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SUMMARY. Fibre-reinforced plates and shells are finding an increasing interest in engineering
applications, because they are light-weight and provide a high stiffness over weight ratio. Con-
sequently, efficient and robust computational tools are required for the analysis of such structural
models. It should be remarked that because of their slenderness these structural elements require a
careful evaluation of their safety with reference to buckling phenomena.

1 INTRODUCTION
A huge amount of laminated finite elements have been developed and incorporated in most com-

mercial codes for structural analysis: a partial survey can be found in [1]. In this paper, as a sequel
of some previous works already published by the Authors [2], [3], an assumed-strain laminated
plate element is derived within the framework of the First-order Shear Deformation Theory (i.e.,
by assuming that particles of the plate originally lying along a straight line which is normal to the
undeformed middle surface remain aligned along a straight line during the deformation process ),
along with the hypothesis of perfect bonding between laminae. The in-plane components of the
(infinitesimal) strain tensor are interpolated and, by making use of the constitutive law, the corre-
sponding in-plane stress distribution is deduced for each layer. Out-of-plane shear stresses are then
computed by integrating the equilibrium equations in each lamina, account taken of their continuity
requirements. The corresponding out-of-plane shear strains are finally obtained via inverse constitu-
tive law. The resulting global strain field depends on a fixed number of parameters, regardless of the
total number of layers: 12 degrees of freedom are assumed, for instance, in the rectangular element
which has been developed. The model does not suffer shear-locking phenomena even in the thin
plate limit and provides an accurate description of interlaminar stresses. In this new mixed-hybrid
element the nodal variables are, as usual, the vertical displacement and the two rotations about the
in-plane axes; both cases of Lagrangian and Hermitian polynomial interpolation have been investi-
gated. While the former choice is effective even in the thick limit, the latter choice (which enforces
displacement and rotations continuity at the interelement boundaries, whereas the normal deriva-
tives of the displacement field are allowed to be discontinuous) seems to be more appropriate for
thin plates. In dealing with stability analysis, second-order strain components are deduced from the
displacement field and the Green-Lagrange strain tensor is employed; it should be emphasized that
in the thin-limit case (i.e. in the case when Love-Kirchhoff theory applies) the standard geometric
stiffness matrix, associated to the same displacement field, is recovered. Moreover the presented
model allows to evaluate accurately the influence of shear deformations on critical loads: such an
effect is expected to be significant in typical technical applications of composite laminated plates.
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From a computational point of view the performances of the developed element appear fair when
compared in terms of efficiency and accuracy with other elements proposed in the technical literature
and/or implemented in available commercial finite element codes.

2 THE MODEL
A laminated plate is here considered: a thin/moderately thick flat body, composed by K layers

with different mechanical characteristics, stacked one above the other and occupying the domain:

Ω =
{

(x1, x2, x3) ∈ R3 | x3 ∈ [−h/2,+h/2], (x1, x2) ∈ Ω̃ ⊂ R2
}

. (1)

Plane Ω̃ (i.e. x3 = 0) defines the middle surface of the undeformed plate, as it is shown in Figure 1.

Figure 1: A typical laminated plate.

For the sake of simplicity, only laminates in the framework of linear elasticity will be consid-
ered, but in view of application to buckling problems stretching effects will be explicitly taken into
account.

Layers lie parallel to the middle surface Ω̃; the typical k-th layer is bounded by thickness coor-
dinates hk−1 and hk and is supposed to be orthotropic with material axes oriented at an angle θ k

with reference to the laminate coordinate x1. As a consequence, its elastic behaviour is completely
defined by these 6 independent coefficients, written in the compact Voigt notation: C k

11, C k
12, C k

22,
C k

66, C k
44 and C k

55.

2.1 Strain and stress fields
Perfect bonding between laminae is assumed, so that in-plane strain components of the plate ε11,

ε22, ε12 = ε12 are given by the following global description:

ε11(x1, x2, x3) = ε0
11(x1, x2) + x3ε̃11(x1, x2) (2)

ε22(x1, x2, x3) = ε0
22(x1, x2) + x3ε̃22(x1, x2) (3)

ε12(x1, x2, x3) = ε0
12(x1, x2) + x3ε̃12(x1, x2). (4)

According to Eq. (2)–(4) the in-plane components of the infinitesimal strain tensor εij consist of a
stretching contribution, ε0

ij , and of one, x3ε̃ij , which is linearly varying along the thickness, as in
the classical plate theory.

