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SUMMARY. Arches of various sizes and shapes can be found bearing the weight of vertical walls in 
almost all ancient masonry buildings. The most common arch shapes are round, or semicircular, and 
pointed, the so-called ogival arch, typical of Romanesque and Gothic architecture. The aim of this work is 
to study such structural systems by considering them composite systems made up of an arch and an 
overlying wall, both made of masonry. The study applies a simple mechanical model, in which the arch and 
wall are schematized as one-dimensional elements, in general characterized by nonlinear elastic behavior. 
In the case that the displacements undergone by the arch are sufficiently small in comparison to those of the 
wall, it can be shown that the distribution of the loads transmitted by the wall to the arch differs 
considerably from the distribution deduced by assuming each vertical strip of wall to be sustained directly 
by the underlying arch element. Though rather small, such differences sometimes involve a critical 
difference in the load bearing capacity of the arch, calculated under the assumption that the arch’s 
constituent material cannot withstand traction and has limited compressive strength. The model enables, 
among other things, evaluating the effect on bearing capacity of substituting a semicircular arch with an 
ogival one of equal thickness and span. The results of such comparison clearly reveal the superiority of the 
latter arch type over the former in terms of the maximum possible height of the overlying wall under 
equilibrium conditions. 

1. INTRODUCTION 

The façades and dividing walls of many historical and monumental masonry buildings commonly 
contain arches, built with the aim of accommodating various types of openings, such as doors, windows 
and colonnades. In such cases, the arch must bear the weight of the overlying masonry wall, and the 
problem therefore arises of studying the interactions between these two elements, each exhibiting its own 
particular characteristics, combining to form an arch-wall 'system'. A similar structural problem is 
encountered in the study of masonry arch bridges, for which it is anything but simple to evaluate the 
contribution to the arch's bearing capacity of the so-called fill [1]. 

 

 
Figure 1: an example arch-wall system: the interior colonnade  

of the church of San Giovanni e Santa Reparata in Lucca. 



 
In fact, determining the load transmitted by the wall to the arch is by no means a trivial matter, and for this 
reason, approximate solutions obtained by means of finite-element computation codes are often considered 
acceptable (see, for instance, [2]). Alternatively, elementary calculation schemes may be chosen, for 
instance, by assuming the wall to be divisible into vertical strips, the weight of each being directly 
sustained by the underlying arch element [3]. Although such approaches undoubtedly have the virtue of 
simplicity, they completely neglect the real distribution of the loads through the wall and the way they are 
transferred from the wall to the arch. 

2. THE MODEL 

The problem of determining the effective stress field established in the structural system made up of a 
masonry arch and the overlying vertical wall has no simple solution. Although the problem can easily be 
addressed in terms of the corresponding plane elastic problem, for which an exact solution can be had 
relatively simply, here we undertake to determine an approximate expression for the distribution of the real 
actions that the elastic wall effectively transmits to the arch. Our conviction is that only by knowing the 
loads actually transferred to the arch can an accurate evaluation be made of the degree of safety afforded by 
such structures. 

The arch-wall system is schematized as a composite structure made up of an elastic, one-dimensional 
element with curvilinear axis, which is inextensible and shear indeformable (the arch), and an elastic one-
dimensional element with rectilinear axis (the overlying wall). Because the wall’s height is usually 
comparable (and often superior) to its length, it has accordingly been assumed to be deformable to shear 
alone. It has moreover been assumed that the wall is connected to the underlying arch through a continuous 
distribution of vertical and horizontal elastic elements (Figure 2), so as to account for (albeit in a rather 
simplistic way) the overall deformations affecting the wall and the effects that such deformations have on 
the actual distribution of the loads transmitted by the wall to the underlying arch. 
 

   
Figure 2: structural scheme of the arch-wall system. 

 
In the following we will denote with θ  the anomaly at any given transverse section of the arch ABC 

(see fig. 3), with )(θu  and )(θv  the displacement components of the points along its axis in the tangential 

and radial directions, respectively. For simplicity’s sake, the radius, R, and bending stiffness, EJ, of the 
arch are both assumed to be constant. For the one-dimensional element, DE, representing the overlying 
wall, we denote with vp the transverse displacement of the points along its axis, GAT its shear stiffness and 

)(θp  the vertical load, varying along the beam itself, represented by the weight of each vertical strip of 

wall. For simplicity’s sake, the thickness of the wall and the arch orthogonal to the diagram’s plane has 
been assumed to be one. 

