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SUMMARY. In this paper a micromechanical numerical proaeciased on the homogenization
approach is proposed to assess the strength domain of rgasaterial, taking into account the
effects of the interface phenomena through a specific contadel. The numerical analyses are
performed in the elastic field with a generalized plane datmulation in axial deformation. In
particular two different methods are used. The first consida overall criterion based on the
strength values of three phases assessed by their measntstisers: brick, mortar and interface.
The numerical formulation allowes to apply the method to aonay arranged both in a periodic
and a non-periodic pattern. The latter method takes intowatidhe arising of the local phenomena
and the foundamental failure mechanisms are recovered.phalianinary application, this method
is applied to a periodic masonry. In particular a periodiit oell, composed by different phases as
brick, bed and head mortar joints, bed and head mortar attesf is analyzed with periodic boundary
conditions. Then, the failure load for the homogenizedscsllobtained when reaching the failure
criteria of any of the components in terms of the mean stesssor. The numerical results are in a
good agreement with the experimental observations.

1 INTRODUCTION

In the last decades, many numerical models able to destrheethavior of masonry have been
developed using tools drawn from different branches of ranids, as for example the theory of
elasticity and plasticity, fracture mechanics, micronatbs of the continuum media and from the
homogenization techniques.

In particular, in the context of the homogenization apphaas; many analysis methods relevant
to the periodic masonry loaded in the one’s own plane have pegposed both in the elastic field
[1, 2, 3, 4] and in the plastic one. In the latter case, difiereodeling choices were done in order to
obtain the strength domain [5, 6] or the overall responsebheéyhe elastic limit of the heterogeneous
material using both interface models [7] and damage caristtlaws [8, 9, 10].

For what concerns non-periodic masonry, Cluni and Gusebagsed a procedure to evaluate
the elastic characteristics of the homogenized continusimguthe “test windows method” [11, 12]
to find the RVE. InSejnoha et al. [13] a different procedure is proposed, irctvtiie homogenized
elastic-plastic characteristics are obtained on a sttt equivalent periodic unit cell (SEPUC),
determined through the analyses of geometric stochastionEers.

In this paper, in order to estimate the strength domain oibger and non-periodic masonry
material, two different approaches are proposed.

The first determines the strength domain by means of an dVailake criterion based on the
strength values of three phases assessed by their meastsinssrs: brick, mortar and interface.
The procedure is able to reach the principal failure modés eansiderable advantages in terms of
computational costs. At first the method is applied to a mgsarranged in a periodic pattern and



then, owing to the universal form of the procedure, to anaatasonry arranged in a non-periodic
pattern.

The latter approach presents a more detailed formulatidnisaable to describe the development
of local failure mechanisms that involve the global collapsAs a preliminary application, this
method is applied to a periodic masonry through the anabfsésPeriodic Unit Cell subjected to
periodic boundary conditions.

The numerical results have been compared with experimenga found in the literature.

2 FAILURE CRITERIA FOR MASONRY MATERIAL AND ITS CONSTITUENTS

The definition of a failure criterion for masonry materiabiproblematic matter because, gener-
ally, all phases participate to the overall strength, eaith svpeculiar, different behavior.

The method proposed in this paper is based on the assumpéibthe overall strength limit of
the specimen is reached when, with the increase of the boytodeals or of the boundary displace-
ments, the mean stress tensor of one of the phases satisf@srityield condition. It should be
noted that, in this way, the local evolution of microcracks/r plastic strains developed before the
global collapse is taken into account in an overall way. @nather hand, the method allows to per-
form elastic analyses in generalized plane state of axfara®tion with significant computational
advantages and, at the same time, adequate results, ag sfiblvn in the following.

Owing to the linearity of the method, which allows effectparposition, and since the problem
is kinematically plane, each specimen has been studied mndiesix different kinds of boundary
conditionsg andeg (with £ = 1,2,3):
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whereoande’ indicate Neuman and Dirichlet boundary conditions respelst
Then, the general state of stréss,), with n = o, £ according to the kind of boundary conditions
applied, has been obtained from the variation ofihig ¢ coefficients in the expression

(o) = wlalol,) +bo,) + c(a5,)] 3)

wherex is a small factor that provides a state of stress far enough the crisis anda2n> is the
overall mean stress tensor given by the applicatiohtgpe andy boundary conditions.

