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SUMMARY. The paper illustrates some results on a comparative evaluation of the load 
bearing capacity of three different types of masonry arches subjected to their own weight and the 
weight of an overlying vertical wall masonry. The arch types considered are those most commonly 
found in historical masonry buildings and bridges: circular, pointed and elliptical. The analyses 
have been conducted using two different complementary methods: the first a simple extension of 
the Durand-Claye stability area method; the second based on application of a non-linear elastic 
one-dimensional model, already used by the authors in prior studies. In all cases, it is assumed that 
the arch’s constituent materials has limited compressive strength and is unable to transmit 
tensions. In addition, the load transferred to the arch by the overlying wall is determined under the 
assumption that each vertical strip of wall bears directly down on the underlying arch element. 
Preliminary results reveal the clearly greater bearing capacity of the pointed arch with respect to 
the other types, thereby confirming a widely held conviction.  

1 INTRODUCTION 
Circular (round), pointed (ogival) and elliptical arches are found in many masonry buildings 

and bridges. It therefore appears interesting to examine the composite systems made up of the arch 
and overlying wall in buildings, and by the arch and filling material, paving and spandrel walls, in 
bridges. The aim is to determine the stress levels as a function of the main geometrical and 
mechanical parameters, and thereby assess the safety margin under conditions of incipient 
collapse, as well as the actual mechanism by which such collapse would occur. 

Determining the structural response of such structures, in terms of both displacements and 
stresses, still represents a challenging task because of the strong non-linearity of masonry’s 
behavior. Consequently large-dimension, numerical analysis are commonly utilized in achieving a 
solution [1], [2]. Here a simplified version of the problem will be addressed by following the two 
different approaches described and focusing on the arch alone. The first is based on an expressly 
developed extension of Durand-Claye’s stability area method [3] and aims at determining the set 
of statically admissible solutions within the limits imposed by the ultimate compressive and tensile 
strengths and the limited shear capacity of the joints. When such set becomes empty, a limit 
equilibrium condition is attained for the whole system. The second approach instead studies the 
stress and strain fields generated in the arch, which is considered to be made of material offering 
poor resistance to tension. Such mechanical behavior can be modeled, as a first approximation, via 
a non-linear elastic constitutive relation, in which case the problem is tackled by studying and 
numerically integrating systems of non-linear equations [4]. The condition of incipient collapse is 
considered to be reached when the residual stiffness of the system falls below a predetermined 



fraction of its initial value. 
The results are presented in terms of a comparison between the load-bearing capacities of 

circular, pointed and elliptical arches, as estimated by both methods. As already observed in 
previous cases studied by the authors [5], the results obtained via these two methods of analysis 
turn out to be in excellent agreement, except for very few special cases. Moreover, the two 
methods perform complementary functions: the stability area method allows for readily 
determining a collapse load value, while the non-linear elastic analysis provides a helpful and, in 
some aspects, essential check of its mechanical significance by following the evolution of the 
displacement field and extension of the non-linear regions where cracking and crushing 
phenomena arise as the load increases. 

2 THE ARCH-WALL SYSTEM 
In this paper we consider the equilibrium problem of circular, elliptical and pointed masonry 

arches subject to their own weight and to the weight of a superimposed wall (Figure 1). 
With the aim of making a first comparison between the load-bearing capacities of arches 

characterized by different shapes, in all the cases we have assumed a clear arch span L = 10 m. In 
addition to the circular arch, two elliptical arches of architectonic interest have also been 
considered: the first is defined by a = L/2 = 5 m, and b = 3.78 m, where 2a and 2b indicate the 
lengths of the axes of the intrados ellipse (Figure 1); the second arch is a depressed arch with 
semi-axes a = L/2 = 5 m, b = 1 m. Regarding the pointed arch, a rise-to-span ratio of 23  has 
been chosen. In all cases we have assumed a compressive strength σc = 20 MPa, a tensile strength 
σt = 0 and a Young’s modulus E = 4 GPa. 

With the aim of investigating the effects on the solution produced by variations in the shapes of 
both the arch and the wall, we have considered different values for the arch’s thickness h and the 
angle β formed between the extrados of the wall and the horizontal direction. All the different 
types of arches are assumed to have horizontal springings and constant thickness.  
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Figure 1. Scheme of the arch-wall systems  
for circular (left), pointed (center) and elliptical (right) arches. 

