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SUMMARY. In this paper the analysis of waves saaitg in a fractional-type viscoelastic
material is analyzed. Such a material involveshin constitutive equation, the presence of non-
integer order derivatives of the strain filed yialgl a memory-type behavior of the material model.
The presence of such a term has been also justiHfigebrimentally reporting the relaxation
modulus of polymeric materials, obtained from ekpental test, that are well-fitted by a power-
law of fractional order. Some numerical applicasigaporting the standing-waves condition of an
1D solid varying the fractional differentiation @rdhas also been reported in the paper.

1 INTRODUCTION

Viscoelastic materials have been more and more nseddays for their low-cost productions
as well as for their dissipative capabilities tinady be coupled with others, more performing
materials, to form complex-type engineering elemefhe main feature of viscoelastic behavior
is the relaxation of the stress state and the codefhe strain field that may be experienced,
respectively, in hard or soft test devices. Sudlenpmenological consideration has been
extensively analyzed yet at the beginning of theritfeth century and simple rheological models
representing linear, constitutive, stress-veloadigjations of the studied material have been
proposed. Moreover the rheological relations hagenbalso represented by a linear mechanical
model, represented by a linear, viscous, dashjsttrg the relative speed of its components to the
applied load by a viscous coefficient. Combinatafrthe dashpot, respectively in parallel or in
series with a linear elastic spring correspondsh® Kelvin-Voigt or to the Maxwell model,
respectively.

Large use of linear viscoelastic materials havenbegported in scientific literature and
engineering applications yet at the end of théefifiof the last century [1, 2]. These applications
used the high damping characters of viscoelastitemads to provide passive controls of
engineering systems in the form of bearing suppoadrtificial dampers. The main feature of the
viscoelastic material model provided with the lineaodels, either Kelvin-Voigt and Maxwell
models, is related to the presence of a relaxaitio@ that is characteristic parameter of the model.

Despite their wide diffusion, linear-type viscog¢iasmodels do not match experimental
evidences and suitable modifications of the rheickdgelations have been proposed in scientific
literature as reported by several authors. Sugtrawements of the rheological relations have
been obtained generalizing the Kelvin-Voigt modeithwdifferent combinations of other
mechanical elements, either dashpots or lineanggriln this way the mechanical response is



obtained as combination of the responses of thmuarlements and the presence of multiple
relaxation times is involved.

The generalization of such an approach, with amitef number of Kelvin-Voigt or Maxwell
elements yields a response function obtained aenaotution integral of an exponential-type
function, as representing the kernel, and the patdoad applied to the element.

A different choice of the kernel may, in the forrh @ power-law decay, corresponds to a
Riemann-Liouville fractional derivative of the extal load [3]. Such a model of fractional
viscoelasticity has been introduced, recently, ¢present the rheological behavior of more
complexes viscoelastic media.

The fractional model of viscoelasticity, introducesh mathematical basis, possesses an
equivalent self-similar mathematical structure katta fractal-type mechanical model has been
introduced to represent such a kind of rheologivadiel [4].

In this study axial waves propagation analysis Wil faced in a fractional viscoelastic
continuum in the simple monodimensional case. Sacproblem is ruled by a fractional
differential equation of second-order in the axd@placement function whose solution will be
performed by Fourier transform for stationary, giag-waves analysis in unbounded domain,
whereas in bounded domains, standing waves anad§isibe conducted resorting to a suitable,
spatial projection of the displacement functiond aubsequent analysis of the time-dependent
fractional differential equation.

Some numerical analysis will be reported also mledito include the effect of fractional
viscoelasticity in the context of waves propagation

2 REMARKS ON FRACTIONAL CALCULUS

In this section we give some details on fractiaretulus and we consider functions defined in
a finite interval. Given a Lebesgue measurable tiancw(x) on the closed intervqh,b] ,
briefly w(x)O LeR([ a,B) it is possible to define the left-handed RL fracél derivative,
(Dw)(X) with y (I, given by:
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and the right-handed RL fractional derivatiw(é?g’_w)(x) in the form:

, _ (1) d pow(@)dt_ d ., @)
(P02 el ey =l

with 0< y<1 and the latter terms in eqgs. (1, 2) are the sleddRL fractional integrals that
reads:

def X W Wi (3a,b)
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Useful representations of Egs.(1, 2) are:
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as reported in [3]. In order to extend the defamtof fractional derivative of order greater than 1
first, we recall a standard notation, indicatingh/\[iy] the integer part of a real number and with
{1} the fractional part, that ig’=[y]+{)} . Then, for every positive real numbgr the
Riemann—Liouville fractional derivatives are defires:
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where n=[y]+1. Comparing the definitions, it follows that theadtional derivatives and
fractional integrals are related by the simpletietes:
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The presence of the derivatives of orden the fractional derivatives definitions involvesore
strict conditions to the existence of the fractiosherivative. A sufficient condition is the functio
having continuous derivatives up to the orfie}—1.
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for O<y<1lor, for y>0,itis expressed as:
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On the real axis the Eq.(8) can be written in moo@venient form, working out a little on
definition and those considerations, together witter useful properties and definitions may be
found in basic books on fractional calculus.

