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SUMMARY. In this paper a micromechanical numerical procedure based on the homogenization
approach is proposed to assess the strength domain of masonry material, taking into account the
effects of the interface phenomena through a specific contact model. The numerical analyses are
performed in the elastic field with a generalized plane stateformulation in axial deformation. In
particular two different methods are used. The first considers an overall criterion based on the
strength values of three phases assessed by their mean stress tensors: brick, mortar and interface.
The numerical formulation allowes to apply the method to a masonry arranged both in a periodic
and a non-periodic pattern. The latter method takes into account the arising of the local phenomena
and the foundamental failure mechanisms are recovered. As apreliminary application, this method
is applied to a periodic masonry. In particular a periodic unit cell, composed by different phases as
brick, bed and head mortar joints, bed and head mortar interfaces, is analyzed with periodic boundary
conditions. Then, the failure load for the homogenized cells is obtained when reaching the failure
criteria of any of the components in terms of the mean stress tensor. The numerical results are in a
good agreement with the experimental observations.

1 INTRODUCTION
In the last decades, many numerical models able to describe the behavior of masonry have been

developed using tools drawn from different branches of mechanics, as for example the theory of
elasticity and plasticity, fracture mechanics, micromechanics of the continuum media and from the
homogenization techniques.

In particular, in the context of the homogenization approaches, many analysis methods relevant
to the periodic masonry loaded in the one’s own plane have been proposed both in the elastic field
[1, 2, 3, 4] and in the plastic one. In the latter case, different modeling choices were done in order to
obtain the strength domain [5, 6] or the overall response beyond the elastic limit of the heterogeneous
material using both interface models [7] and damage constitutive laws [8, 9, 10].

For what concerns non-periodic masonry, Cluni and Gusella proposed a procedure to evaluate
the elastic characteristics of the homogenized continuum using the “test windows method” [11, 12]
to find the RVE. InŠejnoha et al. [13] a different procedure is proposed, in which the homogenized
elastic-plastic characteristics are obtained on a statistically equivalent periodic unit cell (SEPUC),
determined through the analyses of geometric stochastic parameters.

In this paper, in order to estimate the strength domain of periodic and non-periodic masonry
material, two different approaches are proposed.

The first determines the strength domain by means of an overall failure criterion based on the
strength values of three phases assessed by their mean stress tensors: brick, mortar and interface.
The procedure is able to reach the principal failure modes with considerable advantages in terms of
computational costs. At first the method is applied to a masonry arranged in a periodic pattern and
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then, owing to the universal form of the procedure, to an actual masonry arranged in a non-periodic
pattern.

The latter approach presents a more detailed formulation and is able to describe the development
of local failure mechanisms that involve the global collapse. As a preliminary application, this
method is applied to a periodic masonry through the analysisof a Periodic Unit Cell subjected to
periodic boundary conditions.

The numerical results have been compared with experimentalones found in the literature.

2 FAILURE CRITERIA FOR MASONRY MATERIAL AND ITS CONSTITUENTS
The definition of a failure criterion for masonry material isa problematic matter because, gener-

ally, all phases participate to the overall strength, each with a peculiar, different behavior.
The method proposed in this paper is based on the assumption that the overall strength limit of

the specimen is reached when, with the increase of the boundary loads or of the boundary displace-
ments, the mean stress tensor of one of the phases satisfies its own yield condition. It should be
noted that, in this way, the local evolution of microcracks and/or plastic strains developed before the
global collapse is taken into account in an overall way. On the other hand, the method allows to per-
form elastic analyses in generalized plane state of axial deformation with significant computational
advantages and, at the same time, adequate results, as will be shown in the following.

Owing to the linearity of the method, which allows effects superposition, and since the problem
is kinematically plane, each specimen has been studied under only six different kinds of boundary
conditions,σ0

ξ andε
0
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whereσ
0andε

0 indicate Neuman and Dirichlet boundary conditions respectively.
Then, the general state of stress〈ση〉, with η = σ, ε according to the kind of boundary conditions

applied, has been obtained from the variation of thea, b, c coefficients in the expression

〈ση〉 = κ
[

a〈σ0
1η〉 + b〈σ0

2η〉 + c〈σ0
3η〉

]

(3)

whereκ is a small factor that provides a state of stress far enough from the crisis and〈σ0
ξη〉 is the

overall mean stress tensor given by the application ofξ type andη boundary conditions.
Being〈σ(i)