 
For different values of β and arch thickness h we have determined the maximum height of the 

wall compatible with the load-bearing capacity of the arch, the corresponding stress and strain 
distributions, the cracking pattern within the arch and the displacement field, by studying both the 
progressive reduction of the stability area and the evolution of the non-linear elastic solution. In all 



cases the superimposed wall is treated as a dead vertical load acting on the masonry arch: in other 
words, we assume the wall to be divisible into vertical strips, the weight of each being directly 
sustained by the underlying arch element. This simplifying assumption, commonly adopted in the 
literature, has been dealt with in detail and examined critically in [6]. 

Lastly, it is worth noting that the ‘limit condition’ takes on a different meaning depending on 
whether we adopt the ‘stability area’ method or the non-linear elastic analysis: according to the 
first, it corresponds to the attainment of a ‘limit equilibrium’ state, while in the second, it is related 
to the vanishing of the arch residual stiffness. 

3 THE SOLUTION METHODS 

3.1 The stability area method 
The stability area method is a derivation of Durand-Claye’s method: a graphical procedure to 

determine the so-called area of stability at the crown section of a symmetrical arch, that is to say, 
the area within which the extremes of the vectors representing the crown thrust must be included 
in order that both the global equilibrium of the structure and the limited strength of masonry be 
respected. Here we provide only a brief qualitative description of the method; further details can 
be found in some previous works (see, for example, [7]), which present an extension of Durand-
Claye’s original method in order to account for any tensile and compressive strength of the 
masonry. 

Let us now consider a symmetrical masonry arch, with finite compressive strength σc and zero 
tensile strength, and examine the ideal voussoir comprised between the crown joint c0d0 and a 
generic joint cidi (Figure 2). Let W(θi) be the weight of the voussoir c0d0dici, N(θi) the axial force 
at the joint cidi, P the thrust at the crown section and e the eccentricity of its application point.  

Assuming the usual linear law for the compressive stress distribution, we can draw the area 
ciωidi, each point of which corresponds to an admissible value of the axial force N(θi) with respect 
to the strength σc, and the corresponding hyperbola αi and βi at the crown joint, obtained by 
imposing the equilibrium of the voussoir c0d0dici. 

The admissible thrusts P with respect to equilibrium and strength at the joint cidi are then 
represented by the horizontal vectors whose extremes are contained within the area risipiqi, 
delimited by the hyperbola αi and βi, and the curves c0ω0 and d0ω0. 

To account for the friction at joint cjdj it is sufficient to draw at a generic point a the friction 
cone, defined by the friction angle ϕ (Figure 2). Let us take the weight W(θj) applied at point a 
and consider the two horizontal thrusts which give a resultant coinciding with the boundaries of 
the cone. These thrusts define two vertical lines at the crown, which encompass the extremes of 
the vectors representing the admissible thrusts P for the translational equilibrium along cjdj. 

Then, to assure both equilibrium and respect of the limit conditions for the compressive 
stresses and friction along the joint cidi, the admissible thrusts at the crown will be comprised 
within the intersection Ai of the area risipiqi with the two vertical lines defined above. 



W(   )

jic0

i

d0

ji

s
j

q
i j

r p

N(   )

t

W(   )j

j

i
ic

H -

i

t

dj

cj

+H

i

j

i

d0 i

a

Ht
-

+Ht

The stability area 

  
Figure 2. The stability area.  

 
By scanning every joint i of the arch and every eccentricity e, the set of all admissible thrust 

values may be found. The locus of the extremes of the vectors representing such forces constitutes 
the so-called area of stability, A, common to all the areas Ai. In Figure 2, for example, it is 
represented by the curvilinear quadrilateral risipjqj, corresponding to joints cidi and cjdj. Limiting 
our investigation to equilibrium and strength, when this area shrinks to a point, the limit condition 
is attained and a unique admissible thrust line exists. 

3.2 Non-linear elastic analysis 
The alternative method makes use of a simple one-dimensional non-linear elastic model, which 

relies on the piecewise-linear constitutive relation between longitudinal strains and stresses plotted 
in Figure 3, where σt and σc are the material’s tensile and compressive strengths, respectively.  
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Figure 3. The non-linear stress-strain relation. 