Being (aﬁ,i)> the mean stress state of tH& phase and\ﬁf) a stress state multiplicative factor by
which the strength condition of the phase is satisfied

FOXNeWy)) =0, (4)

the ultimate strength value of the heterogeneous materidgfined by the following overall mean
stress tensor .
o-,{; = miin{)\,(n’)} o). (5)

For what concerns the choice of the strength condition foh@aaterial phase a failure criterion
proposed by Lubliner et al. [14], in which both the isotropitd the deviatoric parts of the stress
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Figure 1: Mohr-Coulomb with tension cut-off criterion agséd to the interface.

tensor participate to the ultimate strength, has been Useslyield function calculated on the mean
stress tensor of thé" phase is

F((0) = - ol + V372 + B6max| - (6)

wherel; and.J; are the first invariant of the isotropic part and the secowdriant of the deviatoric
part of the stress tensor respectivelyand s are parameters which depend on uniaxial tension and
compressiond; ando.) and equibiaxial compressioay) of each single phase, as defined below

oy — O¢ Oc
D B= - (1-a)—(14a) (7
andad .« is the maximum value of the principal stress tensor.

Concerning the interface, let us consider the generic paiftelonging to the contact surface
between the phases, and the contact pregsixg = {pn,pr}, wherepy andp, are the normal
and tangential stress components. At the interface a Molutetnb criterion with tension cut-off is
used

[(pr)| = ¢ — (pn) tang (pN) = po
(8)
{(pr) =0 (pN) < Dpo
wherec and¢ are the coesion and the friction angle respectively (Figltshould be noted that the
strength criterion (8) is expressed in terms of macroscegices of contact stresses calculated over
the interface.

3 OVERALL EVALUATION OF STRENGTH DOMAIN

3.1 Periodic masonry

The numerical procedure explained before has been applted periodic masonry. The analysis
has been performed in ABAQUS environment using bidimeradielements with 3 and 4 nodes with
a generalized plane state formulation according to twekffit approaches:

- in afirst step the three models at different values of betgalope (°, 22.5° and45° from the
vertical direction) have been considered (Fig. 3.1) andé¢kalts obtained by the application
of boundary conditions}, o) ande!, €J have been superposed;

- in a second step the boundary conditier{sa9, % ande?, €9, €2 have been applied to define
the failure surface in three-dimensional spageo,, 7, whereo,, ,0, andr are the compo-
nents of stress normal, parallel and tangential to the batkjo
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Figure 2: Specimen layout of the experimental test.

Phase E [MPa] v o.[MPa] o;[MPa] o, [MPa]l po[MPa] c¢[MPa] ¢

Brick 6740 0.167 15.41 1.5 17.0 - - -
Mortar 1700 0.20 5.08 0.5 6.0 - - -
Interface - - - - - 0.13 0.35 30

Table 1: Mechanical characteristics of the masonry carestis -£: Young's modulusy: Pois-
son’s ratio;o.: failure stress in uniaxial compressios;: failure stress in uniaxial tensiom,:
failure stress in equibiaxial compression (see [14] foail&); py: tensile strength at the interface;
coesiony: friction angle.

The choice of the mechanical parameters has been based expliemental data [15, 16] and
the numerical elaborations of Shieh-Beygi and Pietrudz§¥d] for the missing values (Tab. 1).
Fig. 3 shows the comparison between the numerical resudtharexperimental ones obtained in the
first step of analysis, where the zones corresponding terdifit failure mechanisms are indicated.
The curves differ in the boundary conditions applied, relt(dashed line) and essential (continuous
line). It should be noticed that the failure of the interfacainly occur under biaxial tension-tension
and tension-compression states of stress, while the déadlfibrick prevails in biaxial compression,
in agreement with the experimental observations.

Fig. 4 shows the comparison between the numerical result$henexperimental ones obtained
in the second step of the analysis. Fig. 4(a) displays teagth domain plotted on ths,, o, plane,
for different values ofr. It should be put in evidence that the failure mechanismainbd from
the proposed procedure are comparable with the ones deddrif18] (Fig. 4(b)): following the
symbolism of that paper, in region A the failure occurs byitepg of the panel in a plane parallel
to the faces of the panels, in region B the failure takes pddaeg bed joint planes, with the panel
capable of sustaining a shear stress on the bed joint a&enitiel failure; in region C the failure
takes place along bed joint planes with separation of thgdiet$; in region D the failure involves
separation of the vertical joints.

