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SUMMARY. A nonlinear homogenization procedure is presented for deriving macroscopic 
mechanical behavior of periodic masonry material. In particular, a Cosserat medium is adopted at 
the macroscopic level, while a classical Cauchy model is used at the microscopic level, where the 
constitutive behavior of bricks and mortar is known in detail. The nonlinear homogenization is 
performed developing a Transformation Field Analysis (TFA). A numerical procedure is 
implemented to solve the evolutive nonlinear homogenization problem based on a prediction-
correction technique. Some numerical applications are performed on the masonry Unit Cell (UC). 

1 INTRODUCTION 
Regular masonry is a composite material made of bricks and mortar characterized by an 

anisotropic nonlinear behavior. Most of the approaches proposed in literature to model the 
complex nonlinear mechanical response of masonry materials may be grouped into three families: 
micromechanical procedures, which model in detail the mechanical behavior of each constituent 
and their geometrical properties, i.e. size and texture; macroscopic models considering masonry 
material as an equivalent homogenized medium characterized by a properly identified 
phenomenological constitutive law; multi-scale approaches, where both the microscopic and 
macroscopic levels are modeled, deriving the constitutive behavior of the homogenized equivalent 
medium by means of an up-scaling procedure. 

Recently, multi-scale approaches have been developed in the field of modeling heterogeneous 
materials and, in particular, they have been satisfactorily employed in the structural analysis of 
periodic masonry [1]. To date most of the proposed multi-scale models are based on the so-called 
first order homogenization technique, making use at both macro- and micro-scale of the classical 
Cauchy continuum. On the other hand, it has been shown that such techniques fail in reproducing 
structural responses characterized by the presence of high deformation gradients, damage 
localization regions and relevant ratio between the macrostructural and microstructural 
characteristic sizes. In order to overcome such drawbacks, enhanced homogenization methods 
have been proposed; they are based on the use of second gradient continuum models [2], as well as 
enriched models, e.g. micropolar Cosserat continuum [3]. 

In this paper a nonlinear homogenization procedure is presented for deriving macroscopic 
mechanical behavior of masonry material. In particular, a Cosserat medium is adopted at the 
macroscopic level, while a classical Cauchy model is employed at the microscopic level, where 



the constitutive behavior of bricks and mortar is known in detail. Then, the constitutive response at 
a macroscopic point of the equivalent medium is evaluated by solving a nonlinear 
micromechanical problem on a Representative Volume Element (RVE), properly selected at the 
microscopic level. To this end a non standard boundary value problem is stated for the RVE, 
where periodic kinematic conditions are assigned at the boundary. In particular, the displacement 
field in the RVE is expressed as the superposition of a prescribed field, depending on the 
macroscopic Cosserat strain components, and a periodic one. As for the prescribed field, a suitable 
kinematic map bridging the macro-Cosserat and the micro-Cauchy scales is formulated for 
rectangular RVE. A linear elastic constitutive law is assumed for bricks, while a coupled damage-
friction cohesive model is used for mortar joints. The nonlinear homogenization is performed 
developing a Transformation Field Analysis (TFA) procedure [4, 5], where the microscopic 
inelastic strain field is decomposed into a finite set of uniform transformation fields. In particular, 
for each mortar joint, a uniform inelastic strain is assumed and, as a consequence, a uniform 
transformation field is considered.  

A numerical procedure is implemented to solve the evolutive nonlinear homogenization 
problem based on a prediction-correction technique. Some numerical applications are performed 
on a RVE, properly selected to represent a commonly used texture for masonry, comparing the 
results obtained with the proposed TFA procedure with the ones carried out by a nonlinear 
micromechanical finite element analysis, and showing the effectiveness of the presented approach. 

2 MICROPOLAR MASONRY MODEL WITH PERIODIC MICROSTRUCTURE 
Heterogeneous masonry material with periodic microstructure can be replaced by an equivalent 

Cosserat homogeneous medium at the macro-level. A 2D Cosserat continuum involves an 
additional rotational kinematical degree of freedom with respect to the classical Cauchy model. In 
fact, the displacement vector contains three independent kinematic fields, representing the 
translations 1U  and 2U  and the rotation Φ , respectively, at each point 1 2( )TX X= ,X  of the body 
volume Ω . In the following the analysis is developed in the framework of small strain and 
displacement assumption. Adopting Voigt’s notation, the deformation field is described by the 
infinitesimal strain vector { }1 2 12 21 1 2

TE E E E K K=E , whose components are defined as:  
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where 1E  and 2E  are the extensional strains, 12E  and 21E  are the non symmetric shear strains, 1K  
and 2K  the micro-curvatures.  