Under the assumption g of beams, namely that 
any

ressive strengths, the set of all internal force 
val

 commonly accepted in the theory of the bendin
 given cross-section remains plane and orthogonal to the line of axis after bending, a non-linear 

constitutive relation able to roughly describe the complex mechanical behavior of masonry may be 
established between the axial strain ε0 and cross-sectional curvature χ, on the one hand, and the 
axial force N and bending moment M, on the other. 

Due to the assumed bounded tensile and comp
ues compatible with the assumed constitutive relation is a closed bounded domain in the (N, M) 

plane (Figure 4).  
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Figure 4. The elastic domain. 

 
ifferent analytic expressions for the constitutive relation hold in the different regions into 
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D
ich the domain is subdivided. By way of example, in region C’ (where the stress distribution is 

non-linear under both tension and compression), it is  
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Analogous relations, omitted here for the sake of brevity, hold in the other regions. 
f a circular 

arc

 

Simple calculations show that under the foregoing hypotheses, and in the case o
h with radius R, the tangential displacement component u may be expressed as 
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0 dt , (2) 

where θ is the angle formed between the radial direction and the horizontal at any point along 
the line of the arch axis, A, B and C are three constants, and the primes denote differentiation with 



respect to θ. Moreover, analogous expressions hold for the radial displacement component v, as 
well as the rotation ϕ of the cross-section. 

Under general load and constraint conditions, equation (2) together with the analogous ones for 
v a

4 SOME RESULTS FOR CIRCULAR, POINTED AND ELLIPTICAL ARCHES 
havior of 

circ

a) 

nd ϕ lead to a non-linear set of equations in the three constants A, B and C and the redundant 
end-reaction components. Due to the strong non-linearity of the problem, the solution to this set of 
equations can be obtained in closed form only for cases of relatively simple loads and geometries. 
In general, the solution is sought via an iterative method. For the present context, an ad hoc 
numerical procedure has been used, following a modified standard Newton-Raphson scheme. The 
arch’s behavior is assumed to be linear during any given iteration. In this way, we obtain a linear 
set of equations, which is solved by performing the required integration numerically. The 
curvature and axial strain are updated, and the procedure is then repeated until the difference 
between the values of the internal forces N and M furnished by the constitutive relations and the 
corresponding ones calculated from the equilibrium equations becomes lower than a small fixed 
threshold value (for a more detailed illustration of the model see [8]). 

The methods described in the foregoing will now be applied to an analysis of the be
ular, elliptical and pointed masonry arches. Here, we shall limit ourselves to a brief illustration 

of some meaningful results.  
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Figure 5. Stability area and line of thrust for a semicircular arch (β = 0° and h = 50 cm). 
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et us begin with the case of a circular arch with h = 50 cm, loaded by a wall with β = 0°.
it height of the wall compatible with the bearing capacity of the arch is reached when the area 

of stability (Figure 5a) shrinks to a point. The limit line of thrust for this case is shown in Figure 
5b. By fixing the angle β and varying the cross-sectional thickness h, we find different values for 
the maximum height of the wall corresponding to a limit condition, as reported in Figure 6, where 
the wall height H is measured starting from the springings. It is interesting to observe that in some 
cases, for small values of H, we find both a minimum and a maximum height corresponding to a 
limit equilibrium condition  

It is noteworthy that, for a
cular ones. From an architectural point of view, such a result is clearly consistent with the 

greater slenderness of Gothic buildings. It is also rather interesting to note that, for some values of 
h, elliptical depressed arches also afford higher load capacities than circular arches of the same 
thickness. 
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Figure 6. Li rch-wall system for circular, el  arches  

 
he limit height values of the wall obtained by applying the non-linear elastic model to the 

sam

mit height of the a liptical and pointed
(left: β = 0°; right: β = 60°). 

T
e loading cases illustrated above are in very good agreement with the corresponding values 

obtained via the stability area method. In addition, the non-linear elastic analysis enables following 
the evolution of the displacement and stress fields within the arch, as well as the extension of the 
non-linear regions as the load increases.  

 

          
Figure 7. Circular arch: (left) deformed con placement magnified two times); 

By way of example, Figure 7 illustrates the deformed configuration and the distribution of non-
line

figuration (dis
(right) non-linear regions under tension (in orange). 