3.2 Non-periodic masonry

The procedure is then applied to estimate the strength doofiaimasonry arranged with a non-
periodic pattern (Fig. 5(a)). The wall, having 2000 mm sgusize, has been subdivided using four
partitions named’;, P, P; and P, made of 25, 16, 9 and 4 portions respectively (Fig. 5); theter
P5 indicates the entire panel.

The test windows method has been used to obtain the elastimpters and the strength domain
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Figure 3: Strength domains of periodic masonry obtaineddmeemental tests [15] (a)-(c)-(e) and
by numerical procedures (b)-(d)-(f). 5
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Figure 4: (a) Strength domain for periodic masonry plottedh®o,,, o, plane, for different values
of 7. (b) Failure mechanisms observed during experimenta {&8{.
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Figure 5: Photographic image of the non-periodic masontyamalysed (a); examples of partitions
of the masonry wall:P; with n; = 25 (b) andPs; with ng = 9 (c).

of the homogenized continuum [19]. The hierarchy of strerimains (9) proposed by He [20] is
respected
() 2(x) € (22" € 757 € 9277 " 3w PP C (D). ©)
xeN i=1 i=1

in which 227 and2:/? are the apparent strength domains ofitfigoortion for natural and essential
boundary conditions respectively(x) is the local strength domain of a generic point and the two

bounding values

N2x) (@)= voll(Q) /Q D(x)d (10)

x€eN

represent the limits of Sachs and Taylor respectively.
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Figure 6: Strength domains: convergence of the homogeffaziede surfaces of the partitions,
P, andP; onT = 0.0 (&) andr = 3.0 (b) planes.

Figure 6 graphically shows the convergence of the surfagdsthe increase in size of por-
tions. In particular, the surfaces of partitioRs (red), P, (blue) andP; (black) evaluated in natural
(dashed line) and essential (continuous line) boundargitions have been sectioned by planes
with constant values af. The results differ from the ones obtained in absence ofdhéact model
[19] mainly for the presence ofy at the interface, while the effects concerning theappear not
relevant for portions of certain dimensions (greater oraéthan those of’).

4 PERIODIC UNIT CELL AND FAILURE CRITERION

4.1 Homogenization of composite materialswith periodic microstructure: the case of masonry

The theoretical discussion of the effective propertiesatelogeneous materials with periodic
microstructure is largely treated in the literature [21]. Z2or heterogeneous material with periodic
microstructure the Representative Volume Element is defryea Periodic Unit Cell and the effec-
tive properties of the composite are determined from thergetdcal and the material properties of
the PUC wich generates by periodic repetition the whole ositucture of the composite. Due to
the repetition of the cell in all directions according to threscribed translation vectors, periodic
deformations and anti-periodic tractions have to be satisit each corresponding pair of boundary
nodes. A homogeneous equivalent material can be deterrfitiezldisplacement field is also as-
sumed to exhibit some forms of local periodicity. These agstions allow to identify the periodic
unit cell on which the equilibrium problem can be formulated! solved [2].

Let us consider a periodic masonry arranged in a running Ipattrn. The unit cell is not
uniquely defined, however the effective behavior computechfdifferent unit cells generating the
same microstructure should coincide (Fig. 7). The choicthefunit cell is often motivated by the
difference in geometrical symmetries which can be usedtpl#ly the numerical solution in terms
of the definition of the periodic boundary conditions.
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Figure 8: (a) Periodic unit cell used in the analysis. (b)iBtation vectors and DOF of the PUC.

