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SUMMARY. Some considerations are proposed with reference to different approaches adopted 
when the material investigated is heterogeneous and micro-structured and the structure assemblage 
is complex. In particular, in the case of masonry, an extensive literature exists on micro and macro 
approaches, but the theories investigating a link between the two scales of analysis is still to be 
developed. With this aim, the authors describe the different approaches at the different scales, and 
try to investigate some possible strategies to overcome the critical length problem. 

1 INTRODUCTION 

When complex structures composed by heterogeneous materials are investigated, a problem is 
the characteristic size analysis. Hence the attention may be focused on the scale analysis. Three 
scale of analysis may be pointed out: micro-scale – masonry component; meso-scale: elementary 
portion of masonry structures; macro-scale: complex assemblage of structural elements.  

At the micro-scale level the characteristic size is represented by blocks and joints modelled as 
a micro structured skeleton, hence for computational problem only limited portion of masonry 
structures –i.e. piers, spanned beam, lintels…-; can be studied [1]. At the macro-scale level the 
characteristic size is the macro-element scale, a portion of structures that may be studied with 
simple equivalent system (i.e., vaults, pediment, walls…) [2]. A possible link between micro and 
macro scale, the former very detailed, but limited in the size applications, the latter manageable at 
the structural scale, but rough at the constitutive level, may be found in the homogenisation-
identification procedures [3]. Unfortunately these procedures, used to define an equivalent 
continuum, propose constitutive functions for the material (in linear, non linear and limit field) but 
their application at the structural level are very poor, also for the difficulty to use standard codes 
and procedures. The structural heterogeneity and the internal microstructure of masonry may not 
be disjointed from the size effect, that depends on the relation between a characteristic length lch 
and the size of structure. 

For the homogenization procedure lch is the least portion of structure, i.e. the so called REV 
(representative elementary volume) that contains in a small scale all the geometric and mechanical 
properties to describe the body as a whole. This assumption is acceptable under the hypothesis that 
the masonry keeps its properties constant for any global dimension. But, as shown by experimental 
tests [4] and by dynamic analyses, the masonry structure behaviour is strictly connected to the 
scale. When the masonry global size increases the ultimate strength decreases. Hence approaches 
based on different characteristic lengths lch may produce incomparable results. With this aim, some 
considerations on the hypotheses of different approaches are here proposed. 
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2 BASIC ASSUMPTION IN HOMOGENIZATION PROBLEMS 

As is well known, the homogenization procedure is based on the definition of a homogeneous 
material, equivalent to the heterogeneous one in its geometry and in the properties of its 
constituent materials. This approach may be used under the assumption of "periodic" body 
structure. This implies that the body is obtained by regular repetition of REV (Representative 
Elementary Volume) [1]. Consider a body in a reference configuration ℑ and identify in its interior 
a REV that is small compared to the dimensions of the body and able to reconstruct the body itself 
by its repetitions (Fig. 1). Define as ε the ratio between the scale of representation of ℑ and that of 
the REV. When ε tends to zero, the body tends to become homogeneous and therefore ε measures 
the degree of its heterogeneity. Given a position p within ℑ and calling x and y its representations 
in two different systems of coordinates, the following relation holds: 
 y x==== −−−−εεεε 1  (1) 

This assumption is crucial in the homogenization methods and implies that all fields are 
periodic over the REV. The field problem is obtained as superposition on a mean field (at order 
zero of ε) of strongly oscillating fields (of higher orders of ε). Hence the first step is the solution of 
a field problem on the REV starting from the geometry of the constituent REV and its constitutive 
function. Then it is possible to obtain macroscopic global constitutive functions used in structural 
analysis. Here a 2D plane model is developed and the panel exhibits a periodic structure both in 
directions 1 and 2. The following notations are used: N=(N)αβ is the macroscopic in-plane 
(membrane) stress field for the homogenized panel; E=(E)αβ is the macroscopic in-plane strain 
tensor; D=(D)αβ is the corresponding in-plane strain rate field; u=(u)αβ is the displacement field; 
V=(V)αβ is a virtual velocity field.  