η 〉 the mean stress state of theith phase andλ(i)
η a stress state multiplicative factor by

which the strength condition of the phase is satisfied

F (i)(λ(i)
η 〈σ(i)

η 〉) = 0, (4)

the ultimate strength value of the heterogeneous material is defined by the following overall mean
stress tensor

σ
f
η = min

i
{λ(i)

η } · 〈ση〉. (5)

For what concerns the choice of the strength condition for each material phase a failure criterion
proposed by Lubliner et al. [14], in which both the isotropicand the deviatoric parts of the stress
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Figure 1: Mohr-Coulomb with tension cut-off criterion assigned to the interface.

tensor participate to the ultimate strength, has been used.The yield function calculated on the mean
stress tensor of theith phase is

F (〈σ〉) =
1

1 − α

[

αI1 +
√

3J2 + βσ̂max

]

− σc (6)

whereI1 andJ2 are the first invariant of the isotropic part and the second invariant of the deviatoric
part of the stress tensor respectively,α andβ are parameters which depend on uniaxial tension and
compression (σt andσc) and equibiaxial compression (σb) of each single phase, as defined below

α =
σb − σc

2σb − σc
β =

σc

σt

(

1 − α
)

−
(

1 + α
)

(7)

andσ̂max is the maximum value of the principal stress tensor.
Concerning the interface, let us consider the generic pointx, belonging to the contact surface

between the phases, and the contact pressurep(x) = {pN , pT }, wherepN andpT are the normal
and tangential stress components. At the interface a Mohr-Coulomb criterion with tension cut-off is
used

|〈pT 〉| = c − 〈pN 〉 tanφ 〈pN 〉 ≥ p0

〈pT 〉 = 0 〈pN 〉 < p0
(8)

wherec andφ are the coesion and the friction angle respectively (Fig. 1). It should be noted that the
strength criterion (8) is expressed in terms of macroscopicvalues of contact stresses calculated over
the interface.

3 OVERALL EVALUATION OF STRENGTH DOMAIN
3.1 Periodic masonry
The numerical procedure explained before has been applied to the periodic masonry. The analysis

has been performed in ABAQUS environment using bidimensional elements with 3 and 4 nodes with
a generalized plane state formulation according to two different approaches:

- in a first step the three models at different values of bed joints slope (0◦, 22.5◦ and45◦ from the
vertical direction) have been considered (Fig. 3.1) and theresults obtained by the application
of boundary conditionsσ0

1, σ
0
2 andε

0
1, ε

0
2 have been superposed;

- in a second step the boundary conditionsσ
0
1, σ

0
2, σ

0
3 andε

0
1, ε

0
2, ε

0
3 have been applied to define

the failure surface in three-dimensional spaceσn, σp, τ , whereσn ,σp andτ are the compo-
nents of stress normal, parallel and tangential to the bed joints.
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Figure 2: Specimen layout of the experimental test.

Phase E [MPa] ν σc [MPa] σt [MPa] σb [MPa] p0 [MPa] c [MPa] φ

Brick 6740 0.167 15.41 1.5 17.0 - - -
Mortar 1700 0.20 5.08 0.5 6.0 - - -
Interface - - - - - 0.13 0.35 30◦

Table 1: Mechanical characteristics of the masonry constituents -E: Young’s modulus;ν: Pois-
son’s ratio;σc: failure stress in uniaxial compression;σt: failure stress in uniaxial tension;σb:
failure stress in equibiaxial compression (see [14] for details);p0: tensile strength at the interface;c:
coesion;φ: friction angle.

The choice of the mechanical parameters has been based on theexperimental data [15, 16] and
the numerical elaborations of Shieh-Beygi and Pietruszczak [17] for the missing values (Tab. 1).
Fig. 3 shows the comparison between the numerical results and the experimental ones obtained in the
first step of analysis, where the zones corresponding to different failure mechanisms are indicated.
The curves differ in the boundary conditions applied, natural (dashed line) and essential (continuous
line). It should be noticed that the failure of the interfacemainly occur under biaxial tension-tension
and tension-compression states of stress, while the failure of brick prevails in biaxial compression,
in agreement with the experimental observations.