By making use of the Constitutive Law (CL) enforced at the local level for the k-th lamina, these
in-plane stress components (σ k

11, σ k
22, σ k

12 = σ k
21) result:

σ k
11(x1, x2, x3) = C k

11[ε
0
11(x1, x2) + x3ε̃11(x1, x2)] + C k

12[ε
0
22(x1, x2) + x3ε̃22(x1, x2)] (5)

σ k
22(x1, x2, x3) = C k

12[ε
0
11(x1, x2) + x3ε̃11(x1, x2)] + C k

22[ε
0
22(x1, x2) + x3ε̃22(x1, x2)] (6)

σ k
12(x1, x2, x3) = 2C k

66[ε
0
12(x1, x2) + x3ε̃12(x1, x2)]. (7)
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In general, these components, which vary linearly along the transverse direction of the lamina, are
discontinuous at the interface between two laminae having different orientation and/or material prop-
erties.

When labels of the stress components are chosen in such a way that the former denotes the
direction, and the latter the normal to the face they refer to, in absence of body forces the Linear
Momentum Balance (LMB) equations for the k-th layer in the x1 and x2 directions read:

σ k
13,3 = −(σ k

11,1 + σ k
12,2) (8)

σ k
23,3 = −(σ k

21,1 + σ k
22,2). (9)

By integrating with respect to x3 eqs. (8)–(9) the out-of plane components of the stress field in the
k-th layer, σ k

31 = σ k
13, σ k

32 = σ k
23 can be derived explicitly, and the integrating constants can be

defined in such a way that Traction Boundary Conditions (TBC) can be exactly fulfilled on the plate
bases Ω+ and Ω−.

Once the transverse shear stresses are known, by making use of the inverse CL the corresponding
out-of-plane shear strain components can be evaluated for the k-th lamina:

εk
13 =

σ k
13

2C k
55

εk
23 =

σ k
23

2C k
44

. (10)

2.2 Displacement field
The kinematics of the laminated plate can be written in this way:

u1(x1, x2, x3) = u0
1(x1, x2)− x3ϕ̃1(x1, x2) (11)

u2(x1, x2, x3) = u0
2(x1, x2)− x3ϕ̃2(x1, x2) (12)

u3(x1, x2, x3) = ũ3(x1, x2). (13)

The in-plane components of the displacement field, uj (with j = 1, 2), given by eqs. (11)–(12)
consist of an extensional contribution, u0

j and a flexural one, x3ϕ̃j , which is assumed, analogously to
the classical Reissner-Mindlin model, to vary linearly along the transverse direction of the laminated
plate; here ϕ̃j are the rotations (see Figure 2) of the transverse line elements, which initially lie
perpendicular to the middle surface, about the xj-axis. The normal component, expressed by (13),
is instead assumed to be constant along the x3-axis.
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Figure 2: Rotations of the transverse line element of the plate ϕ̃1 and ϕ̃2.

2.3 Variational formulation
A brief deduction of an assumed-strain hybrid finite element is presented. A 3-D continuum is

considered, occupying a volume Ω, bounded by a smooth surface ∂Ω = ∂Ωu ∪ ∂Ωs, with ∂Ωu ∩
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∂Ωs = ∅; ∂Ωu is the portion of the boundary where the displacement field is prescribed, whereas
∂Ωs is the complementary part of the boundary, where TBCs must be fulfilled.

To deal with the the buckling load problem, the following three-field variational principle (cor-
responding to a generalized form of the Hu-Washizu functional, see [4], [5]) can be stated:

ΠHW (σij , εij , ui) =
∫

Ω

(
1
2
Cijmnεijεmn − biui)dV

−
∫

Ω

σij [εij − 1
2
(ui,j + uj,i)]dV +

∫

Ω

1
2
σ0

ijul,iul,jdV

−
∫

∂Ωs

fiuidS −
∫

∂Ωu

σijnj(ui − ūi)dS. (14)

In eq. (14) Cijmn, σij , εij , ui denote, respectively, the Cartesian components of the elasticity tensor,
of stress and strain tensors and of the displacement vector; bi and fi denote the components of body
and surface forces respectively, while ūi are the prescribed displacement components. σ0

ij represents
the (known) stress tensor in the pre-critical state, and the corresponding term provides the second-
order work contribution.

