then to maximize the function R(x|l), 
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with the components of x that obey the above Eqs (1)- (3). 
 

3 THE RIGID BLOCK DYNAMICS UNDER PURE ROCKING 

3.1 The RM dynamics of rigid blocks by a distributional approach 
As concerns the dynamics of the rigid block in Figure 1, with mass m and dimensions 2b×l, 

subject to its own weight W and to the excitation F, with components horizontal and vertical 
components Wx,Wy, and Fx, Fy respectively, rocking around its base edges A and B, one refers to 
the original distributional approach introduced for the simplified model by the authors in [6]. 
The unilateral behaviour of the model involves the adoption of two unilateral hinges at the bottom 
at the points A and B, which only admit  counter-clockwise (positive) rotations [θ(t)>0] around A, 
involving the detachment from the hinge B, and  clockwise (negative) rotations θ around B 
[θ(t)<0], involving the detachment from the hinge A.  
The motion of the block is described by the displacement vector sP(t), with components spx(t), 
spy(t) in the horizontal and vertical directions . 
After denoting by ( ) ( )t,t θθ &&& , the velocity and the acceleration of the block respectively, as the first 
and the second time derivatives of its rotation, the final dynamic equilibrium condition is 
expressed in the form 
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where the introduced step functions and their derivatives with respect to the rotation denoted by 
the apexes (⋅)′,(⋅)″, etc.,  depend on the Dirac function and its derivatives as follows 
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and  ( )tAθ&&  and ( )tAθ&&  are given in the form  
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During the motion, because of the unilateral nature of the constraints, the following inequalities 
should be satisfied concerning the vertical unknown components of the reactions at A and B, 
RAy(t) and RBy(t), 

 
                                                  RAy > 0   ;    RBy > 0 (11) 

 

3.2 Discussion about the low robustness of the RM dynamics of rigid blocks 
It is interesting to observe some anomaly in the description of the dynamic behaviour of the 

above introduced unilateral rigid model [6]. Let consider the expression of the displacement 
( ),txs of any point of the model characterized by the position vector x with respect to the origin O 

of the reference axes, given by the superposition of the two motions around A and B by means of 
the displacement vectors sA(x,t) and sB(x,t), as follows  

 
                                        ( ) ( )[ ] ( ) ( )[ ] ( )t,tHt,tHt, B2A1 xsxsxs ⋅θ+⋅θ=  (12) 

 
and superpose an additional term corresponding to a null distribution, as follows  
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Thereafter, one realizes that it is possible to change Eq. (12) in way that the time-displacement of 
the system is not formally altered, by adding a null distribution, like in Eq. (13). This produces 
some formal change in the coefficients in Eqs (9) of the acceleration and of the square angular 
velocity in the dynamical equilibrium equation Eq.(5), which turn into  
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The impact obeys now to a strongly non-linear equation, and numerical solutions must be sought. 
To this aim, the distribution δ(x) and its derivatives can be substituted by functions αk(x) and their 
derivatives, that in the limit uniformly converge to δ(x) and its derivatives. 
The results prove [6] that increasing the coefficient r of the null distribution produces an 
increasing damping and that this effect is rather uniform when k tends to become larger and larger 
and functions αk(x) tend to δ(x) and henceforth it is expected that the numerical solutions of the 
equilibrium for the displacement, velocity and acceleration fields converge to the solutions of the 
theoretical case. 
So it is expected that the superposition of a null term to the displacement of the model produces a 
non-null consequence on its motion, an effect that is one more reason to assess that rocking motion 
can be strongly affected by the way one approaches the problem [5]. 

 

4 THE IMPLEMENTATION OF THE PROCEDURE. NUMERICAL RESULTS 

4.1 The basic constants 
The basic constants l are defined on the basis of the investigation of the source of the 

disturbance. Instances for the definition of the forcing functional space are: 
a) n-dimensional linear spaces: 
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Where the coefficients ci are subject to some constraints aimed at fitting the macro-characters of 
the excitation collected in the vector l. The base functions fi(t) express the particular nature of the 
disturbance, and are in general found in some sets of mutually orthogonal functions (e.g. 
trigonometric functions, Hermite, Laguerre and other polynomial sets and so on). 

 
b) delta-correlated processes: 

In this class are contained white and shot-noise processes. After filtering, these particular 
functions can give raise to elaborated functional classes that are anyway generated starting from 
delta-correlated processes. Applications are found in the synthesis of artificial site-compatible 
earthquakes (see e.g. [18]), especially aimed at checking seismic vulnerability of non-linear 
structures.  
 
