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This paper reviews the theoretical basis for the dynamic numerical analysis to examine the elas-
tic stability of a folding multi-layered truss [1]. The analysis allows for geometrical non-linearity
and contact between nodes and is based upon bifurcation theory [2]. Comparisons are made be-
tween experimental folding patterns and the patterns obtained from the numerical method in which
bifurcations are demonstrated as elastic unstable snap-through behaviour (e.g. [3]). In this paper,
the bifurcation behavioural characteristics of a cone and diamond-shaped axisymmetric space truss
made of 4 × 2 elastic members with 4-directional symmetry are studied as folding mechanism in
three dimension space. Equilibrium equations of the truss are investigated using a transformation
matrix based on group theory in mathematics. The equilibrium equations show bifurcation points
and paths by the vanishing of lower-order terms, resulting in non-vanishing terms with higher-order
nonlinearity. The geometric symmetry of the truss results in a symmetrical up-down deformation at
a critical singular point for this simplified model.

The authors suggest that the understanding of snapthrough behaviour for folding mechanics in
three-dimensional space will be very useful for the development of lightweight structures subject to
bifurcation of the hill-top branching type.

1 Introduction
Folding the weight of a structure from the viewpoint of the first critical load of the perfect struc-

ture usually produces a design for which the critical loads for several buckling modes coincide. This
causes interaction of buckling modes in which the multiplier multiplies αm is increased or the expo-
nent m is decreased [4, 5]. To discover the finding out multiple bifurcation point as the critical load
in theoretical folding mechanics, a method for obtaining the bifurcation paths of a discreted struc-
tural system with nonlinear equilibrium equations has been studied by Ario et al. In these papers,
they referred to the hill-top-bifurcation behaviour of a three-layer plane truss subjected to a vertical
loading at the top node. A comment is also given without any proof for the existence of an infinite
number of multiple snap-through behaviors for a multiple-layered pantograph truss system. And the
hill-top bifurcation and bifurcation paths also for the system. We are more interested in a system
which is made of three-dimensional space even though it is a simple model because there might be
more complex and strange phenomena in nonlinear mechanics. Thus, higher geometric symmetry
tends to yield a greater number of bifurcation paths.

This paper aimes to investigate the bifurcation behaviour of the axisymmetric space diamond
truss shown in Fig.4. We want to know why there are more interesting bifurcation paths for this
diamond space truss. The bifurcation behaviour of a diamond space truss is studied as a simplified
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Figure 1: Multi-folding pantographic systems; (a) Multi-layer model, (b) One half of multi-layer
model, (c) Basic 3 layer model

folding model. Since the main object of this paper is the study of the bifurcation behaviour of an
axisymmetric truss, the Euler buckling of each member is disregarded, i.e., it is assumed as not to
occur.

2 Theory of Elastic Folding
In this section, we consider the folding mechanisms for the three layer truss structure subject to

a vertical impact load at the top node shown in Fig. 1(c). The system is a pin-jointed elastic truss
and all nodes of the system displace vertically only. No allowance is made for friction or gravity for
this geometrically nonlinear problem.

2.1 Theoretical approach for multi-folding truss on 2D
We assume a periodic height for each layer of hi = γiL where the width L of the truss is fixed.

Therefore, an initial length for each bar in the geometry of the figure is expressed as

�i =
√

L2 + h2
i = L

√
1 + γ2

i , for i = 1, · · · , n. (1)

The deformed length of each bar denoted as �̂i, is a function of the height and the nodal displacement
variables

�̂1 =
√

L2 + {(nh − v1) − ((n − 1)h − v2)}2

= L
√

1 + (γ1 − v̄1 + v̄2)2 , (2)
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Figure 2: Static equilibrium paths without contact for the basic model; (a) Theoretical equilibrium
paths using Eqs.(23) and (24), (b) Numerical static equilibrium paths
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Figure 3: Nodal displacement initiating fold mode; (a) the top members folding mode as η1, (b) the
middle members folding mode as η2, (c) the bottom members folding mode as η3
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...

�̂i = L
√

1 + (γi − v̄i + v̄i+1)2 , (3)
...

�̂n = L
√

1 + (γn − v̄n)2 (4)

where γi = hi/L > 0, v̄i = vi/L, (i = 1, · · · , n) and v̄n+1 = 0 because the bottom node is
translationally fixed.