If CL is a priori enforced, then it is possible to eliminate the stress components from Eq. (14),
obtaining this modified Hu-Washizu functional, depending only on strain and displacement fields:

ΠHW,mod(εij , ui) = −1
2

∫

Ω

CijmnεijεmndV

+
∫

Ω

(Cijmnεmn,j − bi)uidV +
∫

Ω

1
2
σ0

ijul,iul,jdV

+ boundary terms. (15)

If, instead of a continuous homogeneous solid, a laminated body is considered, which satisfies the
previously introduced hypotheses, the variational principle must be modified accordingly. For a
hybrid type laminate element, in the absence of body forces, the discretized version of functional (15)
is:

ΠH,e
HW,mod(εij , ui, ûi)=−

K∑

k=1

[
1
2

∫

Ω̃e

∫ hk

hk−1

Ck
ijmnεk

ijε
k
mndx3dA

+
∫

Ω̃e

∫ hk

hk−1

Ck
ijmnεk

mn,juidx3dA +
1
2

∫

Ω̃e

∫ hk

hk−1

σ0k
ij ul,iul,jdx3dA

+
∫

ΩLe

∫ hk

hk−1

Ck
ijmnεk

mnnj ûidx3dl

]
, (16)

where ûi is a displacement field defined only on the boundary ΩLe of the e-th element, whose
domain is Ω̃e.
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2.4 Discretization of the strain and displacement field
For a rectangular laminated plate element, the in-plane stretching contribution of the strain tensor

(eqs. 2–4) are assumed as follows:

ε0k
11 = α1 + α2x2 (17)

ε0k
22 = β1 + β2x1 (18)

2ε0k
12 = γ1, (19)

while the in-plane flexural contribution are chosen to be:

ε̃k
11 = α3 + α4x1 + α5x2 (20)

ε̃k
22 = β3 + β4x1 + β5x2 (21)

2ε̃k
12 = γ2 + γ3(x1)2 + γ4(x2)2. (22)

The other strain components are evaluated with the procedure shown in eqs.(8)–(10); it should be
noticed that, regardless of the number of layers, the strain field depends only on 14 independent
parameters.

The displacement field can be conveniently expressed in terms of the in-plane displacements ũ `
1 ,

ũ `
2 (` = 1, . . . , 4), of the transverse displacements ũ `

3 and of the rotations ϕ̃ `
1 , ϕ̃ `

2 of transverse line
elements, evaluated at the four nodes of the plate.

The components of the assumed displacement field are then functions of these nodal dofs and are
expressed in terms of the usual Lagrangian shape functions as follows:

u1 =
4∑

`=1

N `(ξ i)ũ `
1 − x3

4∑

`=1

N `(ξ i)ϕ̃ `
1 (23)

u2 =
4∑

`=1

N `(ξ i)ũ `
2 − x3

4∑

`=1

N `(ξ i)ϕ̃ `
2 (24)

u3 =
4∑

`=1

N `(ξ i)ũ `
3 . (25)

where
N `(ξi) =

1
4
(1 + ξ 1ξ

`
1)(1 + ξ 2ξ

`
2) (` = 1, . . . , 4). (26)

is the standard bilinear shape function of the isoparametric mapping. The dimensionless coordinates
(ξ 1, ξ 2), with −1 ≤ ξ i ≤ 1 (i=1, 2) are then related to the physical one x1 and x2 as follows:

xi(ξ i) =
4∑

`=1

N `(ξ i)x `
i (27)

where x `
i , (with ` = 1, . . . , 4), are the nodal coordinates of the element.

For the sake of conciseness the governing matrices, whose deduction follows the same procedure
used for mixed-hybrid finite elements (see, for instance, [5]) are here skipped; it should be noticed,
however that the presence of the the second-order work contribution 1

2

∫
Ω̃e

∫ hk

hk−1
σ0k

ij ul,iul,jdx3dA

produces the usually denoted geometric stiffness matrix.
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3 NUMERICAL RESULTS
The finite element described above has been used to evaluate the elastic buckling load of some

homogeneous and laminated plates.
As a first step, some 1-D problems have been investigated. For them, the plate element described

above reduces to a corresponding beam element: the relevant details are skipped for the sake of
conciseness.

Subsequently, the plate problem has been tested on some truly 2-D problems.

