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SUMMARY.  In the present paper, the fatigue behaviour of a metallic round bar with a V-shaped 
circumferential notch and a surface crack at the notch root is examined.  The bar is subjected to 
pulsating tension, and different crack shapes are considered: almond, sickle, straight-front crack.  
Residual stresses due to the cold-drawing process are herein considered and, since they are 
detrimental to fatigue life, two treatments are devised in order to decrease them, more precisely: 
(1) a further drawing with a very small area reduction (about 1%); (2) a procedure based on a 
combination of heating and stretching of the bar.  The strong dependence of the fatigue crack 
propagation on the residual stress field is quantified in terms of evolution of both surface crack 
shape and crack growth rate. 

1 INTRODUCTION 
Eigenstresses, for example residual stresses, are defined as the stresses inside a component or 

structure after all applied loads have been removed, that is, the stresses without external loads 
applied [1].  Residual stresses are generated, upon equilibrium of material, after inhomogeneous 
plastic deformations are caused by mechanical, thermic or chemical phenomena during 
manufacturing and processing.  In absence of external loads, the residual stress distribution must 
satisfy equilibrium, and therefore both tensile and compressive residual stresses arise. 
Under the linear elastic material behavior hypothesis, the total stress field experienced by the 
material is equal to the residual stresses added to the stresses caused by the external load.  If 
fatigue load is applied, the residual stresses modify only the mean value of the cyclic load, not the 
stress amplitude.  In particular, a tensile residual stress increases the mean value and may produce 
a detrimental effect on fatigue behavior, while a compressive residual stress reduces the mean 
value and may significantly improve the fatigue resistance. 
In the present paper, the residual stresses due to cold-drawing process and post-drawing treatments 
(mechanical and thermo- mechanical) are considered.  More precisely, the effect of such stresses 
on the fatigue behavior of a metallic round bar with a V-shaped circumferential notch and an 
elliptical-arc surface crack at the notch root (Fig. 1) is analysed.  The bar is subjected to pulsating 
tension.  Several authors have numerically and experimentally examined the behavior of notched 
bars under different fatigue loading conditions without taking into account the effect of residual 
stresses [2-5], and only a few studies have discussed the influence of the residual stresses [6-8]. 
Different crack shapes are hereafter considered: almond, sickle, straight-front crack (the last one 
being the limit case between the two first types).  Such shapes are as those experimentally 
observed (Ref.[9]). 
The stress intensity factor (SIF) along the crack front due to the axial loading and residual stresses 
is computed by employing a three-dimensional finite element model, the power series expansion 



of the residual stress field and the superposition principle.  Then, by employing the SIFs evaluated, 
the fatigue crack propagation is modelled by means of a modified Paris-Erdogan law [10, 11].  
The effect of the cold-drawing process and post drawing treatments on the fatigue life of the bar is 
examined for some initial configurations of the surface crack. 
 

2 PROBLEM EXAMINED 
The structural component being examined is a round bar with a V-shaped circumferential 

notch characterized by a depth c , an opening angle γ , a constant notch root radius ρ  (Fig. 1).  
The diameter of the bar is equal to 0D  in an unnotched cross-section and equal to D  in the 
reduced cross-section S-S (Fig. 1).  The relative notch depth 0/ Dc=δ  and the dimensionless 
notch root radius 0/ Dd ρ=ρ  are assumed to be equal to 0.2 (i.e. 06.0 DD = ) and 009.0 , 
respectively, whereas the opening angle γ  is equal to °60 . 
A surface crack with an elliptical-arc shape is assumed to exist at the notch root (Fig. 2).  Three 
different crack shapes are considered: sickle crack (also called crescent-moon crack) (Fig. 2a), 
almond crack (Fig. 2b), and straight crack (which is the limit case between the first two types).  
The crack configuration is described by two parameters: ξ  and α .  The relative crack depth 

