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SUMMARY. Nonlinear modal properties of a vibrating system with piecewise linear restoring 
forces typical of a beam with a breathing crack are investigated. The system is non linearizable 
and exhibits the peculiar feature of a number of nonlinear normal modes (NNMs) greater than the 
degrees of freedom; since the nonlinearity is concentrated at the origin, its nonlinear frequencies 
are independent of the energy level and uniquely depend on the damage parameters. The influence 
of damage on the nonlinear frequencies has been investigated and bifurcation scenarios 
characterized by the onset of superabundant modes in internal resonance have been analyzed. 
Bifurcated modes exhibit significantly different shape than that of modes on fundamental branch. 
Finally the forced response of the system under base excitation has been studied. It has been found 
that additional nonlinear resonances occur in the neighborhood of the frequencies of the 
superabundant NNMs. 

1 INTRODUCTION 
The classical modal analysis in linear dynamics can be extended to nonlinear systems by 

introducing the concept of nonlinear normal modes (NNMs). According to Rosenberg [1,2], a 
NNM of an undamped system is defined as a synchronous periodic oscillation where all 
generalized coordinates of the system reach their extreme values or pass through the zeros 
simultaneously. To make this definition suitable for nonsmooth systems, it is also necessary to 
include the periodic motions in which all generalized coordinates vibrate equiperiodically without 
passing through the zeros simultaneously [3, 4]. The NNMs of a system are important because, in 
analogy to linear theory, resonance in forced systems typically occurs in the neighborhood of 
NNM frequencies. Hence, knowledge of the normal modes of a nonlinear system can provide 
valuable insight regarding the position of its resonances, a feature of considerable engineering 
importance. Moreover, since the number of normal modes of a nonlinear system may exceed its 
degrees of freedom (superabundant NNMs), certain forced resonances are essentially nonlinear 
and have no analogies in linear theory; in such cases a linearization of the system might not be 
possible, or might not provide all the possible resonances that can be experienced. 

In a recent previous work [4], a discrete model of a beam with a breathing crack, an example 
of non-linearizable system, has been dealt with using the asymptotic method of Lindstedt-Poincaré, 
and limiting the analysis to the fundamental branch solutions and their stability. In [5] a similar 
system has been then numerically investigated by means of the Poincaré map: particular attention 
has been focused to the onset of superabundant modes besides the fundamental branches. 

 The present paper analyzes the nonlinear modal characteristics of a more general 2-DOF 
piecewise-smooth mechanical system with two damage parameters. The system is non-linearizable 
and thus can exhibit an unusual feature that is the number of NNMs is greater than the degrees of 



freedom. Since the nonlinearity is concentrated at the origin of the restoring force, its frequencies 
are independent of the energy level or oscillation amplitude; they depend uniquely on the two 
damage parameters. 

 

2 SYSTEM MODEL 
The oscillator under investigation consists of two masses connected by two piecewise linear 

springs, Fig. 1a, with damage parameters ε1 and ε2: the relevant restoring forces exhibit the 
bilinear behaviour shown in Fig. 1b. The phase space of this dynamical system can be divided into 
four regions delimited by two discontinuity boundaries, Fig. 1c, in each region the system having a 
different smooth functional form of the vector field. Since the vector field is the same in the 
adjacent regions, whereas its Jacobian changes due to the bilinear stiffness, the problem is 
governed by a continuous PSS, according to the definition widely used in the literature. Depending 
on the values of masses and undamaged stiffnesses, this oscillator can model the dynamics of a 
damaged shear-type frame as well as an asymmetrically cracked cantilever beam vibrating in 
bending and hence exhibiting a bilinear stiffness, depending on whether the crack is open or 
closed. For ε1=0 or ε2=0, the oscillator under investigation turns into the particular cases 
investigated in [3,4,5]. 

 
 
 
 
 
 
 
 
 
 
 
 

2.1 Equations of motion 
By assuming the displacements x1 and x2 as Lagrangian coordinates, the stiffnesses of the 

nonlinear springs read, Fig. 1b: 
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where ε1 and ε2 are the damage parameters, H is the Heaviside function, η1=x1 and  η2=x2-x1.  
With reference to Fig. 1, the following dimensional equations of undamped free motion in time 
domain are found: 
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Figure 1. a) System model; b) piecewise restoring forces; c) discontinuity boundaries in 
the physical plane. 



2.2 Linear Normal Modes 
For ε1=ε2=0 the system is linear and exhibits the two LNMs u01 and u02 the modal lines of 

which are straight line passing through the origin with frequencies: 
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where α=m2/m1, β=k2/k1. 
The frequency ratio ω02/ω01 for the undamaged oscillator will be denoted r0 and, according to Eq. 
(3), is given by:  
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Parameter r0 uniquely depends on nondimensional parameters α and β. 
As it will be shown, the dynamic behaviour exhibited by the system when ε1≠0 and/or ε2≠0 is 

strongly affected by r0; for instance are of interest the particular cases: r0=1.95, below the 1:2 
internal resonance, r0=2.62, typical of a shear-type frame with equal masses and stiffnesses and 
below the 1:3 internal resonance, r0=6.27, typical of a cantilever beam already addressed in [4]. 
These values will be therefore taken into account in the subsequent analyses. 

2.3 Nonlinear Normal Modes 
In presence of damage an analytical estimate of the frequency ratio is given by [6]: 
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where: 
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The frequencies ω0i, Eq. (3), and ωεi can be interpreted as the eigenfrequencies before and after 
the stiffness changes exhibited by the springs, assuming that these changes occur at the same time. 