In the following it appears useful to introduce a different description of the macroscopic 
Cosserat shear deformation components, with the aim of easily recognizing the in-plane Cauchy 
deformation components in the vector E . Then, the macroscopic Cosserat strain E  is now 
expressed as:  

 
 { }1 12 12 2

TE E K K= Γ ΘE  (2) 
 

where 12 12 21E EΓ = +  is the classical in-plane Cauchy shear strain and 12 21 2( )E E WΘ = − = −Φ  
is the rotational deformation, representing twice the difference between the rigid rotation W  and 
the Cosserat rotation field Φ , being:  
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The dual quantities in the virtual work sense associated with the deformation components (2) 

are collected in the stress vector Σ , which may be expressed as:  
 

 { }1 12 12 2
TZ M M= Σ Σ ΣΣ  (4) 

 
Hereafter, the analysis is limited to the case of regular periodic masonry. In particular, a 2D 

plane strain analysis is developed. The chosen UC is characterized by rectangular shape with 
dimensions 12a  and 22a , parallel to the coordinate axes 1x  and 2x , as shown in Figure 1a. The 
mortar thickness is denoted by s  and the brick sizes by b  and h .  
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 Figure 1: (a) UC; (b) quarter of UC; (c) half of UC. 

 
The linear elastic stress-strain relationship is adopted for the brick:  
 

 BB = C εσ  (5) 
 

where BC  is the elastic matrix of the masonry brick, { }1 2 12
Tε ε γ= , ,ε  is the strain vector and 

1 2 12

TB B BB σ σ τ⎧ ⎫
⎨ ⎬
⎩ ⎭

= , ,σ  is the stress vector.  
A damage-friction constitutive law for the mortar material is adopted [5]. A local coordinate 

system is introduced in the typical mortar joint, with T  and N  denoting directions parallel and 
orthogonal to the mortar joint, respectively. The stress Mσ  occurring at the typical point of the 
mortar, is obtained as a suitable combination of two stresses, uσ  and dσ , according to the 
formula:  

 
 ( )1M u dD D= − +σ σ σ  (6) 

 
where D  is the damage parameter. The two stress vectors uσ  and dσ  are related to the strain 
vector in the mortar, ε , by the constitutive equations:  
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where pε  is the vector of the inelastic strain due to the possible unilateral opening effect and to 
the friction sliding. Taking into account the constitutive Eqs. (7), Eq. (6) becomes:  
 
 ( )MM = −C ε πσ  (8) 

 
where π  is the vector of the inelastic strain accounting for damage, unilateral contact and friction. 

The evolution of the inelastic slip strain component p
NTγ  is governed by the classical Coulomb 

yield function:   
 
 ( ) d dd

N NTϕ μσ τ= +σ  (9) 
 

where μ  is the friction parameter and d
Nσ  and d

NTτ  are the normal and tangential components of 
dσ . The non-associated flow rule is considered as:  

 

 ( ) ( )0 0 0
d

p NT d d
NT d

NT

τ
λ λ ϕ λ ϕγ
τ

= ≥ ≤ , =σ σ  (10) 

 
where λ  is the inelastic multiplier. A model which accounts for the coupling of mode I and mode 
II of fracture is considered for the evolution of the damage parameter D . The two quantities Nη  
and NTη , which depend on the first cracking strains 0Nε ,  and 0NTγ , , on the peak value of the 
stresses 0Nσ ,  and 0NTτ ,  and on the fracture energies cIG  and cIIG , respectively, are introduced in 
the form:  
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N NT
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The equivalent strain measures NY  and NTY  are defined as ( )2 2

N N NT NTY Yε γ= , = , where 
the bracket operator •  gives the positive part of the quantity • . Then, the strain ratios are 
determined as:  
 

 ( )2 2 2
0 0

11 1N NT
N N NT NT

N NT

Y Y
Y Yη η η β

α ε γ, ,

= − + , = + −  (12) 

 
with 1 2( )N NTY Yα /= + . Finally, the damage is evaluated according to the following law:  
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3 NONLINEAR HOMOGENIZATION TECHNIQUE 
In order to derive the macroscopic behavior of periodic masonry, a compatible nonlinear 

homogenization procedure, based on a proper formulated kinematic map linking the macro- and 
micro-levels, is presented [6]. The heterogeneous masonry UC is subjected to the macroscopic 
Cosserat strain E  applied to the whole UC and to the inelastic strain iπ , with 1i … m= , , , applied 
to each of the m  mortar joints. 