 
Figure 1-a) running bond masonry panel; b) REV 

2.1 Homogenisation problem in linear elasticity 

The input data are the geometry of Y-REV and the constitutive functions of its constituent –mortar 
and blocks – here assumed as isotropic linear elastic [1]. If σσσσ is the Cauchy stress tensor; εεεε is the 
microscopic strain tensor, E is the macroscopic in-plane strain tensor; (E)αβ=(uα,β +uβ,α), eα is the 
unit vector in the in-plane directions; u

per is a periodic displacement field, a is the constitutive 
function defined as: aB for y ∈ block and aM for y ∈ joint. Then, the following auxiliary problem 
can be solved on the Y-REV: 
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divσ = 0   micro - equilibrium

σ = a(y) ε   local constitutive function

ε = E + sym(grad uper)   compatibility

σ eα    anti − periodic boundary conditions on ∂Y   

uper
periodic on ∂Y

 

 

 
  

 

 
 
 

 (2) 

    
The solution of the field problem (2) provides the homogenised constitutive function of a panel 

subjected to in-plane loading: 
 EAσN

H==  (3) 

where N is the in-plane membrane tensor, AH, is the constitutive homogenised moduli and 〈⋅〉 is the 
averaging operator. On the basis of these considerations, the macroscopic field problem at the 
structural level may be built. 

2.2 Homogenisation problem at collapse 

The input data are the geometry of Y-REV and the yield criterion for the two materials that 
constitute the masonry: rigid and infinitely resistant blocks; mortar joints assumed as Mohr-
Coulomb interfaces [4]. For every (N), the set of statically admissible (S.A.) stress fields σσσσ=(σαβ) 
of a unit cell is defined by: 

 {
Yoicantiperiod

 Yo0divtN)AS

∂⋅

=σ== αβαβ

   n    nσ                      

,n   σ ,  σN.(.  (4) 

For the materials constituting the heterogeneous panel the convex domain G(y) characterizing 
their strength capacities is assigned at every point y∈Y-REV. The strength domain of the 
homogenized panel is defined as:  

 ( ) ( ) ( ){ }YGASGp ∈∀∈∈∃= y   ,yyσ  (N),..σ  Nhom  (5) 

i.e., as a function of the strength capacities of each material. In the same way, for every (D), the set 
of kinetically admissible (K.A.) velocity fields, v=(vi(y)) is defined: 

 ( ) ( ){ }Y-periodicgradsymgradsym)AK perper   u  , uD
~

v  vD.(. +==  (6) 

where 
αβαβ = DD

~
. It is well-known that every closed convex domain is uniquely determined by a 

corresponding positively homogeneous function of degree one called the support function. The 
support function 〈π(d)〉 of G(y) is defined as: 

 ( ) ( ){ } ( ) ( ){ }     d  ddσ  σy  yσ  dσd ,G;G;sup ∀π≤⋅=∈⋅=π  (7) 

where d=(dαβ) is the strain rate tensor. Hence using (4), (5) and (7) the macroscopic Gp
hom domain 

is obtained: 
 ( ) ( ) ( ){ }D     ,χD,DN N homhom ∀π≤⋅= ppG  (8) 

with πp
hom: 

 ( ) ( )( )[ ] ( ){ }     ,D..v    v infDhom AKgradsym tp ∈∀π=π  (9) 

that represents the equivalence between the power on the Y-REV and the power on the 
homogenized panel. The homogenised domain may be used at the structural level, for instance as 
the input of a FEM simulation of the collapse of macroelements (see Section 6). 



 4 

3 REV SENSITIVITY IN THE HOMOGENIZATION MODELS 

As shown in the previous paragraphs 2.1 and 2.2, the hypothesis that the masonry keeps its 
properties constant for any global dimension, is the basic assumption of the homogenisation 
procedure. Here some considerations are proposed with reference to the linear field analysis (the 
same considerations could be extended to the limit analysis). The crucial assumption is that all the 
fields are periodic over the REV. The determination of elastic homogenised moduli is based on the 
imposition of a homogeneous displacement field on the REV. In what follows, the shear case is 
proposed, to obtain the A1212

H homogenised shear modulus. The mesh, due to the symmetry of the 
REV may be referred to a quarter of REV. Figure 2 is relative to [2(a+t)]×(b+t)] REV-area, called 
Ỹ; where b=width of block, a=height of block, t=thickness of mortar joint. Figure 3 is relative to 
2xỸ REV-area. Figure 4 is relative to 4xỸ REV-area. 