In all the cases, the relevant macro-parameters l are those defining the maximum value of the 
forcing function, the duration of the disturbance, the spectral energy distribution, the grow-up 
process and so on depending on the problem at hand. 



 

4.2 The response maximization procedure 
For simplifying the operative procedure in the constraints Eqs (1)-(3), x is assumed as a 

Random Standard Gaussian variable (RSG), (µx = 0, 2
xσ = 1) and the objective function in Eq. (4) 

is maximized. 
The optimization process is performed by random-search procedures that verify the above 
constraints almost spontaneously (see [21]); alike the classical maximization methods which turn 
out to be inadequate for the constraints described.  
Basically, with reference to Figure 2, where the level curves of the objective function are reported 
together with a possible optimization path, the response maximization procedure consists of an 
iterative process, based on the generation at each step of a new accelerogram compatible with the 
assigned properties of the disturbance and on the evaluation of the response of the structural model. 
 
 

 
Figure 2: The response maximization procedure.  

 
Starting from an initial point Ro deriving from an initial random vector xo (Fig.2), a second 
random vector x1 in the neighbourhood of xo is generated and the relevant block response is 
evaluated ( )l11 RR x= . If the attempt made by the sample vector x1 is not successful, i.e. if R1 < 
Ro, a new perturbation vector x1 is generated and the steps are repeated until the attempt is  
successful, i.e.  R1 > Ro. In this case xo can be substituted by x1,  Ro by R1, and the procedure is 
iterated in way to produce a sequence of vectors xo, x1,...xr,... yielding an increasing sequence of 
response values Ro, R1,...Rr,...; the procedure ends when, after a reasonable number of trials, say kf, 
no more successful vectors x can be randomly produced. 

4.3 Numerical results 
As an example, it is assumed that the disturbance is a segment of a white-noise sample with given 
duration and maximum acceleration. The force acts on a simply-supported rigid block (Fig.1) with 
dimensions b = 0.4 m, h = 5 m, s =1 m, with the restitution coefficient ρ set equal to 0.8 and 1. 
The response is analyzed by means of the numerical solution of the classic equation [1] of the 
block dynamics under large displacements. 



In Figs 3 and 5 a sample function (the red continuous line), randomly generated, is plotted yielding 
the following maximum response values R: 
 
ρ = 0.8, R = 0.005 ; ρ = 1.0, R = 0.128 
 
After the optimization process, the following worst-scenario results are obtained in terms of worst 
response Rmax: 
 
ρ = 0.8, Rmax = 0.285; ρ = 1.0, Rmax = 0.424 
 
corresponding to the relevant worst disturbances plotted in Figs 3, 5 (the blu dotted lines) for the 
restitution coefficients ρ = 0.8 and 1, respectively. Figs 4, 6 report the results of advancements of 
the optimization procedure with the iterations, with the final worst responses attained. for the two 
cases. 
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Figure 3: Original (red) and optimal (dotted blu) accelerograms for ρ = 0.8. 
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0,00E+00
5,00E-02
1,00E-01
1,50E-01
2,00E-01
2,50E-01
3,00E-01

0 2 4 6 8 10 12 14

Iterations

Re
sp

on
se

RISP0

 
Figure 4: Maximum Response attained during the optimization iterative procedure for  ρ = 0.8. 
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Figure 5: Original (red) and optimal (dotted blu) accelerograms for ρ = 1. 
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Figure 6: Maximum Response attained during the optimization iterative procedure for  ρ = 1. 

 

5 DISCUSSION OF THE RESULTS AND CONCLUSIONS 
The poor robustness of  RM response of rigid blocks resting on a rigid support surface pushes 

to approach the problem by a “worst scenario approach”, thus stabilizing the results through a 
procedure that turns out to be effective especially when the forcing function is not sharply defined, 
as it may happen for instance in seismic assessment problems. 
The results prove that worst-scenario yields results that may be much more severe than sample 
evaluations based on random choice of the forcing time-history. Worst-scenario results are 
likewise more severe than probabilistic evaluations based on the statistics of the response process, 
possibly evaluated by MonteCarlo methods, since the probability measure of the worst-scenario 
may most of the times be zero, despite of the fact that it is anyway one possible realization and 
also includes possible instability of the mathematical-numerical model.  
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