 

masonry arch 

masonry wall 



 
Figure 3: symbols and notation 

 
For the arch ABC the usual equilibrium equations hold: 
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and, under the assumption of an inextensible, shear indeformable arch, we also have the well-known 

kinematics relations: 
  

 ,
1

,
1

,
2

2

θ
ϕχ

θ
ϕ

θ d

d

Rd

ud

RR

u

d

du
v −=+==  (2) 

 
In the preceding relations N, T and M are respectively the normal and shear stresses, and the bending 

moment; pr and pt are the components of any distributed loads in the radial and circumferential directions, 
ϕ  is the rotation of the transverse section, positive if clockwise, and χ is the change in curvature. 

The deformations of the horizontal element DE are instead described by the differential equation  
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where qp is the distributed load acting in the transverse direction. 

Lastly, let )(θxk  and )(θyk indicate the stiffnesses per unit length of the elastic elements connecting the 

two structural elements in the horizontal and vertical directions, respectively. Ep and νp  indicate the 
Young’s modulus and Poisson’s coefficient of the wall’s constituent material, assumed for simplicity’s 

sake to be linearly elastic, homogeneous and isotropic. Now, with )(θxl  and )(θyl  the lengths shown in 

the figure, chosen so as to account for deformation of the wall as a whole, we have: 
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By denoting  
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as the actions transferred, respectively in the horizontal and vertical direction, at corresponding points 

on arch ABC and the wall DE, simple calculations, omitted here for the sake of brevity, enable arriving at a 
differential system with unknowns u(θ) and vp(θ): 
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which is supplemented by the boundary conditions 
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Once solved, the differential problem allows for evaluating the true distribution of the actions 

exchanged between the arch and the wall, which will depend on the shape and geometry of the arch, the 
height of the wall and the mechanical properties of their constituent masonry.  

In the following, we make a first comparison between the bearing capacity of different arch-wall 
systems, specifically the common semicircular and ogival types. The case study is limited to the situation in 
which the displacements of the points along the arch axis can be considered negligible in comparison to 
those undergone by the points of the wall. This added hypothesis allows reducing system (6) to a single 
differential equation of the second order with the single unknown function vp, 
  

 ,
2

)
2

2

2

11
2

1(

pv

R

x
R

E

dx

vd
GA p

H

pp
T −=

−−+−

−   ν

 (8) 

where H is the height of the wall, as measured from the arch’s keystone. Because expression (8) is also 
difficult to integrate, we have limited the treatment here to the search for a numerical solution based on 
application of a standard finite difference method.  

3. A COMPARISON BETWEEN SEMICIRCULAR AND OGIVAL ARCH-WALL SYSTEMS 

If, as stated, we entirely ignore the deformations undergone by the arch, the load transmitted to the arch 
by the overlying wall is limited to the vertical component fy alone. By way of example, figure 4 shows the 
plot of load component fy(x), evaluated via expression (5) and using the approximate solution from 
differential equation (8) for the case of a round arch and an ogival arch with a rise-to-span ratio of 7/6, both 



with a net span of 3 m and both overlain by a 5m-high wall, as measured from the arch keystone. The 
solution (blue curve) has been calculated using values drawn from the literature, Ep = 1.1 GPa and 
G = 0.18 GPa, and assuming a specific weight value of 18 kN/m2 for the wall’s constituent material. For 
the sake of comparison, the same figure also shows the plot of the same load component determined by 
assuming, as is common in applications, that the weight of each vertical strip of wall is sustained directly 
by the underlying arch element (red curve). 

  
Figure 4: plots of the loads transmitted by the overlying wall  

to a semicircular (left) and ogival (right) arch. 
 