Fig. 4 shows the comparison between the numerical results and the experimental ones obtained
in the second step of the analysis. Fig. 4(a) displays the strength domain plotted on theσn, σp plane,
for different values ofτ . It should be put in evidence that the failure mechanisms obtained from
the proposed procedure are comparable with the ones described in [18] (Fig. 4(b)): following the
symbolism of that paper, in region A the failure occurs by splitting of the panel in a plane parallel
to the faces of the panels, in region B the failure takes placealong bed joint planes, with the panel
capable of sustaining a shear stress on the bed joint after the initial failure; in region C the failure
takes place along bed joint planes with separation of the bedjoints; in region D the failure involves
separation of the vertical joints.

3.2 Non-periodic masonry
The procedure is then applied to estimate the strength domain of a masonry arranged with a non-

periodic pattern (Fig. 5(a)). The wall, having 2000 mm square size, has been subdivided using four
partitions namedP1, P2, P3 andP4 made of 25, 16, 9 and 4 portions respectively (Fig. 5); the term
P5 indicates the entire panel.

The test windows method has been used to obtain the elastic parameters and the strength domain
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Figure 3: Strength domains of periodic masonry obtained by experimental tests [15] (a)-(c)-(e) and
by numerical procedures (b)-(d)-(f). 5
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Figure 4: (a) Strength domain for periodic masonry plotted on theσn, σp plane, for different values
of τ . (b) Failure mechanisms observed during experimental tests [18].

(a) (b) (c)

Figure 5: Photographic image of the non-periodic masonry wall analysed (a); examples of partitions
of the masonry wall:P1 with n1 = 25 (b) andP3 with n3 = 9 (c).

of the homogenized continuum [19]. The hierarchy of strength domains (9) proposed by He [20] is
respected

⋂

x∈Ω

D(x) ⊆

n
⋂

i=1

D
app
σi ⊆ D

app
σ ⊆ D

app
ε ⊆

n
∑

i=1

γiD
app
εi ⊆ 〈D〉. (9)

in whichD
app
σi andD

app
εi are the apparent strength domains of theith portion for natural and essential

boundary conditions respectively,D(x) is the local strength domain of a generic point and the two
bounding values

⋂

x∈Ω

D(x) 〈D〉 =
1

vol(Ω)

∫

Ω

D(x)dΩ (10)

represent the limits of Sachs and Taylor respectively.
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Figure 6: Strength domains: convergence of the homogenizedfailure surfaces of the partitionsP1,
P2 andP4 on τ = 0.0 (a) andτ = 3.0 (b) planes.

Figure 6 graphically shows the convergence of the surfaces with the increase in size of por-
tions. In particular, the surfaces of partitionsP1 (red),P2 (blue) andP4 (black) evaluated in natural
(dashed line) and essential (continuous line) boundary conditions have been sectioned by planes
with constant values ofτ . The results differ from the ones obtained in absence of the contact model
[19] mainly for the presence ofpN at the interface, while the effects concerning thepT appear not
relevant for portions of certain dimensions (greater or equal than those ofP3).

4 PERIODIC UNIT CELL AND FAILURE CRITERION
4.1 Homogenization of composite materials with periodic microstructure: the case of masonry
The theoretical discussion of the effective properties of heterogeneous materials with periodic

microstructure is largely treated in the literature [21, 22]. For heterogeneous material with periodic
microstructure the Representative Volume Element is defined by a Periodic Unit Cell and the effec-
tive properties of the composite are determined from the geometrical and the material properties of
the PUC wich generates by periodic repetition the whole microstructure of the composite. Due to
the repetition of the cell in all directions according to theprescribed translation vectors, periodic
deformations and anti-periodic tractions have to be satisfied at each corresponding pair of boundary
nodes. A homogeneous equivalent material can be determinedif the displacement field is also as-
sumed to exhibit some forms of local periodicity. These assumptions allow to identify the periodic
unit cell on which the equilibrium problem can be formulatedand solved [2].

Let us consider a periodic masonry arranged in a running bondpattern. The unit cell is not
uniquely defined, however the effective behavior computed from different unit cells generating the
same microstructure should coincide (Fig. 7). The choice ofthe unit cell is often motivated by the
difference in geometrical symmetries which can be used to simplify the numerical solution in terms
of the definition of the periodic boundary conditions.
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Figure 7: Examples of possible periodic unit cell for the running bond masonry.