Using Green’s expression for strain (see Appendix A for engineering strain formulation) we
obtain the elastic strain in each bar as

εi ≡ 1
2



(

�̂i

�i

)2

− 1


 , for i = 1, · · · , n. (5)

Substituting Eq.(25) to Eq.(4) into Eq.(5) we obtain

εi =
1
2

{
1 + (γi − v̄i + v̄i+1)2

1 + γ2
i

− 1
}

, for i = 1, · · · , n. (6)

The total potential energy, V , of the half model, subject to loading f/2 is then given by

V =
n∑

i=1

EAi�i

2
(εi)

2 − f

2
v̄1L (7)

=
n∑

i=1

EAiL
√

1 + γ2
i

2
1
4

{
1 + (γi − v̄i + v̄i+1)2

1 + γ2
i

− 1
}2

− f

2
v̄1L. (8)

For the case when γi = γ, (i = 1, · · · , n) and EAi = EA, (i = 1, · · · , n) the total potential
energy can be written as

V =
βL

8

n∑
i=1

(v̄i − v̄i+1)2 ((v̄i − v̄i+1) − 2γ)2 − f

2
v̄1L (9)

where the stiffness parameter β = EA/(1 + γ2)3/2 (i.e. β is a function of γ). From Eq. (9), we
can obtain the equilibrium equations based on the principal of minimum energy [4] in the following
way:

Fi(· · · , vi, · · ·) ≡ ∂V
∂vi

=
∂V
∂v̄i

∂v̄i

∂vi
= 0 , for i = 1, · · · , n. (10)

Hence, for the 1st, i−th and n−th equilibrium equations are

F1 (v̄1, v̄2) =
β

2
(v̄1 − v̄2)((v̄1 − v̄2) − γ)((v̄1 − v̄2) − 2γ)− f

2
= 0 , (11)

Fi (v̄i−1, v̄i, v̄i+1) = (v̄i−1 − v̄i)((v̄i−1 − v̄i) − γ)((v̄i−1 − v̄i) − 2γ)
−(v̄i − v̄i+1)((v̄i − v̄i+1) − γ)((v̄i − v̄i+1) − 2γ) = 0 , (12)

Fn (v̄n−1, v̄n) = (v̄n−1 − v̄n)((v̄n−1 − v̄n) − γ)((v̄n−1 − v̄n) − 2γ)
−v̄n(v̄n − γ)(v̄n − 2γ) = 0 . (13)
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By using the implicit function theorem it is then possible to solve for all variables v̄i, (i =
n, · · · , 1) as follows

Fn(v̄n−1, v̄n) = 0 → v̄n = Fn(v̄n−1) , (14)

Fi(v̄i−1, v̄i, v̄i+1) = Fi(v̄i−1, v̄i,Fi+1(v̄i)) = 0 → v̄i = Fi(v̄i−1), (15)

F1(v̄1, v̄2) = F1(v̄1,F2(v̄1)) = 0 (16)

where F(·) denotes a nonlinear function. Thus we obtain all the solutions for each nonlinear equi-
librium path by finding the normalised nodal displacements in turn.

The stability of the system is given by a non zero value for the determinant of the tangent stiffness
matrix, the Jacobian for J ∈ Rn×n. J is defined as follows:

J ≡ (Jij) =
(

∂2V
∂vi∂vj

)
=
(

∂2V
∂v̄i∂v̄j

∂v̄i ∂v̄j

∂vi ∂vj

)
=
(

∂Fi

∂v̄j

∂v̄j

∂vj

)
, for i, j = 1, · · · , n (17)

and instability is defined as
detJ(vi) = 0 . (18)

It is then possible to determine the buckling load and the post-buckling mode shape of the truss at
the singular points from the nonlinear equations during instability.

