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SUMMARY. A systematic study of the effect of various thermomechanical model parameters on 

the nonlinear dynamical response of Shape Memory Oscillators is carried out in the background of 

theoretical predictions by the construction of behavior charts. Use is made of the Method of 

Wandering Trajectories, enhanced by the evaluation, as a quantitative indicator of chaoticity, of 

the maximum value of the normalized separation in the displacement over a fixed interval of time. 

It turns out that two main aspects of the model behavior are relevant for the occurrence of chaos: 

the slope of the pseudoelastic plateaus and the width of the hysteresis loop. It is shown that these 

two aspects are governed by various combinations of model parameters to be possibly controlled 

in the design stage in order to avoid undesired dynamic behaviors. 

1 INTRODUCTION 

A Shape Memory Oscillator (SMO) is characterized by a Shape Memory Device (SMD) that 

provides a restoring force against the relative displacements of a pair of points of a main structure 

[1]. A SMD is composed by an arrangement of Shape Memory Materials (SMM) that may be 

designed to yield various kinds of behavior. In this work the attention is focused on SMDs with 

pseudoelastic behavior (Fig. 1). 
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Figure 1: Schematic representation of a SMO (left) and typical pseudoelastic loop of SMD (right) 

The pseudoelastic restoring force is modeled by a thermomechanical constitutive law proposed in 

[2] for the SMM and then adapted in [3] for use in nonlinear dynamics. 

The SMOs are considered within a thermomechanical environment characterized by an 

harmonic forcing excitation ( ) ttF αγ cos=  and a convective heat exchange ( ) ( )ϑϑϑ −= ehQ  

where γ  and α  are the excitation amplitude and frequency, eϑ  the environment temperature and 

h  the coefficient of convective heat exchange [3, 6]. At each time t  the state of the SMO is 

described by the vector: 

( ) ( ) ( ) ( ) ( ) ( )[ ]ttttvtxt 0,,,,: ξϑξ=u  

where x(t), v(t), ϑ(t) are displacement, velocity and temperature of the device while ( ) ]1,0[∈tξ  is 

an internal variable that describes the internal state of the SMM. To model the complex hysteretic 



behavior of SMM the state depends not only on the actual value ( )tξ  but also on the value ( )t0ξ  of 

ξ  at the beginning of the last process of change of ξ  occurred before time t . As discussed in [3, 
6] the time evolution of the state takes place according to a system of 5 differential equations: 
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in which Z  and Λ  are constitutive functions that can take three different expressions depending 
on suitable state-dependent criteria [1, 3, 6]. The model depends on 7 model parameters 

hLqqqJ ,,,,,, 321λ  whose physical meaning is discussed later (see also [1]) as well as on the 

damping coefficientζ of the viscous damper (Fig. 1).  
The nonlinear dynamics of SMOs has been the subject of several studies [3-6] that, among 

other things, revealed the occurrence of chaotic solutions in various ranges of model parameters. 

Some preliminary steps towards a systematic investigation of the occurrence of chaos in such 

systems were carried out by means of bifurcation diagrams in [1] and by the Method of Wandering 

Trajectories (MWT) in [6]. 

For a given 1-dimensional mechanical system subject to a periodic forcing excitation, the 

MWT considers a fiduciary trajectory ( )tu  starting from the initial condition 0u  and a perturbed 

trajectory ( )t∗
u  starting from an initial condition Auu* ε+= 0 where ε  is a positive perturbation 

parameter and A is the vibration amplitude vector whose i-th component is defined as follows: 
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],[: 11 Tt=T  being an observation interval where the transients can be considered to be expired. 

Once the two trajectories are known over 1T  the separation ( ) ( ) ( )ttt u*uh −=:  can be computed 

and normalized with respect to the vibration amplitude 
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At each time, ( )tiα  is the i-th component of the normalized separation vector ( )tαααα  that expresses 

the divergence between the two trajectories normalized with respect to the vibration amplitude. 

Since ( ) ii Ah ε=0 , the initial separations are ( ) εα =0i . If the motion is regular all ( )tiα  take values 

of the order of ε or decay to zero. By contrast, non-regular motions lead to normalized separations 
much higher than ε that, with the progress of time, level off at the size of the attractor [7]. 
In [1] a detailed analysis of the model parameters was carried out and some hints about their  

likely effect on the dynamic response of the SMD were given. In [7] the possibility to enhance the 

MWT by means of the evaluation of the maximum value maxα of the displacement normalized 

separation over a fixed observation interval 1T – to be considered as a comparative indicator of  

chaoticity of non-regular solutions – was suggested. 