In the following the periodic unit cell shown in Fig. 8 will m®nsidered. The periodicity of the
displacement fluctuations at the boundary enforces thesponding segment pairs (A-D, B-E, C-
F) to exhibit the same shape in the deformed configuratian @g)). This is obtained by using the
concept of controlling points introduced by Teply and Dwof23] and then imposing the following
linear constraints between the points belonging to thea@se boundary segments

u? —ut =u? - u! (12)
u? —uf =u? -t (12)
u —u® =u? - v’ (13)

Considering the framework refernce given by the transtatiectorsv,; andv (Fig. 8(b)), a specific
set of boundary conditions can be applied to the six degreéeedomu', u?, u? to obtain a
prescribed macroscopic tensor of stréf or stresso) [24]. To inhibit any rigid displacements of
the basic cell the following conditions are imposed

1_ 1 _
Uy =u, =0

14
lud = du? + hui 14)
and then a general macroscopic strain tefspe= (c11, €12, €22) IS attained by
i = ZEH
; 1512 (15)
j = de1g + heos
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Figure 9: Identification of the five internal phases.

that characterize particular Dirichlet boundary condiipwhile a general macroscopic stress tensor
(o) = (011,012, 022) is Obtained by applying the master fordes, Fy2 andFj on the corresponding
degrees of freedom

Fﬁ = h0'11
Fy2 = 2h0’12 - dO’QQ (16)
F; = ZO'QQ

that determine Neuman boundary conditions. In the anatysesonditions (14) and (16) have been
used.

According to the geometry and the peculiar arrangementsoifrtasonry, five internal phases are
distinguished to properly describe the development of #ilare mechanisms: brick (M1), mortar
bed joint (M2), mortar head joint (M3), bed joint interfadel4) and head joint interface (M5)
(Fig. 9).

The overall failure criterion described in the section 2 igdified in this way: the interface
is splitted in two parts, the bed joints (M4) and the headtf{iM5), but only the satisfaction of
the brick (M1) or mortar (M2+M3) criteria determines the oalefailure; if one of the two mean
contact pressures belonging to M4 and M5 satisfy its owmgttecondition the beginning of the
development of a local failure mechanism is considered histppoint the cell analyzed is replaced
with another one that presents a strength downgrade of titacidformulation in the corresponding
interfaces, by which penetration and sliding between tlied@mponents (brick and mortar) are still
prevented, but the separation is allowed. The strength doade of the contact formulation is then
reproposed until the failure of M1 or M2 or M3 is attained. lig.FLO a scheme of the procedure is
illustrated.

As a preliminary application, the Fig. 11 shows the resutiigimed in absence of macroscopic
tangential components. The comparison with the experiahe@sults obtained by Page [15, 16] is
encouraging because the foundamental developmentsufefariechanisms are recovered.

5 CONCLUSIONS

In this paper two different approaches for the strength doregaluation of periodic and non-
periodic masonry has been proposed.

The numerical analyses are based on several peculiar aspethe use of the generalized plane
state formulation, the characterization of a specific canteodel for the evaluation of the contact
pressures at the interface, the definition of a consisteatadivfailure condition for the composite
material and the assignement of a failure criterion to edase participant to the overall strength.
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Figure 11: Strength domain for periodic masonry considglideal phenomena.

With the first approach both the periodic and non-periodisonay have been studied. The
results obtained with periodic masonry have been compaithde exeprimental data available in
the literature verifying the agreement for the principalui® modes. In a second step, an actual
non-periodic masonry has been analyzed and the resultsarecthpith those obtained in absence of
the interface modeling.

With the latter approach the basic concepts for the evalnatithe effective properties of hetero-
geneous materials with periodic microstructure have bsed.uln this way, only periodic masonry
has been analyzed. Periodic boundary conditions have lssggnad to a prescribed Periodic Unit
Cell and the development of the foundamental failure meishamare recovered. The preliminary
results are in agreement with those obtained by the firstogmbrand with the experimental data
available in the literature.

10



References
[1] Pande, G.N., Liang, J.X. and Middleton, J., “Equivaletdastic moduli for brick masonry”,
Computers and Geotechnics, 8, 243265 (1989).

[2] Anthoine, A., “Derivation of the in-plane elastic chateristics of masonry through homoge-
nization theory”, inlnternational Journal of Solids and Structures, 32(2), 137163 (1995).

[3] Cecchi, A. and Di Marco, R., “Homogenization of masonrglis with a computational ori-
ented procedure. rigid or elastic block?”, Huropean Journal of Mechanics, A/Solids, 19,
535546 (2000).

[4] Zucchini, A. and Lourenco, P.B., “Amicro-mechanicaldel for the homogenisation of ma-
sonry”, inInternational Journal of Solids and Structures, 39, 32333255 (2002).