The nonlinear frequency ratio r is independent of m1 and k1, and is considered as a distinctive 
smooth function of damage ε1 and ε2 for piecewise linear oscillators characterized by parameters α 
and β; furthermore when r attains an integer or a rational value an internal resonance occurs and it 
can be the origin of a bifurcation. When ε1 and ε2 vary, first and second NNM may interact 
generating (n:m) internal resonances: this occurs when the nonlinear frequencies ω1 and ω2 are 
nearly commensurate i.e. 21 ω≅ω mn . 

3 FREE RESPONSE 
An extensive analysis of the system’s NNMs is performed in [6], here only some significant 

cases will be reported. Figures 2 and 3 refer to bifurcations occurring in (n:1) internal resonance 
for a system with r0=2.62 and ε2=0. 

Figure 2 reports the period-damage plot with the various branches of (n:1) periodic solutions: 
the period of Mode 2 (black curve) is almost constant, whereas the period of Mode 1 significantly 
increases with ε1. There is a sequence of higher periodic NNMs bifurcating from the backbone of 
Mode 1, called tongues. Each tongue takes place in the neighborhood of a (n:1) internal resonance. 
Enlargement in Fig. 2 and Figures 3 refer to the case (3:1): at ε1=ε3:1 one stable and one unstable 



superabundant NNM (C) generated by a cyclic-fold bifurcation appear. In particular, Figures 3 
report the Poincaré maps with the relevant modal line in the configuration plane (x1, x2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 4 refer to the bifurcation in the neighborhood of the (7:2) internal resonance: the first 

mode (A) loses its stability and bifurcates in a NNM (B) with period doubling. Furthermore a 
second NNM (C) appears and approaches the unstable NNM as long as the first mode recovers the 
stability. Qualitatively similar behaviour is exhibited by the other (n:2) bifurcations: however for 
larger values of ε1, the bifurcated modal curves are more complicated and the windows around εn:2 
becomes narrower.  

Qualitatively different changes in the Poincaré maps are produced by (n:3,4,5…) resonances. 
For instance, Figures 5 refer to the case (8:3): unlike the case (n:2), the first mode (A) is always 
stable but two pairs of stable and unstable NNMs (B, C) appear and disappear; the frequency 
content in B and C is characterized by two main frequencies the ratio of which is exactly 8-to-3. 

 
 

 

unstable 

3ω1> ω2 
3ω1= ω2 3ω1< ω2 

  

  

  

 

  

  

  

  

  

  

A 

B 

C 
A A 

B B 

C 

Figure 3. Cyclic-fold bifurcation caused by a (3:1) internal resonance around ε3:1=0.54 

Figure 2 Period-damage plot of NLMs 1 and 2: (n:1) internal resonance. 
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4 FORCED RESPONSE 
An harmonic base excitation a(t)=ag sin(Ωt) is then considered and both low and high damping 

is assumed to investigate the counterpart of the illustrated phenomena within the forced response.  
As an example the forced response for damage parameter near ε3:1 is here considered. In Figs. 

6 the frequency response curves are reported by assuming low damping and two cases have been 
analysed: i) ε1 slightly smaller than ε3:1, Fig. 6a, and ii) ε1 slightly larger than  ε3:1, Fig. 6b; in the 
same figures, the steady-state response corresponding to  Ω=ω1 and Ω=ω2/3 are also shown in the 
x1-x2 plane. In the case ε< ε3:1 the amplitude-frequency plot shows a significant peak 
corresponding to the resonance Ω=ω1: the relevant steady-state response exhibits the same shape 
exhibited by the first nonlinear normal mode (A) of the autonomous system, Fig. 3 (red line).  

As soon as ε exceeds ε3:1, two peaks appear in the frequency response plot: the shape of the 
forced response for Ω=ω1 changes its curvatures and becomes similar to the nonlinear normal 
mode (C), Fig. 3 (blue line) whereas the response corresponding to Ω=ω2/3 is similar to nonlinear 
normal mode A.  
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Figure 4. (7:2) internal resonance near ε7:2=0.7585: period-doubling. 
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Figure 5. (8:3) internal resonance near ε8:3=0.138.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Depending on the initial conditions, these two different periodic responses can coexist for 

values of Ω corresponding to the dotted gray line as better illustrated in the zoom of Fig. 6b. 
Figure 7 refers to the same case of Fig. 6b but with high damping. The frequency response plot 

becomes rounded and the steady-state responses corresponding to Ω=ω1 and Ω=ω2/3 exhibit not 
clearly distinguishable shapes in the x1-x2 plane.  
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Figure 6. Frequency response curves and steady-state responses for Ω=ω1 and Ω=ω2/3 near 
ε3:1=0.54. Low damping. a) ε=0.52; b) ε=0.60. 
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Figure 7. Frequency response curves and steady-state responses corresponding to Ω=ω1 and Ω=ω2/3 
at ε=0.60. High damping. 



5 CONCLUSIONS 
A 2-DOF piecewise linear oscillator, representative of a cracked beam, has been studied in free 
oscillations and under harmonic base excitation. A parametric analysis of the NNMs has been 
performed for a wide range of the damage parameter: the influence of damage on the nonlinear 
frequencies has been investigated and bifurcations characterized by the onset of superabundant 
modes have been revealed. The fundamental branches of the two modes, and their stability are 
then evaluated. The bifurcated branches are followed by a numerical procedure based on 
continuation method and the stable superabundant modes are determined via direct integration. 
Particular attention has been devoted to the study nonlinear modal interaction producing global 
changes in the Poincarè maps. The influence on the forced response has been then investigated. By 
considering an harmonic base excitation it has been found that the NNMs of the free motion play a 
key role in the system forced response. In particular, additional nonlinear resonances, not 
predicted by linear theory, occur in the neighborhood of the frequencies of the superabundant 
NNMs of the free system. 
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