(a) (b)

Figure 8: (a) Periodic unit cell used in the analysis. (b) Translation vectors and DOF of the PUC.

In the following the periodic unit cell shown in Fig. 8 will beconsidered. The periodicity of the
displacement fluctuations at the boundary enforces the corresponding segment pairs (A-D, B-E, C-
F) to exhibit the same shape in the deformed configuration (Fig. 8(a)). This is obtained by using the
concept of controlling points introduced by Teply and Dvorak [23] and then imposing the following
linear constraints between the points belonging to the respective boundary segments

u
D − u

A = u
2 − u

1 (11)

u
E − u

B = u
3 − u

1 (12)

u
F − u

C = u
3 − u

2. (13)

Considering the framework refernce given by the translation vectors̄v1 andv̄2 (Fig. 8(b)), a specific
set of boundary conditions can be applied to the six degrees of freedomu

1, u
2, u

3 to obtain a
prescribed macroscopic tensor of strain〈ε〉 or stress〈σ〉 [24]. To inhibit any rigid displacements of
the basic cell the following conditions are imposed

u1
x = u1

y = 0

lu3
x = du2

x + hu2
y

(14)

and then a general macroscopic strain tensor〈ε〉 = (ε11, ε12, ε22) is attained by

u2
x = lε11

u2
y = lε12

u3
y = dε12 + hε22

(15)
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Figure 9: Identification of the five internal phases.

that characterize particular Dirichlet boundary conditions, while a general macroscopic stress tensor
〈σ〉 = (σ11, σ12, σ22) is obtained by applying the master forcesF 2

x , F 2
y andF 3

y on the corresponding
degrees of freedom

F 2
x = hσ11

F 2
y = 2hσ12 − dσ22

F 3
y = lσ22

(16)

that determine Neuman boundary conditions. In the analysesthe conditions (14) and (16) have been
used.

According to the geometry and the peculiar arrangement of the masonry, five internal phases are
distinguished to properly describe the development of the failure mechanisms: brick (M1), mortar
bed joint (M2), mortar head joint (M3), bed joint interface (M4) and head joint interface (M5)
(Fig. 9).

The overall failure criterion described in the section 2 is modified in this way: the interface
is splitted in two parts, the bed joints (M4) and the head joints (M5), but only the satisfaction of
the brick (M1) or mortar (M2+M3) criteria determines the overall failure; if one of the two mean
contact pressures belonging to M4 and M5 satisfy its own strength condition the beginning of the
development of a local failure mechanism is considered. At this point the cell analyzed is replaced
with another one that presents a strength downgrade of the contact formulation in the corresponding
interfaces, by which penetration and sliding between the two components (brick and mortar) are still
prevented, but the separation is allowed. The strength downgrade of the contact formulation is then
reproposed until the failure of M1 or M2 or M3 is attained. In Fig. 10 a scheme of the procedure is
illustrated.

As a preliminary application, the Fig. 11 shows the results obtained in absence of macroscopic
tangential components. The comparison with the experimental results obtained by Page [15, 16] is
encouraging because the foundamental developments of failure mechanisms are recovered.

5 CONCLUSIONS
In this paper two different approaches for the strength domain evaluation of periodic and non-

periodic masonry has been proposed.
The numerical analyses are based on several peculiar aspects, as the use of the generalized plane

state formulation, the characterization of a specific contact model for the evaluation of the contact
pressures at the interface, the definition of a consistent overall failure condition for the composite
material and the assignement of a failure criterion to each phase participant to the overall strength.
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Figure 10: Scheme of the numerical procedure.

Figure 11: Strength domain for periodic masonry considering local phenomena.

With the first approach both the periodic and non-periodic masonry have been studied. The
results obtained with periodic masonry have been compared with the exeprimental data available in
the literature verifying the agreement for the principal failure modes. In a second step, an actual
non-periodic masonry has been analyzed and the results compared with those obtained in absence of
the interface modeling.

With the latter approach the basic concepts for the evaluation of the effective properties of hetero-
geneous materials with periodic microstructure have been used. In this way, only periodic masonry
has been analyzed. Periodic boundary conditions have been assigned to a prescribed Periodic Unit
Cell and the development of the foundamental failure mechanisms are recovered. The preliminary
results are in agreement with those obtained by the first approach and with the experimental data
available in the literature.
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