2.2 Bifurcation analysis for three layers model (n = 3)
We now determine the equilibrium paths for the basic model shown in Fig. 1(c). The height of

each layer is identical, i.e. hi = h, hence γi = γ. In order to solve for the variable v̄i, we use the
implicit function theorem and substitute n = 3 into Eqs.(13) and (14) which gives the solutions as
follows:

v̄3 = F3(v̄2)

{
= v̄2/2 for primary path,

= 1
2

(
v̄2 ±

√−3v̄2
2 + 12γv̄2 − 8γ2

)
for bif. paths,

(19)

v̄2 = F2(v̄1)
{

= 2v̄1/3 for primary path,

= −γ + v̄1 ±
√

3
3

√−(v̄1 − γ)(v̄1 − 5γ) for bif. paths.
(20)

The use of the implicit function theorem (16) and/or (11) for v̄1 leads to the following equation:

F1 (v̄1,F2(v̄1)) = f − βF1(v̄1) = 0 (21)

hence it is seen that the relationship between the load parameter and the displacement v̄1 is nonlinear

f = β F1(v̄1). (22)

Using v̄2 = F2(v̄1) and v̄3 = F3(v̄2) we can then express the equilibrium equations for the
primary and bifurcation paths in terms of variable v̄1 as follows

fpri. = β
v̄1

3

( v̄1

3
− γ
)( v̄1

3
− 2γ

)
, for primary path, (23)

fbif . = ± β

3
√

3

√
−(v̄1 − γ)(v̄1 − 5γ) · (v̄1 − 2γ)(v̄1 − 4γ), for bif. paths (24)

5



v

h

2h

1

2a 2b,2d

3

2c

f

2a 2c

2b

2d

1 X

Y

Figure 4: Folding model in 3D

The theoretical primary equilibrium and bifurcation paths are shown in Fig. 2(a). We obtain the
critical positions for the truss using the condition df/dv̄1 = 0 for maximum and minimum values.
For the equilibrium paths under consideration we obtain above the following result

v̄BP
1 =

3 ∓√
3

3
(3γ) = (3 ∓

√
3)γ =

{
1.268γ,
4.732γ.

, for n = 3

Finally the maximum load is given by

fmax = f(v̄BP
1 ) = ± 2γ3

3
√

3
β.

3 Theoretical approach for multi-folding truss on 3D
We consider the folding mechanisms for a (pantographic) truss structure subject to a vertical

impact load at the top node of the system shown in Fig.4. The system is a pin-jointed elastic truss
and all nodes of the system displace vertically only. No allowance is made for friction or gravity
for this geometrically nonlinear problem. And, we think that no Eular elastic buckling occurs for
each bar by itself in this truss. We assume a periodic height for each layer of hi = γiL where the
width L of the truss is fixed. Therefore, the initial length of each bar in the geometry of the figure is
expressed as

�(i),k =
√

L2 + h2
i = L

√
1 + γ2

i , for k = a, · · · , d, i = 1, 2. (25)

Using a definition of the Green strain, the potential strain energy for the up and down side of this
model, Vi, of the model shown in Fig.4, subject to loading f∗ is then given by

V1 =
βL

8

d∑
k=a

(v̄1 − v̄2,k)2 (v̄1 − v̄2,k − 2γ)2 , (26)

V2 =
βL

8

d∑
k=a

(v̄2,k)2 (v̄2,k − 2γ)2 . (27)
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(a) (1, 1)D4 (b) (1, 3)D4 (c) (2, 1)+D4
(d) (2, 1)−D4

Figure 5: Deformation patterns for 3D folding model

Here, it is assumed, as the condition for this model β = EA/(1+γ)3/2, γi = γ, v̄i = vi/L, hi = h.
The total potential energy is expressed as follows;

V = V1 + V2 − f v̄1L, (28)

=
βL

8

d∑
k=a

[
(v̄1 − v̄2,k)2 (v̄1 − v̄2,k − 2γ)2 + (v̄2,k)2 (v̄2,k − 2γ)2

]
− f v̄1L (29)

We can obtain the equilibrium equations based on the principal of minimum energy in the following
way:

Fi(· · · , vi, · · ·) ≡ ∂V
∂vi

=
∂V
∂v̄i

∂v̄i

∂vi
= 0 , for i = 1, · · · , n. (30)

For example for v̄1, it is shown as

F1 =
∂V
Lv̄1

= 0 (31)

=
β

4
{
(v̄1 − v̄2a)2(−2γ + v̄1 − v̄2a) + (v̄1 − v̄2a)(−2γ + v̄1 − v̄2a)2

+(v̄1 − v̄2b)(−2γ + v̄1 − v̄2b)2 + (v̄1 − v̄2b)2(−2γ + v̄1 − v̄2b)
+(v̄1 − v̄2c)(−2γ + v̄1 − v̄2c)2 + (v̄1 − v̄2c)2(−2γ + v̄1 − v̄2c)
+(v̄1 − v̄2d)(−2γ + v̄1 − v̄2d)2 + (v̄1 − v̄2d)2(−2γ + v̄1 − v̄2d)