By plotting maxα as a function of the excitation frequency and/or the excitation amplitude, it is 

possible to obtain synthetic pictures (behavior charts) – via systematic numerical simulations – 

that give immediate appreciation not only of the zones in which the chaotic responses occur, but 



also of the comparative level of chaoticity of each non-regular solution.  

In this paper, after an overview on the physical meaning of the various model parameters,  

behavior charts for some representative sets of model parameters are obtained numerically in the 

background of theoretical expectations [1] with the aim to give a systematic description of their 

effect on the occurrence of chaotic responses in the nonlinear dynamics of SMOs. 

 

2 OVERVIEW OF THE MODEL PARAMETERS 

As anticipated in the previous Section, the thermomechanical constitutive model used to 

describe the restoring force of the SMD depends on the 7 parameters : 

λ, J, q1, q2, q3, L, h 

that can be grouped as follows: 

• mechanical parameters (q1, q2, q3, λ), which reflect the basic features of the device (type and 

arrangement of the material) and determine the basic shape of the pseudoelastic loop as 

observed in isothermal conditions; 

• thermal parameters (L, h), which reflect the heat production, absorption and exchange with 

the environment and therefore determine the temperature variations of the device; 

• thermo-mechanical parameter J, which determines the influence of the temperature 

variations on the phase transformation forces. 

More details about the physical meaning of such parameters are discussed in [1]. 

In order to explore the complicated system response, the following set of Reference Model 

Parameters (RMP) is chosen 
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Table 1: Reference Model Parameters (RMP) considered in the comparative analysis. 

The viscous damping as well as the parameter b [1] are set to 0.03 for each analysis. Several 

variations of the parameters with respect to RMP will be studied later. 

Before discussing the various sets of parameters considered in the investigation, a few basic 

features of the response of the SMD characterized by the RMP is recalled. Since the mechanical 

response depends on the loading rate, two typical responses of the same SMD under a smaller and 

a faster loading are shown in Figure 2. 
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Figure 2: Force-displacement cycles and temperature time history for RMP 

If loading is very slow (e.g. cycling at frequency 0001.0=α  and amplitude 2.1=γ ) temperature 

variations are very small, the system evolves almost isothermally and the observed loop is 



governed solely by the mechanical parameters. With this choice of the parameters, the isothermal 

pseudoelastic loop is almost flat, has a medium-high width and the plateaus are parallel (Fig. 2a).  

For faster loads (e.g. 4.0=α  and 2.1=γ ) thermal effects become important as shown by the 

time history of the temperature in Fig. 2. It turns out that, after the transients, the temperature 

cycles between 1.08 and 0.95 with a mean value of 1.015. The hysteresis loop in the force-

displacement plane (Fig. 2b) is thus significantly different with respect to the isothermal one. The 

entity of such difference is governed by the thermal parameters. 

For a fixed set of model parameters, different temperature histories lead to different loop 

shapes that are characterized by two main effects: the almost flat plateaus become significantly 

steeper (henceforth this effect will be referred to as thermal hardening) and the area of the 

hysteresis loop is slightly reduced. 

To develop a systematic investigation of the effect of the various model parameters on the 

response of the SMD and, thus, of the SMO, the following sets of parameters are considered [1]. 
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Table 2: Sets of model parameters used for comparative analysis of the response. 

Since each set involves the variation of only one or two parameters with respect to the basic RMP, 

the comparative analysis of a synthetic indicator of response chaoticity for the various sets helps in 

the attempt to understand the effect of each parameter.  

3 BEHAVIOR CHARTS 

In order to carry out a systematic investigation of the comparative effect of the model 

parameters on the occurrence of chaotic responses, in the following, suitable behavior charts are 

computed numerically by the MWT as discussed in [7].  

More specifically, both excitation frequency and amplitude are considered as control 

parameters. For each frequency-amplitude pair, the normalized separation between the fiduciary 

and perturbed trajectories is computed for the whole observation time interval. 