Da /=ξ  of the most internal point A on the defect front (Fig. 2) is made to vary from 0.1 to 0.8.  
The crack aspect ratio elel ba /=α , where ela  and elb  are the semi-axes of the ellipse describing 
the crack front, ranges from 0.0 to −1.2 for sickle-shaped cracks (Fig. 2a) and from 0.0 to 1.2 for 
almond-shaped cracks (Fig. 2b), whereas the straight-fronted crack is represented by 0.0=α .  
The generic point P along the crack front is identified by the dimensionless coordinate h/* ζ=ζ  
(Fig. 2). 
Firstly, residual stresses due to cold-drawing process, consisting of pulling the lubricated bar 
through a die thus reducing its cross-sectional area and increasing its length, are considered [6].  
Then, residual stress distributions due to two post drawing treatments are examined: (1) a further 
drawing with a very small area reduction (about 1%); (2) a combination of heating (at 400°C) and 
stretching [6]. 
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Figure 1: Geometrical parameters of the V-shaped circumferential notch in a round bar. 
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Figure 2: Geometrical parameters: (a) sickle -shaped surface crack; (b) almond -shaped surface 
crack. 

 

3 RESIDUAL STRESS FIELDS 
Metallic bars are subjected to large plastic deformations during the cold-drawing process.  

After drawing, strains tend to recover, but they are prevented by previous plastic deformations in 
some regions inside the material.  Such a constraint generates a field of residual strains, and 
therefore a residual stress distribution arises [6].  It has been found out, both through numerical 
simulations and experimental tests [6, 12-14], that the cold-drawing process generates an 
axisymmetrical profile of longitudinal residual stresses. 
In order to numerically assess the cold-drawing residual stress distribution in the notched bar 
being examined, the experimental data reported in Ref. [6] have been used.  Such data are related 
to smooth steel bars manufactured by a cold-drawing process, which produces a 20% reduction of 
area.  Since residual stresses due to cold-drawing may be detrimental as regards mechanical and 
fatigue properties, two procedures are considered in order to decrease such stresses [6]: (1) a 
treatment consisting on further drawing with a very small area reduction (about 1%); (2) a treatment 
based on a combination of heating (at 400°C) and stretching of the bar. 
In more detail, smooth round bars with a radius equal to 0R  (with 2/00 DR = ) are modelled 
employing two-dimensional axisymmetrical finite elements, and pre-stresses equal to the above 
experimental residual stress distributions [6] are assigned to such finite elements.  By removing 
the material in the notched zone (equalling to zero both the elastic modulus and the pre-stress for 
each finite element in the notched zone), the dimensionless residual stress profiles for notched bars 
are determined in correspondence to the reduced cross-section S-S (Fig. 1). 
The residual stress data numerically obtained are interpolated by best fitting polynomials (i.e. by 
power series), which are reported in Fig. 3, where the radial coordinate r  is normalized with 
respect to the bar radius R  (i.e. Rrr /* = , with 2/DR = ) and the residual stresses )()( rresIσ  are 

normalized with respect to the absolute value )0()(resIσ  of the “as drawn” residual stress 
distribution at the bar centre (Fig. 3).  Such polynomials can be expressed by the following 
equation: 
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The coefficients for the three residual stress distributions being analysed are reported in Table 1. 
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Figure 3: Profiles of longitudinal residual stresses due to mechanical or thermic processes. 
 
 

Table 1: Polynomial coefficients )(* resiB  of the power series expansions of the dimensionless 

residual stress distributions *)(* )( rresIσ , reported in Fig. 3. 
 

  )(* resiB  
           

  0 1 2 3 4 5 6 7 8 
           

As drawn   -1.01 1.58 -40.05  304.72 -1078.98  2058.77 -2125.54 1091.14 -207.80 
           

Add 1%  -0.32 -1.07  12.14 -57.44  130.73 -136.44  53.37 - - 
           

Thermo  -0.08 0.13 -0.40  1.12 -0.61 - - - - 
           

 
 

4 SIF EVALUATION 
In order to evaluate the SIFs produced by the residual stress distributions reported above, the 

SIFs ( )(iIK ) related to elementary stress distributions ( 8,...,0  ,*)()( == ir i
iIσ ) acting on the 

crack faces are computed along the crack front and properly combined [15-17].  Such SIFs )(iIK  
are evaluated by means of the quarter-point finite element nodal displacement correlation 
technique.  In a dimensionless form, they can be written as )/(* )()()( aKK irefiIiI ⋅= πσ , where 