}− f = 0. (32)

The other shows

F2,k =
∂V

Lv̄2,k
= 0, (33)

=
β

4
{−(v̄1 − v̄2,k)2(−2γ + v̄1 − v̄2,k) − (v̄1 − v̄2,k)(−2γ + v̄1 − v̄2,k)2

+v̄2
2,k(v̄2,k − 2γ) + v̄2,k(v̄2,k − 2γ)2

}
= 0. (34)

When it is subjected to the vertical load increasing at the top point of this model, this system
has a critical load into elastic unstable state. Then, we might be able to foresee where there are
several folding patterns in this system based on symmetry-breaking’s law. The degree of freedom
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Figure 6: Primary path and bifurcation paths

of this system is limited to only the vertical displacement. As there is a displacement at the top
node, large and strange deformations suddenly appear for four nodal points on the mid layer at the
critical point. We can show that there are typical deformation patterns in a group representation of
the dihedral group D4 in the Z− direction which is the irreducible representation space ρ ∈ R(D4)
in the following:

ρ =
{
(1, 1)D4 , (1, 3)D4 , (2, 1)+D4

, (2, 1)−D4

}
, ∀ρ ∈ R(D4)

Here, there is the order of index as follows: the first (1, ∗)D4 and the second (2, ∗)D4 . The second
order of the symmetry means that there are a couple of representations as +, and −. The relationship
between several deformed patterns of the system and the representation space is shown in Fig.5.

The theoretical solution for this equation is obtained by analytical work, as follows;

v̄2,k =

{
v1
2 ,
1
2

(
v̄1 ±

√−8γ2 + 12γv̄1 − 3v̄2
1

)
, for k = a, b, c, d, (35)

There are three solutions which include the linear and nonlinear term for each nodal displacement,
v̄2,k. Therefore, it is considered that several equilibrium paths are combined by these chosen solu-
tions. So, it is shown that there are a combination of linear and nonlinear solutions, such as “◦” and
“•” shown in Fig. 7. This figure means there are a number of linear and nonlinear solutions for the
nodal displacement, v̄2,k. For example, Figure (a) shows the marks of layout for four nodal points
which correspond to the deformation pattern of the primary path, when the combination of all linear
solution as v̄2,k = v̄1/2. Figures (b), (c), (d) and (e) are increasing the nonlinear solution for the
points, the combination of all nonlinear solutions is shown in Figure (e), which corresponds to the
deformation pattern of the 4-th bifurcation path. This equilibrium path is the most unstable state
from the hill-top branch bifurcation, BP.

3.1 Primary path and bifurcation paths
In the previous subsection, we determined the three solutions for v̄2,k, and we can substitute

them into the equilibrium equations F i. There are several equilibrium paths to be satisfied for
the combination of these solutions. At first, if all displacements equal the same linear relationship

8
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Figure 7: Corresponding to a order of solutions(‘1’ means the linear, ‘2’ means the nonlinear solution
to be substituted)

v̄2,k = v̄1/2, (k = a, b, c, d) shown in Fig. 7(a), Eq.(32) will be the fundamental equilibrium
equation as the primary path in the following:

fpri. =
β

4
v̄1(v̄1 − 2γ)(v̄1 − 4γ). (36)

This equation is the primary nonlinear path which has the D4 symmetry of the same vertical dis-
placements for v̄2,k. This deformation of the system is not symmetry-breaking of D4, i.e. before D4

symmetry-breaking.
At the second, we have got several bifurcation paths under the condition of solution’s combina-

tion shown in Fig. 7(b) in the following:

v̄2a = v̄2b = v̄2c = v̄1/2, v̄2d =
1
2

(
v̄1 −

√
−8γ2 + 12v̄1γ − 3v̄2

1

)

fbif . =
β

16
(
48γ3 − 64v1γ

2 + 30v2
1γ − 5v3

1

)
, for bif. path 1. (37)