3.1 1-D buckling problems
The buckling loads of both homogeneous and laminated beams have been computed by a usual

eigenvalue analysis. Exact closed form solutions for homogeneous beams are easily available in the
literature (see, e.g. [6] or [7]) for standard Bernoulli-Euler type beams (with no shear strain) and
also for Timoshenko beams, where shear strain contribution is accounted for. Exact solutions for
laminated beams are available only for some particular lamination sequences: see, for instance [1].

3.1.1 Homogeneous beams

As a first case, the buckling load of a cantilever beam has been computed for a thin beam (with
a depth-to-span ratio h/L = 0.02) and for a thick one (h/L = 0.25). In both cases Poisson’s ratio
is ν = 0.3 and cross-section is assumed to be square. For the thin cantilever beam, see Figure 3, the
buckling load normalized against the exact value for an Euler-Bernoulli beam is shown in Table 1.

Figure 3: Thin cantilever beam.

# of el. 2-noded, Lagr. 3-noded, Lagr. 2-noded, Herm.
1 1.2158 1.0075 1.0075
2 1.0524 1.0005 1.0005
4 1.0129 1.0000 1.0000
8 1.0032 1.0000 1.0000

16 1.0008 1.0000 1.0000

Table 1: Normalized buckling load for a homogeneous cantilever beam h/L = 0.02

Here two- and three-noded elements with Lagrangian shape functions and two-noded elements with
Hermitian shape functions have been tested: the last two cases produce the same result since for
thin beams shear strain contribution is very small and the difference between section rotation and
deformed axis slope is negligible. This means that constraining the axis slope is equivanlent (as it
happens with Hermitian shape functions) to constraining the rotation of the cross section.
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For the thick cantilever beam, Figure 4, the buckling load normalized against the exact value for a
Timoshenko beam is shown in Table 2. In this case only Lagrangian shape functions have been

Figure 4: Thick cantilever beam.

# of el. 2-noded, Lagr. 3-noded, Lagr.
1 1.2058 1.0072
2 1.0503 1.0005
4 1.0124 1.0000
8 1.0031 1.0000

16 1.0008 1.0000

Table 2: Normalized buckling load for a homogeneous cantilever beam h/L = 0.25

considered, since, because of the appearence of shear strain, section rotation is different from the
deformed axis slope, and the use of Hermitian shape function would not allow to enforce the exact
boundary conditions. Before proceeding, it should be emphasized that minimal elements (i.e. ele-
ments with the fewest number of degrees-of- freedom (dofs) necessary to guarantee the absence of
zero energy modes) do not behave optimally, in general, when the eigenvalue problem at hand is
considered. Here the quadratic term in functional (15) corresponding to second-order work requires
elements reacher than minimal ones to produce accurate results. That’s why 3-noded elements per-
formance is so far better.

3.1.2 Laminated beams

The buckling load of different kind of laminated cantilever beams has been computed. Mechan-
ical data of the laminae are as follows:

E1

E2
= 25; G12 = G13 = 0.5E2; G23 = 0.2E2; ν12 = 0.25

For the thin beam case, Figure 3, a depth-to-span ratio h/L = 0.01 was used. The buckling load
is normalized against the exact value given in [1], p. 186, Table 4.2.4 and p. 200, Table 4.3.3; four
different lamination sequences are considered (namely 0, 90, (0/90)s, (90/0)s) and the results are
shown in Table 3. Here only two- and three-noded elements with Lagrangian shape functions have
been considered.
For the thick beam case, Figure 4, a depth-to-span ratio h/L = 0.05 was used and the same 2- and
3-noded elements with Lagrangian shape functions were adopted. Results — only for lamination
schemes 0, 90, (0/90)s — are shown in Table 4.
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Lamin. 0 90 (0/90)s (90/0)s 0 90 (0/90)s (90/0)s
# of el. (2-noded) (3-noded)

1 1.0511 1.0511 1.0139 1.0131 1.0075 1.0076 1.0068 1.0060
2 1.0010 1.0010 0.9998 0.9990 1.0005 1.0005 0.9998 0.9990
4 1.0001 1.0001 0.9988 0.9982 1.0000 1.0000 0.9993 0.9985
8 1.0000 1.0000 0.9987 0.9981 1.0000 1.0000 0.9993 0.9985