)(irefσ  represents the reference stress, which is assumed to be equal to the unity for the i-th 
elementary stress distribution. 
Since the superposition principle holds, the dimensionless SIFs corresponding to the residual 
stresses being analysed can be approximated as [15-17]: 
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Figure 4 shows the dimensionless SIF )(* resIK  values at points A ( 0.1* =ζ ), J ( 5.0* =ζ ) and C 

( 1.0* =ζ ) on the crack front (Fig. 2), for the three residual stress distributions being analysed.  
Such SIF values are plotted against the relative crack depth ξ  ( 5.01.0 ≤≤ ξ ), for a semi-circular 
sickle crack ( 0.1−=α ), a straight-fronted crack ( 0.0=α ) and a semi-circular almond crack 
( 0.1=α ). 
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Figure 4: Dimensionless stress-intensity factor )(* resIK  against relative crack depth ξ , for the three 
residual stress profiles reported in Fig. 3 and for different values of the crack aspect ratio: 

(a) 0.1−=α ; (b) 0.0=α ; (c) 0.1=α . 
 
 

For all the considered values of crack aspect ratio α , it can be observed that )(* resIK  decreases 
by increasing the relative crack depth ξ   in the case of both “as drawn” and “add 1%” residual 
stress distributions, while the SIF increases just a little by increasing ξ  in the case of the “thermo” 
residual stress distribution. 
 

In order to evaluate the SIF produced by tension loading (since the bar is subjected to pulsating 
tension), a three-dimensional finite element model is adopted.  Due to the symmetry, only a 
quarter of the bar is analysed by employing 20-node isoparametric finite elements.  Quarter-point 
wedge finite elements are used around the crack front in order to model the stress field singularity.  
A total number of 3186 finite elements and 14357 nodes are employed.  Dimensionless SIFs for 
tension, normalised by means of the reference stress )(Frefσ , are defined as follows: 
 

aKK FrefFIFI πσ= )()(
*

)( /  (4) 
 



where: 

FIK ,  is the SIF for tension F , and 2
)( /8 DFFref π=σ  is the nominal axial stress [18, 19]. 

In Fig. 5, the dimensionless SIFs )(* FIK  at point A ( 0.1* =ζ ), point J ( 5.0* =ζ ) and point C 

( 1.0* =ζ ) on the crack front (Fig. 2) are plotted against the relative crack depth ξ  ( 5.01.0 ≤≤ ξ ), 
for a semi-circular sickle crack ( 0.1−=α ), a straight-fronted crack ( 0.0=α ) and a semi-circular 
almond crack ( 0.1=α ). 
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Figure 5: Dimensionless stress-intensity factor )(* FIK  against relative crack depth ξ , for different 
values of the crack aspect ratio: (a) 0.1−=α ; (b) 0.0=α ; (c) 0.1=α . 

 

5 STRESS RATIO INCLUDING RESIDUAL STRESSES 
Since the present paper aims at investigating the effect of the residual stress distributions on 

the fatigue behaviour of round bars under constant amplitude cyclic tension, the actual stress ratio 
aR , which is different from the “nominal” stress ratio max)(min)( / FFFR σσ=  due to cyclic tension 

only (where min)(Fσ  and max)(Fσ  are the minimum and the maximum tensile stress in a loading 
cycle), needs to be evaluated also including residual stresses: 
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By defining the residual stress severity )()( /)0( FrefresIs σσ=  with )(Frefσ  equal to the maximum 

stress max)(Fσ , the actual stress ratio can be written as follows: 
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In Fig. 6, the actual stress ratio aR  is plotted against the dimensionless radial coordinate *r , for 
the three residual stress distributions previously introduced and assuming 0.0=FR .  It can be 



noted that, by increasing the parameter s , the actual stress ratio aR  increases in the outside part of 
the bar and decreases in the inner part of the bar. 
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Figure 6: Actual stress ratio aR  against radial coordinate *r , for different values of s  and for three 
residual stress distributions: (a) as drawn; (b) add 1%; (c) thermo. 