 

ar regions at collapse for the circular arch already examined via the stability area method 
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(point A in Figure 6). The arch has radius R = 5.25 m, cross-sectional height h = 50 cm and it is 
loaded by its self-weight and the weight of a 6.75m-high wall. By reason of symmetry, only the 
left half of the arch is shown in the figures. 

The height of the wall (the highest value for which convergence of the numerical procedure is 
achieved ) is slightly less than the maximum height as assessed by the stability area method (6.77 
m). As is evident from the graph (the crown vertical displacement turns out to be about 21 cm), the 
displacements in the neighborhood of collapse are not at all negligible. Moreover, wide zones 
along the arch are in a non-linear regime, thus leading to the supposition that widespread cracking 
would appear along the arch. The large increase in the magnitude of the displacements as the load 
approaches its limit value is also confirmed by the plot shown in Figure 8. 

 

 

Figure 8. Plot of the crown vertical displacement for different values of he wall height. 
 

 second case of a pointed arch (point B in Figure 6) is illustrated below as an example. The 
arc

 t

A
h has radius R = 10.57 m, and cross-sectional height h = 57.2 cm. The numerical procedure 

converged at a wall height of 22.85 m (the stability area method yields a limit height of 23 m). 
Figure 9 shows the diagram of the extrados and intrados stresses, together with the distribution of 
the non-linear regions at collapse. It should be observed that, in this case, the limit stress under 
compression is reached in some parts of the arch, and that the distribution of the non-linear regions 
is now quite different from that found in the previous case of a circular arch, thus leading to the 
suspicion that in this case local crushing phenomena are likely to appear. 

 



                    

Figure 9. Pointed arch: (left) extrados and intrados stresses;  
(right) extension of the non-linear regions along the left half of the arch. 

 

  

Figure 10. Elliptical arch: (left) line of thrust;  
(right) extension of the non-linear regions along the left half of the arch. 

 
Lastly, the case of an elliptical arch (point C in Figure 6) is illustrated below. The arch has 

cross-sectional height h = 56.2 cm; the line of axis is approximated by two arches of circles with 
radius R = 3.38 m and R = 6.39 m, respectively. The numerical procedure converged at a wall 
height of 6.06 m (the stability area method yields a limit height of 6.57 m). Figure 10 shows the 
line of thrust and the distribution of the non-linear regions at collapse. It should be observed that, 
once again in this case, the displacements in the neighborhood of collapse are considerable (the 
crown vertical displacement turns out to be about 35 cm). Moreover, wide zones along the arch are 
in a non-linear regime in tension and a small portion of the intrados of the arch is in a non-linear 
regime in compression, thus leading to the supposition that widespread cracking, as well as some 
local crushing phenomena are also probable in this case. 
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5 CONCLUSIONS 
The load-bearing capacities and the mechanical response of circular, elliptical and pointed 

arches loaded by their self-weight and by the weight of an overlying wall have been evaluated by 
means of the stability area method and non-linear elastic analysis. As already observed in previous 
cases studied by the authors [5], the results obtained via these two methods of analysis turn out to 
be in excellent agreement, except for very few special cases. Moreover, the two methods perform 
complementary functions: the stability area method allows for readily determining the collapse 
load value, while the non-linear elastic analysis provides a helpful and, in some aspects, essential 
check of its mechanical significance by following the evolution of the displacement field and 
extension of the non-linear regions, where cracking and crushing phenomena arise as the load 
increases. 

Some concluding remarks now seem in order. The wide extension of the non-linear regions, as 
well as the large magnitude of the displacements when the arches are close to collapse suggest that 
neglecting the effects of both the material and geometrical non-linearities could lead to dangerous 
overestimation of the actual value of the collapse load. In other words, it appears that the non-
linear elastic model utilized needs to be modified in order to also expressly account for the 
geometrical non-linearities consequent to the emergence of the all-but-negligible displacements as 
the system approaches collapse. Moreover, as shown in another work [6], lacking a sufficiently 
accurate evaluation of the real distribution of the loads transmitted to the arch by the overlying 
wall, we cannot hope to make a reliable determination of the collapse load for an arch-wall 
system. Finally, it seems advisable to supplement the system collapse load value determined via 
any standard application of limit analysis with a conventional reduced value, so as to introduce a 
condition that makes reference, for example, to the attainment of a limit residual stiffness value, 
below which the arch’s equilibrium is to be regarded as very uncertain.  
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