Next, the condition of another combination of solutions including two nonlinear solutions, shown in
Fig.7(c) is given as follows:

v̄2a = v̄2b = v̄1/2, v̄2c = v̄2d =
1
2

(
v̄1 −

√
−8γ2 + 12v̄1γ − 3v̄2

1

)

fbif . =
β

8
(
48γ3 − 80v1γ

2 + 42v2
1γ − 7v3

1

)
, for bif. path 2. (38)

And, with an increasing number of nonlinear solutions for substituting into Eq.(32), there is one
remaining linear relationship for v̄2,k;

v̄2a = v̄1/2, v̄2b = v̄2c = v̄2d =
1
2

(
v̄1 −

√
−8γ2 + 12v̄1γ − 3v̄2

1

)

fbif . = β

(
9γ3 − 16v1γ

2 +
69v1

2γ

8
− 23v1

3

16

)
, for bif. path 3. (39)

Finally, Substituting all the nonlinear solutions into Eq.(32), we obtain the following relationship:

v̄2a = v̄2b = v̄2c = v̄2d =
1
2

(
v̄1 −

√
−8γ2 + 12v̄1γ − 3v̄2

1

)
fbif . = 2β

(
6γ3 − 11v1γ

2 + 6v2
1γ − v3

1

)
, for bif. path 4 (40)
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These relationships are plotted in Fig.6 as bifurcation paths from the first BP. We know that there are
several different unstable paths during two BPs. The loss of the load parameter from BP depends on
the number of nonlinear solutions as ‘•’, i.e. when all solutions are linear and there are no nonlinear
ones, it corresponds to the primary unstable path; on the other hand, when all solutions are nonlinear
with no linear ones it corresponds to the most decreasing unstable bifurcation path (Bif. path 4 in
Fig. 6). It is understood that there are several different bifurcation paths in the unstable area between
one BP (hill-top) and the next BP (hill-bottom) for this simple model in three dimensions. All paths
go through the center position v̄1 = 2. We realise that if one of these relationships is obtained from
experimental data, as the result there will be a bifurcation path and a number of bifurcation solutions
which depend on the influence of the lost load resistance.

4 Dynamic Analysis
It is well known that dynamic analysis and techniques with numerical work also, and for example,

a simple truss [6] has one of strange attractor models of nonlinear dynamics. The dynamic analysis
equation for the folding truss combines mass, damping and nonlinear stiffness {Fi(v)}T = F (v) ∈
RN in the following equation:

M ¨̄v(t) + C ˙̄v(t) + F (v̄(t)) = 0,

where, M ∈ RN×N is the mass matrix; C ∈ RN×N is the damping matrix; F (·) is the nonlinear
stiffness vector; {¨̄vi(t)}T = ¨̄v(t) ∈ RN is normalised acceleration; { ˙̄vi(t)}T = ˙̄v(t) ∈ RN is
the velocity; {v̄i(t)}T = v̄(t) ∈ RN is the normalised displacement and N is the total number of
degrees of freedom in the system. If the mass and damping in this system are given as independent
uniform variables mi = m, ci = c, (i = 1, · · · , n), then we obtain the equation for the nodal
variables ¨̄v1(t), ˙̄v1(t), v̄1(t) and this gives for the displacement v̄1(t) for node 1 as follows:

m¨̄v1(t) + c ˙̄v1(t) + (βF1(v̄1) − f) = 0, (41)

dividing each term by m, we obtain the following equation

¨̄v1(t) + c′ ˙̄v1(t) + β′F1(v̄1(t)) = f ′(t), (42)

where c′ = c/m, β′ = β/m and f ′ = f/m (and includes both the primary path and the bifurcation
loads), f ′(t) depends on time as the load control parameter. If the value of the damping parameter
c′ is small, the system response appears as vibration motion analogous to a molecular model.

5 Remarks
This paper clearly shows that there are different bifurcation paths and a primary nonlinear equi-

librium path, based on a theoretical solution approach. And there is a hill-top bifurcation point or
there are multiple bifurcation equilibrium paths through two BPs. This nonlinear phenomena ap-
pears to be folding behaviour that limits the holding supports in a real structure like an umbrella.
In future, we will try to confirm this nonlinear strange behaviour experimentally. If you have any
ideas about how to do this under static and dynamic conditions, please let us know as it can be
collaborative research for academic work.
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