16 1.0000 1.0000 0.9987 0.9981 1.0000 1.0000 0.9993 0.9985

Table 3: Normalized buckling load for a laminated cantilever beam, h/L = 0.01

Lamin. 0 90 (0/90)s 0 90 (0/90)s
# of el. (2-noded) (3-noded)

1 1.0126 1.0161 1.0313 1.0072 1.0073 1.0118
2 1.0035 1.0020 1.0147 1.0004 1.0003 1.0048
4 1.0024 1.0010 1.0126 1.0000 0.9999 1.0043
8 1.0022 1.0005 1.0123 1.0000 0.9999 1.0043

16 1.0021 1.0003 1.0122 1.0000 0.9999 1.0042

Table 4: Normalized buckling load for a laminated cantilever beam, h/L = 0.05

3.1.3 Homogeneous plates

Exact buckling loads of simply-supported, homogeneous thin plates under uniaxial compressive
stresses or under shear stresses, as shown in Figure 5, are available in [7], p. 257–259 and p. 263–
264, respectively.

,

Figure 5: Simply-supported thin homogeneous plate under uniaxial compressive stresses and under
shear stresses.

Figure 6: Critical modes for one square and for one rectangular thin homogeneous plate under
compressive stresses.
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square plate (CS) rectangular plate (CS) square plate (SS)
Mesh Current Straus7 Mesh Current FE Straus7 Mesh Current Straus7
2× 2 1.0052 0.5520 1× 2 — 0.2521 2× 2 — 0.3468
4× 4 0.9630 0.7032 2× 4 0.9976 0.5603 4× 4 1.3326 0.7779
8× 8 0.9712 0.7516 4× 8 0.9580 0.7040 8× 8 1.0335 0.9347

20× 20 0.9783 0.7663 10× 20 0.9603 0.7575 20× 20 0.9823 0.9873

Table 5: Normalized buckling load, under compressive stresses (CS) and under shear stresses (SS),
for simply-supported plates, h/L = 0.025.

Data are as follows: Poisson’s ratio ν = 0.3, h/L = 0.025, a/L = 1. (square plate) or a/L = 2.
(rectangular plate). Results in normalized form are compared in Table 5 with those provided by
a commercial code (Straus7 version 2.3.6, developed and distributed by Strand7 Pty Ltd). The
corresponding critical modes are shown in Figure 6 and 7.

Figure 7: Critical modes for one square thin homogeneous plate under shear stresses.

As a last case, a relatively thick h/L = 0.10 simply-supported square plate under uniaxial com-
pressive stresses (see Fig 5) is considered. Data are as in the previous case. The current solution,
normalized by Dπ/a2 — here D = (1/12)Eh3/(1−ν2) is the plate stiffness — is given in Table 6;
for comparison purposes these results available in the literature are reported: Brunelle and Robert-
son [8] give 3.729; Reddy and Phan [9] 3.787; Doong [10] 3.730; Matsunaga [11] 3.771; in most
cases these results are obtained by higher-order shear deformation theories.

Mesh Current
2× 2 4.9415
4× 4 3.9300
8× 8 3.7625

10× 10 3.7324

Table 6: Normalized buckling load, under compressive stresses, for square simply-supported mod-
erately thick plates, h/L = 0.10.

4 CONCLUSIONS
From the presented examples it appears that the proposed model allows to evaluate accurately the

influence of shear deformations on critical loads: such an effect is expected to be significant in typical
technical applications of composite laminated plates. Computationally speaking, its performances
are fair, both in terms of efficiency and accuracy, when compared with other elements proposed in
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the technical literature and/or implemented in available commercial finite element codes.
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tante, McGraw-Hill, Milano (1994).

[8] Brunelle, E.J., Robertson, S.R.“Vibrations of an initially stressed thick plate”, J. Sound Vibr.,
45, 405–416,(1976).

[9] Reddy, J.N., Phan, N.D. “Stability and vibration of isotropic, orthotropic and laminated plates
according to a higher-order shear deformation theory”, J. Sound Vibr., 98, 157–170, (1985).

[10] Doong, J.-L. “Vibration and stability of an initially stressed thick plate according to a high-
order deformation theory”, J. Sound Vibr., 113, 425–440, (1987).

[11] Matsunaga, H. “Free vibration and stability of thick elastic plates subjected to in-plane forces”,
Int. J. Solids Structures, 31, 3113–3124, (1994).

10