 

 
 

 
Figure 2 – Ỹ-REV Figure 3 – 2x{Ỹ-REV} Figure 4- 4x{Ỹ-REV} 
 
Due to the homogeneity of the displacement field and to the periodicity of the structure, the 

same stress and strain distributions on the REV are obtained, therefore the same value of the 
homogenised shear modulus A1212

H is obtained. Hence all the REVs are acceptable.  
 

  
Figure 5 -ε12 trend in the cross sections A-A 
and B-B 

Figure 6 -ε12 trend in the cross sections C-C and 
D-D 

 
A comparison between heterogeneous and homogenised solution is proposed. Hence on the 

REV of Figure 2 two horizontal and two vertical sections are analysed, reporting the local 
distribution of the ε12 strain. As shown in Figures 5 and 6, the homogenised solution is a mean 
field solution with respect to the effective distribution in the REV. After the verification of relation 
between the heterogeneous and homogenised solutions at the REV scale, a structural analysis is 
performed. A comparison between a 2D heterogeneous model (Fig. 7) and 2D homogenised model 
(in which the constitutive function are obtained according to section 2.1) has been carried out.  
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The panel dimension are: base B=1560mm, height H=955mm.  The panel is subject to the 
following boundary conditions: for x2=0 u1=0, for x2=H F1= Fh>0, for x1=0 and x1=B u2=0. The 
block characteristics are Eb=Em×20MPa –Young modulus-; νb=0.2 -Poisson ratio-. The mortar 
characteristics are Em=1000MPa -Young modulus-; νm=0.2 -Poisson ratio-. Figure 8 shows the 
trends of u1 displacement in the heterogeneous and homogenised model for a vertical section. As 
expected, the homogenised model represents the mean field. The good agreement between the two 
models is strongly connected to the regularity of the panel geometry and the uniformity of load. 
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Figure 7 - 2D heterogeneous panel Figure 8 - u1 trend in the vertical cross section A-A 

4. SIZE SCALE EFFECTS AND TRANSITION TO DAMAGE 

As explained in the previous sections, even the description of the elastic behaviour of masonry 
is affected by scale dependence. Homogenisation procedures show that the elastic response is not 
sensitive to the choice of the REV size when homogeneous conditions are present, depending on 
the mesostructure. 

When the onset of damage, in the form of cracks and large displacements, is considered, the 
role of the size scale of the masonry elements becomes more crucial. Structural size effects, in fact, 
are clearly evidenced, and in particular the apparent strength σu decreases while the apparent 
fracture energy Gf increases, with structural size [5]. This peculiar behaviour is controlled by a 
characteristic length lch, whose value is depending on the mesostructure of the masonry, and 
provides the so-called multifractal scaling behaviour [6], as shown in Figure 9. 

 
 

 

 
Figure 9. Multifractal size effect laws on toughness (a) and strength (b) [6] 
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Figure 10. Three-point bending tests on masonry panels [5] 

 
Tests on notched brick masonry panels, clearly show that masonry follows the above universal 

laws, like all granular disordered materials (like e.g. concrete and rocks) do. Of course, the value 
of the characteristic length lch for masonry is quite larger than in the case of concrete. For instance, 
in the tests shown in Figure 10, where the linear size of the bricks was 45x110x250mm and the 
mortar beds were about 0,8cm thick, the value of lch was equal to 1672mm, implying that an 
adequate REV size for the analysis of damage should be larger than 1,6 mt. 

In the following paragraphs, some theories on elastic-plastic behaviour (limit state of damage) 
and on the ultimate behaviour (limit state of collapse) of masonry structures will be discussed. The 
models adopted for those limit states are normally disjointed from the elastic models, and 
especially in the case of collapse behaviour, engineers normally neglect the elastic behaviour and 
only look to the mechanisms activated for macro-elements. 

5. PLASTIC (DAMAGE) LIMIT STATE 

As is wel known, a wide literature deals with the theory of the state of damage, and of the 
material plastic phase. The point when the material becomes plastic and damage arises, interests 
several fields. One of these studies about structures composed by rigid-perfectly-plastic material, 
was originated from the basic premise presented in [7]. The application feasible due to this 
assumption consists in an approximate solution for the response of rigid-plastic structures subject 
to dynamic load, i.e., short duration of load and sign defined.  

The approximate solution is expressed by the product of a modal form by a function of time 
response; the error due to this approximation is assessed through a particular index, which can be 
restricted depending on computed approximate solutions only. The only "load" applied on the 
structure is a velocity field at the initial time; the approximation consists in substituting this field 
with an approximate one, satisfying the requirements of kinematic admissibility, the limit 
conditions and the initial ones, in the way that the response is reduced to a single degree of 
freedom. 