The perturbed trajectories are obtained in each case by choosing ε=0.0001. The maximum 
value of the normalized separation in the displacement over 1T  is denoted αmax.  



 
Figure 4: Behavior chart for RMP. 

A behavior chart is then a plot of αmax against excitation frequency and amplitude. Each 

simulation is carried out at fixed initial conditions 

[ ]0,1,0,1,1: −−=0u  

Behavior charts are therefore 3-dimensional plots that can be represented from various viewpoints. 

In the following a 2-dimensional view is preferred for the sake of clarity. Henceforth the value of 

αmax is thus represented by a color in a suitable color scale. 

Figure 4 shows the behavior chart relative to the RMP case. Comparing with the results of 

bifurcation diagrams (herein not reported) obtained by varying either one of the two control 

parameters, deep blue regions in this diagram correspond to periodic solutions (αmax close to 0) 

whereas colours tending to red show increasing values of αmax. The greater αmax corresponds to 

non-regular solutions with higher degree of chaoticity.  

Overall, it turns out that there is one main well-identified triangle shaped region of excitation 

frequency α and amplitude γ  in which chaotic solutions occur. Within such zone, non-regular 
solutions show a peak of chaoticity at about α=0.22 and γ=1.2 whereas solutions with less 

developed chaos arise when approaching the boundary of the region. 

Besides the main zone, there are smaller scattered regions of chaos at high amplitude (γ >1.3 

and α=0.21-0.22) as well as a chaos region at low frequency (α=0.1-0.12 and γ=1.2-1.4), that 

however turns out to be of significantly lower chaoticity than the main zone. 

While a more detailed analysis of the solutions is made in [8] via a systematic comparison with 

bifurcation diagrams and attractors, in the following, a comparative analysis of the behaviour 

charts obtained for the various sets of model parameters of Table 2 is presented. 

The set MP1 is characterized by a decrease of the parameter q2 that, at fixed excitation 

parameter values, yields a loop with less hysteresis than the RMP faster case (Fig. 2b) while 



keeping a similar slope of the plateaus (Fig. 5a). In contrast, the set MP2 is characterized by a 

decrease of the parameter q1 that yields a loop with more hysteresis and steeper plateaus (Fig. 5b). 
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Figure 5: Force-displacement loops for MP1 and MP2 ( 4.0=α , 2.1=γ ) 

The reduction of hysteresis at constant plateaus slope of MP1 strongly increases the extent of 

chaos regions as shown by the behaviour chart of Fig. 6. By comparing it with the corresponding 

chart of RMP (Fig. 4), a different structure of regions is also observed, in the sense that there are 

no longer separate zones of non-regularity because chaos can occur at almost every frequency for 

proper values of the excitation amplitude. Moreover, at intermediate frequencies (0.2-0.25) and 

amplitudes (1.0-1.2), the non-regular solutions are characterized by a comparatively very high 

level of chaoticity (intense red colour). 

 
Figure 6: Behavior chart for MP1 

On the contrary, the increase in both the hysteresis and pseudoelastic slopes induced by MP2 

completely eliminates all the chaotic solutions (behaviour chart not included). 

It is worth noting how both the two trends of modification of chaos robustness and strength, 

obtained by moving from RMP to MP1 or MP2 at fixed excitation parameter values (which affect 

the thermal features of the phase transformation process), are consistent with the qualitative 



expectations ensuing from the mechanical meaning of the two varied system parameters.  

In turn, the parameter sets MP3 and MP4 are characterized respectively by a decrease and a 

slight increase of the thermal parameter L. In particular, as shown in [1], MP3 yields almost flat 

plateaus, whereas MP4 emphasizes the thermal hardening, i.e. the increase of the plateaus slopes 

due to strong temperature variations (Fig. 7). Accordingly, somehow stronger (weaker) and more 

(less) robust chaos are expected with respect to RMP in the former (latter) case, which is what 

happens in the computer simulation results (Fig. 8). Indeed, the reduction of plateau slope induced 

by MP3 increases the strength of chaos within the non-regular zone, while MP4 yields a chaotic 

zone with similar extension as the RMP one but with lower levels of αmax. However, in both cases, 

the charts have a structure qualitatively similar to RMP, with a single major chaotic zone at 

intermediate frequency. 
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Figure 7: Force-displacement loops for MP3 and MP4 ( 4.0=α , 2.1=γ ) 

 
Figure 8: Behavior chart for MP3 (left) and MP4 (right) 

The set MP3+1 combines the effects of MP3, that yields almost isothermal conditions (hence 

almost flat plateaus), and of MP1, that strongly reduces hysteresis. As expected, this turns out to 

be the condition with the most pronounced effects in terms of both chaos strength and chaos 

robustness (Fig. 9). The nearly “connected” structure of chaotic regions already observed in Fig. 6 

is herein considerably enhanced.  