The displacement field for the Cauchy micromechanical medium at the point 1 2( )Tx x= ,x  of 
the UC is expressed in the following representation form:  

 
 ( ) ( )= +u u x u x  (14) 

 
where ( )u x  is the assigned displacement field, depending on the macroscopic deformation E  and 

( )u x  is the periodic field, satisfying periodicity conditions at the UC boundary ([2], [3]). 
Consequently, the compatible strain field for the Cauchy medium results in the form:  
 
 ( ) ( )= +x xε ε ε  (15) 

 
where ε  and ε  are the strain fields compatible with u  and u , respectively. Herein, by 
considering a rectangular cell, the following form of the assigned displacement u  results in 
compact notation:  
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where ( ) ( )2 2 4

1 2 15 / 4a a aα = +  and 2 1/a aρ = . 
It has to be underlined that the Cosserat strain vector E  in Eq. (16) differs from the one 

defined in Eq. (2); in fact, the fourth component is redefined as:  
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In such a way, the Cauchy deformation modes can be activated independently from the 

Cosserat modes. The stress component associated to Θ̂  is denoted with Ẑ . 
The strain vector at the microlevel can be expressed as:  
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where ( )xε  is the periodic strain, satisfying null average condition in Ω . 



The total assigned Cosserat macroscopic strain E  is additively decomposed into an elastic part 
eE  and an inelastic part P , resulting from the presence of the inelastic strains iπ  in the m  mortar 

joints.  
Firstly, the BVP on the UC subjected to eE  is formulated. The micromechanical strain field, 

resulting after numerically solving the BVP, can be written in the following representation form:  
 

 ( )e e=e R x E  (19) 
 

where the localization matrix ( )eR x  allows to evaluate the Cauchy local strain, e, at any point of 
the microscopic medium, corresponding to the application of the Cosserat strain eE . The average 
strain in each mortar joint iM , with 

iMΩ  denoting its volume, results as:  
 

 ( ) ( ) e e
1 1 1 2

ii

i i
i i

MM
eeM M

M M

d d i … m= Ω = Ω = , = , , ,
Ω Ω∫ ∫e x R x E Ee R  (20) 

 
The corresponding homogenized Cosserat stress, eΣ , in the whole UC volume Ω  is obtained 

by applying the generalized Hill-Mandel principle, so that:  
 

 e e= CEΣ  (21) 
 

where C  represents the overall elastic constitutive matrix. Similarly, the average stress in the 
mortar joint iM  may be evaluated as 

i i iM M M M M
e e e= =C e C R Eσ . 

Solving the micromechanical problem of the UC subjected to an inelastic strain iπ , prescribed 
in the mortar joint iM , the resulting local strain field, ip , is expressed in the form:  

 
 ( )i

i i
π

=p R x π  (22) 

 
being ( )iπ

R x  the associated localization matrix, which relates the Cauchy inelastic strain iπ  to 
the Cauchy local strain ip . The elastic strain in the typical mortar joint jM  is obtained as the 
difference between its total deformation 

ji M,p  and the inelastic strain iπ  as:  
 
 ( )j j j

i
i M i M Mi i

ij ijπ
δ δ, ,= − = −p R Iη π π  (23) 

 
where 

ji M,p  and 
j

i
M
π
R  are the restriction to the mortar jM  of the fields ip  and iπ

R , respectively.  
By enforcing the average stress corresponding to the presence of the inelastic strain iπ  equal 

to zero, since it is a self-equilibrated stress state, the macroscopic strain associated with the 
inelastic strain iπ  in the UC is determined as i i i=P Π π , where iΠ  is a linear operator. The 
average stress in the mortar joint jM  is 

jj

i
i MMM

π
,= C ησ , with ( )j j

i
i M M i

ijπ
δ, = − IRη π . 