Baratta et al. [8] showed that, since the validity of this method is not strictly conditioned by the 
assumptions about the forces, the procedure for the evaluation of errors remains valid even for a 
generic forced oscillation. The theoretical results provide the possibility to study the structure 
behaviour during the transition from the elastic phase to the plastic one by modal approximations. 
The results are independent of the ground acceleration Ý Ý u 

g
(t)  and of the time t, and show that 

plastic deformations stop at a prescribed abscissa and cannot propagate indefinitely, due to scale 
confinement. The results originally developed for beams in the plastic phase [8] can be easily 
extended to masonry panels, through continuous models. Normally, nonlinear finite elements 
calculations are carried out within this framework [9, 10]. 

The possibility to calculate the upper limit of the error made by replacing the true velocity field 
with the approximate one, enables the process to disregard the knowledge of the real solution, and 
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allows the application of the method even in cases where it is unknown. The numerical examples 
indicate that the "mode approximation" for rigid-plastic structures can lead to satisfying results for 
what concerns damage, but is not efficient for the assessment of the ultimate state of collapse. 

6. COLLAPSE LIMIT STATE 

In the following, the macro-elements modeling strategy for the collapse of masonry structures 
is proposed. An interesting comparison can be made with and a method proposed by [11]. It is 
interesting to note the correlation of results in both cases, extending the second method, originally 
proposed for arch structures, to other types of structural elements and to verify the consequences 
of the approximations in the two cases.  

6.1 The macro-elements strategy 

As is well known, modelling through macro-elements takes into account the limit state of 
collapse in terms of linear and non-linear dynamic analysis. A "portion" of the structure having 
characteristics recognizable by the constructive point of view, which may or may not coincide 
with the architectural and functional ones, is identified. The existence of fracture or weak lines is 
assumed, which represent the sliding planes or hinges that could lead to the collapse of a single 
portion with respect to the rest of the structure.  

The hypothesis is that the material is not resistant to traction, with infinite resistance to 
compression and, conservatively, the approach neglects the energy of fracture and friction between 
the blocks. The blocks are subject to the weight Pi and to the seismic forces αP

i
, in addition to the 

seismic forces transmitted from the rest of the structure αP
j
, and to the generic horizontal loads F

h
  

(Figure 11 a). 
The kinematics of the system is governed by the generalized displacement dk of a point K, 

usually chosen at the center of mass of the system (Figure 11 c). 
 

 
 

 

 

Figure 11. The rigid block. a) System of forces; b) system of displacements; c) subsequent 
configurations of the rigid block for NLKA 

 
The relationship between d

k
 and the unknown multiplier a is obtained by writing the 

equilibrium in the current configuration, by means of the principle of virtual works 
 

                       α P
i
δ1,i + P

j
δ1, j

j=n+1

n+m

∑
i=1

n

∑
 

 
  

 

 
  − P

i
δ 2,i − F

h
δ

h
− L

if
= 0

h=1

o

∑
i=1

n

∑                                    (10) 
 

where δ1 is the horizontal virtual displacement, δ2 is the vertical virtual displacement, and Lif 
represents the work done by the internal forces, which are supposed to be null, since the fracture 

c) 

δ1,j 

δ1,i 
δ2,j 
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energy GF is neglected. 
In LKA (Linear Kinematic Analysis) the initial configuration is studied (Figure 11a). In NLKA 

(Nonlinear Kinematic Analysis), increasing kd  step by step, subsequent configurations are 
investigated until the failure displacement d

k0  is attained, which is characterized by α =0 (Figure 
11 c). The solution permits to plot the capacity curve, which is piecewise nonlinear if the forces 
display a variation (e.g. yielding or rupture of a tie).  

The results are used to define the behavior of an equivalent SDOF system, which is expressed 
in terms of acceleration *

a  and displacement *
d . The seismic spectral acceleration *

a  is 
 
  

                                                              
a* =α

P
i

i=1

n+m

∑
M *                             

(11)
       

 
 

being the mass *M  of the SDOF system  
 

 

                                                  

M * =

P
i
δ

x,i

i =1

n+m

∑
 

 
 

 

 
 

2

g P
i
δ

x,i

2

i=1

n+m

∑
                                                             (12) 

 
 
where g is the gravitational acceleration. 