The sets MP5, MP6 are characterized respectively by a decrease and an increase of the heat 

exchange coefficient h. This produces a variation of the mean value of the temperature that in the 

force-displacement plane is reflected into a translation of the loop toward higher or lower forces 

(Fig. 10). In particular MP5 relates to an environment with less convective heat exchange that 

produces temperature variations about a higher mean value (conversely for MP6). 
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Figure 9: Force-displacement loop ( 4.0=α , 2.1=γ ) and behavior chart for MP3+1 
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Figure 10: Force-displacement loop for MP5 and MP6 ( 4.0=α , 2.1=γ ) 

Overall, in both cases, a loop similar to the RMP case is obtained, since the reference h value 

(0.08) already lies in a range of low sensitivity to variations of the parameter [1]. Consistently, the 

corresponding behavior charts (Fig. 11) highlight relatively minor effects with respect to those 

entailed by variations of other parameters, with the overall structure of the chart being 

substantially similar to that obtained for RMP, namely with a main chaotic zone at intermediate 

frequencies and comparable values of chaoticity (mostly as regards MP6). 

 
Figure 11: Behavior chart for MP5 (left) and MP6 (right) 

 



The set MP7 increases the thermomechanical parameter J, which entails a strong reduction of the 

thermal effects that is reflected into a thin, flat loop [1]. This produces effects quite similar to 

those of MP3+1, namely a strong increase of chaos with respect to RMP. Note, however, that the 

source of this enhanced chaotic behaviour is completely different from that for MP3+1. 
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Figure 12: Force-displacement loop ( 4.0=α , 2.1=γ ) and behavior chart for 7 

Finally, the last two model parameter sets are MP8, that produces a loop with asymmetric plateaus 

(Fig. 13a), and MP9 that reduces the length of the pseudoelastic plateaus (Fig. 13b) 
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Figure 13: Force-displacement loop for MP8 and MP9 ( 4.0=α , 2.1=γ ) 

The loop of MP8 is characterized by a low hysteresis and, accordingly, it produces a considerable 

chaoticity, with non-regular solutions being again present at almost all frequencies (Fig. 14).  

 
Figure 14: Behavior chart for MP8 (left) and MP9 (right) 



On the contrary, the slight shortening of the plateaus, with all the other parameters remaining the 

same, does not produce significant variations in the behavior chart of MP9 with respect to RMP. 

 

4 CONCLUSIONS 

A systematic investigation of the effect of the thermomechanical model parameters on the 

nonlinear dynamic response of SMOs has been carried out in the background of theoretical 

predictions, by numerically computing the behavior charts for various combinations of model 

parameters via an enhanced version of the MWT which provides a synthetic indicator of chaoticity. 

Due to the richness of the model, various modifications of the force-displacement loop can be 

obtained by different combinations of the parameters, with an ensuing influence on the system 

non-regular nonlinear dynamics which appears to be predictable mostly as regards the effects of 

the mechanical and of some thermal parameters. Computer simulations show that all variations  

involving a decrease of either hysteresis or slope of the pseudoelastic plateaus (MP1, MP3, 

MP3+1, MP7) yield an increase of strength and robustness of the chaotic phenomena. On the 

contrary, if hysteresis and slope of the plateaus have suitably high values, chaotic phenomena can 

be almost eliminated (MP2). Variations of other parameters such as the coefficient of heat 

exchange with the environment or the relative slope of the plateaus do not seem to produce 

significant effects on the occurrence of non-regular responses. 

Besides worthily validating theoretical expectations, whether available, and providing an 

overall picture of the chaotic responses associated with the predictable or unpredictable effects of 

parameter variations, the present detailed analysis is considered to be of interest also for technical 

purposes in view of the design of a SMD to be used in a controlled dynamic regime.   
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