When the UC is subjected to the overall elastic strain eE  and the inelastic strains iπ , 
1 2i … m= , , , , the superposition of the effects can be performed. In such a way, it is possible to 

compute:  
 
• the total overall strain 11 mm

e= + + +E E π πΠ Π  (24) 
 



• the overall stress  e=Σ Σ  (25) 
 

• the total average strain in the m  mortar joints and in the brick   
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m
M M M M M MM i
e e

i
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= + = −∑ER L L R R Rε π  (26) 

 
• the average stress in the m  mortar joints  

 
 ( ) ( )1 j jj j jM m MM MM M M j, ,= + + + = −C Ce η ησ ε π  (27) 

 
Herein, it is assumed that the inelastic strain is constant in each mortar joint and the nonlinear 

behavior of the UC depends on the average stresses and strains evaluated in each of the m  mortar 
joints.  

4 NUMERICAL RESULTS 
Hereafter, some numerical applications are reported. The number m of mortar joints considered 

in the analysis is set equal to 8 . The geometrical parameters of bricks and mortar are assumed as 
follows: size of the brick 240b =  mm, 120h =  mm; thickness of the mortar joints 10s =  mm. 
Furthermore, the material mechanical parameters for the bricks are: 18000 MPa , 0.15E ν= = ; 
for the mortar: 0 01000 MPa , 0.15 , 0.0005 , 0.001 , 0 00125MPaN NT cIE Gν ε γ, ,= = = = = . , 

0 00217 MPa , 0.5 cIIG μ= . = . 
The validation of the nonlinear numerical homogenization is performed comparing the results 

obtained by the proposed procedure with the ones determined by micromechanical Finite Element 
Analyses (FEA). In particular, four tests are performed, applying to the UC tensile, symmetric 
shear, unsymmetric shear strain and micro-curvature macroscopic loading histories. In particular, 
the last two applications aims to show the performance of the UC when it is subjected to Cosserat 
typical macroscopic strain components. As for the micromechanical analyses, a 2D displacement-
based 4-node finite element is formulated based on the presented damage-friction law for the 
mortar. In order to avoid strain and damage localization in the mortar joints, a nonlocal integral 
model is adopted, based on the integral criterion with the characteristic length 15ρ =  mm.  

Initially, the tensile test is performed on the UC subjected to the following loading history:  
 

 

( ) ( )4 4
1 2 12 1 2

ˆ10 10

0 0 0 0 0 0 0
1 0 4.0 0 0 0 0
2 30.0 4.0 0 0 0 0
3 5.0 4.0 0 0 0 0

t E E K K− − Γ Θ

−
−

− −

 (28) 

 
Due to the double symmetry of the geometrical scheme and to the loading conditions, 

micromechanical FEA is performed by considering only a quarter of the UC under suitable 
boundary conditions (Figure 1b). A regular mesh of 169  elements and 256  nodes is used for the 
computations. In the figures reported in the following the solid curve is referred to the proposed 



procedure results, while the diamond symbols concerns the FEA solution. In Figure 2 the overall 
response curve is plotted in terms of the macroscopic stress component 1Σ  versus the macroscopic 
strain 1E . It can be noted that a very satisfactory agreement is obtained. The mechanical behavior 
of the UC is characterized by an initial linear elastic response, followed by the damaging of the 
head joints (Figure 2 point A) and the subsequent damaging and frictional slip of the bed 
joints(Figure 2 point B). During the unloading and reverse loading paths, an elastic and perfect 
plastic response is observed, followed by the unilateral contact effect of the head joints. It can be 
noted that only in the path DE the TFA analysis is not in perfect agreement with the FEA solution.  

Then, the symmetric shear test is performed considering the following loading history:  
 

 

( ) ( )4 4
1 2 12 1 2

ˆ10 10

0 0 0 0 0 0 0
1 0 3.0 20.0 0 0 0
2 0 3.0 20.0 0 0 0
3 0 3.0 0 0 0 0

t E E K K− − Γ Θ

−
− −
−

 (29) 

 
Due to the symmetry of the geometrical scheme, micromechanical FEA is performed by 

considering only half of the UC (Figure 1c). A regular mesh of 336  elements and 488  nodes is 
used for the FEA. In Figure 3 the macroscopic shear stress component 12Σ  versus the macroscopic 
shear strain 12Γ  is shown. Also in this case, a very good agreement is obtained.  
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Figure 2: Tensile test: comparison of the results 
obtained by micromechanical FEA and by the 
proposed procedure. 

Figure 3: Shear test: comparison of the results 
obtained by micromechanical FEA and by the 
proposed procedure. 