 

6 FATIGUE CRACK PROPAGATION 
In order to analyse the fatigue crack propagation under pulsating tension loading, the two-

parameter theoretical model proposed in Refs [18, 19] is here applied, by also employing the 
Paris-Erdogan law [10] modified by means of the Walker relationship [11]. 
As a matter of fact, it has experimentally been observed [20,21] that the coefficient C  of the Paris-
Erdogan equation is not only dependent on the material, but also on the stress ratio of the applied 
cyclic loading.  Many equations have been proposed to take into account the stress ratio effect [11, 
22-23].  The empirical Walker equation modifies the Paris-Erdogan law as follows [10, 11]: 
 

[ ] m
Ia KRCdNda Δ⋅= )(/  (7) 

 
where dNda /  is the crack growth rate, IKΔ  is the stress-intensity factor range in a loading cycle, 
and )( aRC  is the effective Paris-Erdogan coefficient for the generic stress ratio aR .  Such a 
coefficient can be expressed by: 
 

( ) m
aa RCRC )1(

0 1)( β−−−=  (8) 
 
where 0C  is )( aRC  for 0.0=aR  and β  is the Walker exponent.  For the problem being 
examined, IKΔ  in the Eq. (7) is replaced with )()()( )1( FIFFIresFI KRKK ⋅−=Δ=Δ + ; the 

parameters 0C  and m  are here assumed to be equal to 101064.1 −⋅  and 2  (with dNda /  expressed 

in ]cycle[mm 1−⋅  and )( resFIK +Δ  expressed in ]mm[N 2/3−⋅ ) [24], and the Walker exponent β  is 

equal to 5.0 .  Such a fatigue crack growth equation is applied at point A ( 0.1* =ζ ) and point C 
( 1.0* =ζ ) on the crack front, which is assumed to be an elliptical arc during the whole fatigue 



crack growth [18, 19].  The cycle number of each fatigue calculation step is taken as a constant 
and equal to 250 loading cycles. 
The diagrams of crack aspect ratio α  against relative crack depth ξ  are determined for three 
initial crack configurations, max)(Fσ  = 100 MPa, FR  = 0.0, and by varying the values of the three 
residual stress distributions previously introduced (i.e. by varying the parameter s ).  The crack 
propagation curves present lower values of α  for a given value of ξ  by increasing the residual 
stress severity s . 
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Figure 7: Crack aspect ratio α  against relative crack depth ξ , for different values of s  and for 
three residual stress distributions: (a) as drawn; (b) add 1%; (c) thermo. 

 
 
The crack depth evolution against the number of loading cycles is plotted in Fig. 8 for the three 
initial crack configurations and the residual stress distributions previously analysed.  It can be 
remarked that the surface crack grows more rapidly in the case of high values of the residual stress 
severity s . 
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Figure 8: Relative crack depth ξ  against number N  of loading cycles, for different values of s  
and three residual stress distributions: (a) as drawn; (b) add 1%; (c) thermo. 



7 CONCLUSIONS 
In the present paper, the effect of residual stresses due to cold-drawing process and post-

drawing treatments (mechanical and thermo-mechanical) on the fatigue behaviour of a metallic 
notched round bar with a surface crack has been examined.  Different values of the residual stress 
distributions have been considered, and the bar has been assumed to be also subjected to cyclic 
tension.  The fatigue crack propagation has been analysed by using the Paris-Erdogan law 
modified by the Walker equation, in order to take into account the effect of the actual stress ratio. 
It has been observed that the residual stress field appreciably influences both the crack aspect ratio 
evolution and the crack growth rate.  In particular, the surface crack grows more rapidly in the 
case of high values of the residual stress severity s .  Because of the detrimental effect of residual 
stresses due to standard cold-drawing on fatigue, surface treatments are advised in order to relieve 
residual stresses after drawing. 
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