[5] Alpa, G. and Monetto, 1., “Microstructural model for dblock masonry under cyclic biaxial
compression”, ifdournal of the Mechanics and Physics of Solids, 42(7), 11591175 (1994).

[6] de Buhan, P. and de Felice, G., “A homogenization apgrdache ultimate strength of brick
masonry”, inJournal of the Mechanics and Physics of Solids, 45(7), 10851104 (1997).

[7] Lourenco, P.B. and Rots, G.J., “Multisurface intedamodel for analysis of masonry struc-
tures”, inJournal of Engineering Mechanics, 123(7), 660668 (1997).

[8] Luciano, R. and Sacco, E., “A damage model for masonrycstires”, inEuropean Journal of
Mechanics, A/Solids, 17(2), 285303 (1998).

[9] Massart, T.J., Peerlings, R.H.J. and Geers, M.G.D., 8hanced multi-scale approach for
masonry wall computations with localization of damage”inh J. Numer. Meth. Engng., 69,
10221059 (2007).

[10] Calderini, C. and Lagomarsino, S., “A micromechanicedlastic model for historical ma-
sonry”, inJournal of Earthquake Engineering, 10(4), 453479 (2006).

[11] Cluni, F. and Gusella, V., “Homogenization of non-pelic masonry structures”, imterna-
tional Journal of Solids and Structures, 41, 1911-1923 (2004).

[12] Gusella, V. and Cluni, F., “Random field and homogendaator masonry with nonperiodic
microstructure”, inJournal of Mechanics of Materials and Structures, 1, 357-386 (2006).

[13] Sejnoha, J.Sejnoha, M., Zeman, J., Sykora, J. and Vorel, J., “Mesoscstpidy on historic
masonry”, inSructural Engineering and Mechanics, 30(1), 99117 (2008).

[14] Lubliner, J., Oliver, J., Oller,S. and Ofate, E., “AaBlic-Damage Model for Concretdhter-
national Journal of Solids and Structures, 25, 229-326 (1989).

[15] Page, A.W., “The biaxial compressive strength of bmeisonry”,Proceedings of the Institu-
tion of Civil Engineers, Part 2, 71, 893-906 (1981).

[16] Page, A.W., “The strength of brick masonry under bibtéasion-compressionfnter national
Journal of Masonry Construction, 3, 26-31 (1983).

[17] Shieh-Beygi, B. and Pietruszczak, S., “Numerical gsial of structural masonry: mesoscale
approach”Computers & Structures, 86, 1958-1973 (2008).

11



[18] Dhanasekar, M., Page, A.W. and Kleeman, P.W., “Theufaibf brick masonry under biaxial
stresses”, ifProceedings of the Institution of Civil Engineers, Part 2, 79, 295-313 (1985).

[19] Bernardini, E., Cavalagli, N., Cluni, F. and Gusella, Wasonry strength domain by homog-
enization in generalized plane state” Rroc. XIX Congresso AIMETA - Associazione Italiana
di Meccanica Teorica ed Applicata, Ancona, Italy, September 14-17, 2009 (2009).

[20] He, Q.-C., “Effects of size and boundary conditions ba yield strength of heterogeneous
materials”,Journal of the Mechanics and Physics of Solids, 49, 2557-2575 (2001).

[21] Michel, J.C., Moulinec, H. and Suquet, P., “Effectiveoperties of composite materials with
periodic microstructure: a computational approag®ddmput. Methods Appl. Mech. Engrg.,
172,109-143 (1999).

[22] Suquet, P., “Elements of homogenization for inelasttid mechanics”, irHomogenization
Techniques for Composite Media, Lecture Notes in Physicsvol. 272 (eds. Sanchez-Palencia, E.
and Zaoui, A.), Springer, Berlin 193-278 (1987).

[23] Teply, J.L. and Dvorak, G.J., “Bounds on overall ingtareous properties of elastic-plastic
composites”J. Mech. Phys. Solids, 36(1), 29-58 (1988).

[24] Mistler, M., Anthoine, A. and Butenweg, C., “In-planac out-of-plane homogenisation of
masonry”,Computers & Structures, 85, 1321-1330 (2007).

12