The distributions of the loads transmitted by the wall to the arch obtained by integrating differential 

equation (8) differs clearly, though not dramatically, from those deduced by assuming each vertical strip of 
wall to be sustained directly by the underlying arch element. The results, also calculated for numerous other 
choices of geometric and mechanical parameters, have also been compared to those resulting from 
numerical solution via a finite element model of a two-dimensional wall using an accurate calculation code. 
The comparisons, omitted here for the sake of brevity, reveal good agreement between the results of the 
numerical finite element model and those deduced by the simple mechanical model adopted here, in which 
the wall and arch are represented by interconnected one-dimensional elastic elements. 
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Figure 5: the arch-wall system for a semicircular (left) and ogival (right) arch. 
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Once the load transmitted by the wall to the arch has been determined, an estimate of the arch’s bearing 
capacity can be made. 
 

 

 
Figure 6: bearing capacity of the semicircular (above) and ogival (below) arch. 

 
For simplicity’s sake, a safety coefficient, νm, has been adopted as a measure of the arch’s safety. It has 
been defined as the ratio between the compressive strength of the arch masonry, σ0. and the limit value of 
the this same strength, σ0,lim,  which would correspond to collapse of the arch. This last value has been 
evaluated via an analytical variation of the so-called “stability area” method, under the hypothesis that the 
constituent material of the arch offers no resistance to traction and has limited compressive strength. The 
stability area method is a derivation of the Durand-Claye method: a graphical procedure to define the so-
called area of stability at the crown section of a symmetrical arch, that is to say, the area within which the 
extremes of the vectors representing the crown thrust must be included in order that both the global 
equilibrium of the structure and the limited strength of masonry be respected. By scanning each joint of the 
arch and each eccentricity of the thrust, the set of all admissible thrust values may be found. The locus of 
the extremes of the vectors representing such forces constitutes the so-called area of stability. When this 
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area shrinks to a point, the limit condition for the arch is attained and a unique admissible thrust line exists 
(for a more detailed description of the method, see, for example, [3]). 
Regarding the geometric and mechanical characteristics of the arch, we have assumed a transverse section 
height of 50 cm and a compressive strength σ0 = 10 MPa. Lastly, it is worth emphasizing that, for the sake 
of simplicity, the arch’s collapse has been determined ignoring the contribution to overall strength afforded 
by the overlying wall. 
Figure 6 shows a plot of the safety coefficient νm  as a function of the height of the wall, measured from its 
keystone section. The figure clearly shows that the limit height of the wall, which corresponds to arch 
collapse (νm = 1), depends heavily on the load distribution considered. In effect, the maximum height for a 
wall modeled as an elastic element overlying a semicircular arch is nearly half that obtained by applying 
the so-called inert wall model: only about 8 meters as opposed to nearly 16 meters.  

A second noteworthy aspect is the influence of the arch’s line of axis on its ultimate bearing capacity. 
To this end, we return once again to the two arch-wall systems shown in figure 5. 
A comparison between the bearing capacities of the round and ogival arches is shown in figure 7, which 
plots the safety coefficient values determined first by assuming the weight of each vertical wall strip to be 
directly sustained by the underlying arch segment (figure 7a), and then by applying the elastic wall model 
(Figure 7b). The clear superiority, in terms of safety, of the ogival arch that emerges from figure 7 is further 
emphasized in figure 8, which represents the two arch-wall systems – semicircular and ogival – under 
conditions of imminent collapse.  

 
Figure 7: bearing capacity of semicircular and ogival arches when the wall is schematized as a vertical load 

(left) or as an elastic element (right). 
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Figure 8: semicircular and ogival arches under conditions of imminent collapse. 

 
 

4. CONCLUDING REMARKS 

Evaluating the bearing capacity of a masonry arch-wall system seems all but banal, especially 
considering the great influence that relatively modest changes in the load distribution bearing down on the 
arch have on the (nonlinear) mechanical response of the system as well as on the collapse load value itself. 
Although the distribution of the loads transmitted to the arch by the wall obtained when the elastic 
deformations of the overlying wall are accounted for does not differ greatly from that deduced by assuming 
each vertical wall strip to be directly sustained by the underlying arch element, the resulting alteration of 
the shape of the load distribution, though relatively modest, generally leads to significant alterations in the 
arch's load bearing capacity. Surprisingly, such alterations may be critical, as happens in the case of 
semicircular masonry arches. 
A further aspect worth stressing is the direct comparison made of the bearing capacities of ogival and 
semicircular arches of equal thickness making up otherwise identical arch-wall systems. The results 
highlight the clear superiority of the former over the latter, thus confirming a widely held conviction. 
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