 
After an initial linear elastic response, the nonlinear behavior appears due to the activation of 

both the damaging and plasticity mechanisms in both head and bed joints (Figure 3 point A). After 
that, damage tends to localize into bed joints up to the complete deterioration, while plasticity 
spreads trough the bed joints, where a friction mechanism is activated (Figure 3 points B and C). 
During the subsequent unloading and reloading paths the UC response is characterized by the 
progression of the friction plasticity.  

Afterthat, the response of the UC subjected to the unsymmetric shear component is analyzed 
by applying the loading history shown in Eq. (30a).  

 



( )4
1 2 12 1 2

ˆ 10

0 0 0 0 0 0 0
1 0 0 0 1.0 0 0
2 0 0 0 0 0 0

t E E K K−Γ Θ

  

( )6
1 2 12 1 2

ˆ 10

0 0 0 0 0 0 0
1 0 0 0 0 0 4.0
2 0 0 0 0 0 2.0
3 0 0 0 0 0 10.0
4 0 0 0 0 0 0

t E E K K −Γ Θ

 (30) 

(a)                                                                                          (b) 
 

In this case micromechanical FEA is performed by discretizing all the UC by 650  elements 
and 930  nodes. In Figure 4 the macroscopic unsymmetric shear stress component Ẑ  versus the 
macroscopic unsymmetric shear strain Θ̂  is shown. Note that, in this case, the two curves departs 
a little. Such behavior is clarified by looking at the damage initiation and progression in the mortar 
joints, which appears a little different in the micromechanical analysis with respect to the TFA. 
Such differences in the damage evolution could be expected and mainly related to the simplified 
assumptions on which the TFA procedure is based, i.e. the assumption of uniform distribution of 
the nonlinearities in the mortar joints and the adopted regularization. After the initial linear elastic 
response, damage and plasticity are firstly activated in the upper right and bottom left bed joints 
(Figure 4 point A), then they involve the middle head joints (Figure 4 point B), where damage is 
very severe, finally spreading over all the bed joints (Figure 4 point C). The response of the UC 
during the unloading is linear elastic characterized by the damaged stiffness.  

Finally, the nonlinear behavior of the UC experienced under the application of the micro-
curvature Cosserat component 2K  is investigated by applying the loading history in Eq. (30b). 

The same discretization as in the above example is adopted to perform the micromechanical 
FEA. In Figure 5 the Cosserat macroscopic micro-couple 2M  versus the micro-curvature 2K  is 
reported. It is worthwhile noting that, also in this case, the two curves obtained by the two 
procedures are in good but not in perfect agreement, due to the different damage evolution in the 
mortar joints. The initial elastic response is followed by the initiation of the damage in the two 
right bed joints (Figure 5 point A), which are located in the region of the UC experiencing a tensile 
deformation state. Then, damage spreads over the right middle head joint and grows maintaining 
such mechanism (Figure 5 point B). Indeed, plastic deformations are located mainly in the right 
middle head joint during all the loading process. The unloading branch is linear elastic.  
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Figure 4: Unsymmetric shear test: comparison 
of the results obtained by micromechanical 
FEA and by the proposed procedure. 

Figure 5: Micro-curvature test: comparison of 
the results obtained by micromechanical FEA 
and by the proposed procedure. 



 

5 CONCLUSIONS 
A nonlinear homogenization procedure able to describe the constitutive response of regular 

masonry material has been introduced. In particular, the 2D Cosserat continuum model has been 
adopted for the equivalent medium at the macro-level, while the standard 2D Cauchy continuum 
has been employed at the micro-level.  

The higher order polynomial expansions used for the macro-micro kinematic map has allowed 
to analyze micromechanics deformation modes richer than in the classical first order 
homogenization framework, as also flexural and non symmetric shear modes have been included. 
Developing a TFA procedure, the overall elastic constitutive matrix and the localization tensors 
have been evaluated by linear FEAs of the UC, on the basis of which the nonlinear damage and 
plasticity evolutive problems at the typical point of the macroscopic equivalent medium have been 
solved by a step-by-step analysis. Furthermore, the analysis of the nonlinear micromechanical 
response of the UC has been carried out by means of a nonlinear FEA on the basis of the coupled 
damage-plastic model adopted for mortar joints. The comparison between the numerical results 
obtained by the proposed procedure and the ones evaluated by the nonlinear micromechanical 
FEA has shown a very satisfactory agreement, then validating the assumption of uniformly 
distributed inelastic strains, on which TFA procedure is founded. 

Aim of further developments is to implement the proposed nonlinear homogenization 
technique in a finite element code for uncoupled multiscale analysis. 
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