In LKA, the ultimate limit state is verified if daa >* where 
 
                                             a

d
=

a
g
S

q
1+1.5

Z

H

 

 
 

 

 
                                                      (13)                                                                                                           

 
with S is the soil factor and q is the behavior factor. Moreover, Z is the height of the mass center of 
the system, H is the height of the structure, both with respect to the foundations. 

In NLKA the ultimate displacement *
ud , i.e. the capacity of the system, is defined 

conventionally for ),min( 21 kkk ddd = where 
kuk dd ,1, 4.0=  is computed considering only the forces 

which do exist up to failure, and d
k2

 is the displacement which is incompatible with the stability of 
the structural elements (e.g. lack of beam support). 

The nonlinear system is replaced by a secant linear system defined conventionally for 
** 4.0 us dd = . The intersection between its capacity line and the demand curve identifies the 

demand displacement ∆d. The structure is finally verified if ∆
d

≤ d
u

*   
An application of the macroelement strategy was carried out by the authors, according to the 

Italian Guidelines for Seismic Assessment of Historical Buildings [12], for the structural analysis 
of a theatre in Bari, [2]. The issue was to simplify the complex structure in simpler and more 
regular parts, i.e. the “macroelements” and to model them at collapse. In this way, the continuum 
behavior of the building under small loads was missed (e.g. the damage limit state was not 
modeled), but the ultimate (collapse) limit state was correctly modeled. As is well known, when 
fractures and detachments are evident, individuation of the macroelements is trivial. Instead, when 
they are not present (or not visible due to previous retrofit), the choice of the macroelements must 
be carried out with great accuracy, taking into account not only the original architectural and 
functional destination, but also the most probable patterns of weakness where fractures will appear. 
An example of two macroelements that were studied is reported in Figure 12. 
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Figure 12. Petruzzelli theatre (Bari, Italy). a) Overturning of the pediment on the frontispiece; b) 
overturning of the walls of the foyer. 

6.2 The “mode approximation” applied to the collapse state 

The "mode approximation" [7] provides the solution even for the response of structural 
systems consisting of traction-free material, that are subject to pseudo-impulsive or impulsive 
dynamic load. As already mentioned in cap. 5, the approximation consists in replacing the initial 
velocity field with an approximate one, and in the reduction of the response into a SDOF system, 
on the basis of a predetermined modal form. The equations of motion are written by the principle 
of virtual work, considering the actual forces acting on the structure, and the virtual displacements 
δu1 i

and δu2i
, read on the kinematic system. At a certain time instant, the field of real velocity 

coincides, except for a factor, with the virtual deformed shape of the structure and, through 
appropriate substitutions, the instantaneous displacement of the structure with a step by step 
procedure can be obtained. 

This method, like the one described in the par. 6.1, starts by individuating a structural portion 
where a mechanism of collapse is supposed to be activated, e.g., with the formation of unilateral 
hinges. The structure becomes a rigid-kinematic failing system to which the hinges confer one (or 
possibly more) degree of freedom. 

In the simple case of arch scheme, collapse occurs when the rotation centres of the various 
portions are aligned (see Figure 13 d)  

 
 
 

Figure 13. Un-damped motion. a) Rotations diagram b) velocity diagram c) forcing; d) the arch 
collapse configuration 

 
Differently, in the macro-elements method described in par. 6.1, the principle of virtual work is 

written by means of the real forces and the virtual deformation, that is supposed to coincide with 
the real one, at least when calculated with a sufficiently small time step. Therefore, although the 
macro-elements approach appears more direct and less computationally expensive, it is certainly 
less accurate.  

a) b) 

b) 

a) 

c) 
d) 
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7. CONCLUSIONS 

In this paper, a brief description of the theories usually adopted, at the various scales, to model 
masonry structures, has been put forward. It can be noticed that a link between the different scales 
is absent, and micro-scale theories, mainly based on homogenization procedures, are totally 
neglected at the macroscale of a real masonry building. On the other hand, while the ultimate state 
of collapse is adequately modeled by rigid-plastic behavior (macroelements or mode 
approximation), the crucial missing point is the onset of damage, which is clearly scale dependent, 
as shown by the experiments.  

Starting from this preliminary paper, we are planning to set a true multiscale theory of masonry, 
as general as possible, taking into account the different constructive typologies, that could be put 
into a unified numerical description of the structures. 
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