Another useful definition of fractional derivativesften used in a context of viscoelasticity and
hereditary materials is represented by the Capuwtr'sion of fractional derivatives, that reads:
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That coincides with the Riemann-Liouville and Maxad fractional derivative in presence of
unbounded domains & — —o . An useful property of the fractional different@berators defined
in egs.(7-9) are represented by the Fourier andbtegransforms, denoted respectlve‘];[ ] and
O[¢] as:
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The basic equations of the 1D linear elastodynamiggesence of fractional damping will be
outlined in sec.3 whereas the origin of the frawiomodel of linear viscoelasticity based upon
experimental set ups will be reported in the nextisn.

3 THE FRACTIONAL MODEL OF LINEAR VISCOELASTICITY

As afore mentioned in the introduction, all typenaditerial behaviour are usually schematized
starting from spring and dashpot and then genénglia several of both in parallel or in series. In
any case from the simplest to the generalized time,analytical formulation or briefly the
constitutive law is governed by derivatives of thgement of order zero, one or of integer n. This
differential equation also finds an integral repraation that is the Duhamell integral response to
a mathematical impulse having an exponential tiancas kernel. This schematization is also
wide used dealing with viscoelastic materials dsben, polymers, concrete, bitumen and etc.,
however the experimental data, pertaining thesecoeisstic materials, lead to different
considerations as above. For instance in fig.(it &) depicted a relaxation test of a rubber with
density 180 (Kg/m3). From a sharp observation & fily.(1a) it is apparent that, experimental
results are best fitted by a power law and not fgx¢ponential function. These results show just
one test done in the lab of university of Palerpertaining a wide campaign of tests to capture the
viscoelastic behaviour of rubber with differentu@lof density. Here it has been chosen just one
because all tests show the same behaviour: thdibisstbtained by a decay power law. Of course
the order parameter of this function was changesj by test, depending on the density of the
rubber. But it has to be stressed that all of tiigsameters had a common feature: they were not



integer numbers but a number between zero andfanmstance the power law of the relaxation
modulus depicted in fig..(1 b) has been obtaingti walues:

E(t)=at”, wherea= 10,64010N¢/ crh and= 0,02888 cff (11)
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Figure 1: Static set-up on viscoleastic rubbeCaitinuous line experimental, dashed-line
exponential best fit, b) Continuous line experinagrdashed fractional-power law best fit

as already observed in other pioneeristic studs¢slf order to find the Duhamell integral we
have to get the creep compliance functibft) starting fromE(t) . This may be easily done by
considering that creep compliance and relaxatiordutus must obey to the relationship
E(9 J(9= & whereE(s) and J(s) are the Laplace transform &(t) and J(t) respectively. The
Laplace transform ofE(t) is readily foundE(s)= a$™I(1- ). It follows that after some
straightforward manipulations, the creep compliagfiucetion reads:

7 (12)
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and the impulse response functidlﬁt) is then provided in the form:
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By denoting asc, = I'(8)(2-8)/ar (1~ 8)I (3-8) eq.(13) is then written as:
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involving an RL fractional integral of the time-yamg stress. Such a relation will be used in the



next section to study the wave propagation in eok&astic material.

4 1D WAVES PROPAGATION IN FRACTIONAL VISCOELASTIC MAERIAL

In this section the 1D formulation of waves anadyisi a fractional viscoelastic continuum will
be reported for longitudinal (P) waves propagatioan 1D solid. To this aim let us consider the
1D solid reported in fig.(2a) of lengthand referred to a coordinate system positive wighdl. Let
us assume, for shortness, that the solid is honsmyenwith uniform cross-sectignand uniform
mass-densityo(x) =5 .
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Figure 2: a) 1D model of viscoelastic bar; b) Edpuitm of 1D volume element

The elastodynamics of the solid is ruled, stramgtwardly, by the axial equilibrium equation
of the discrete volume element of the body, = AAx with Ax=L/m andm is the number of
elements considered to discretize the solid regantéig.(2b) that reads:

AAa(xj,t)=—q(>§,t)AxA (15)

where a(xj,t) is the axial stress at abscisga=(j-1)Ax (j=1,2,..m), q(xj,t is the
volume force applied at elemeAV and AO’(XJ-,'S:J(X]- t)-o ,1,t). The body force field
named(q X; , t)includes both the external force field, na dxj ,'3

forces as:

as well as the inertial body

0%u(x,t
a(x.9)= b(w)-ﬁ—ua(t? ) (16)

in which we denotedj(xj,t) the axial displacement of the volume at abscissat time t.

Introducing Eq.(15) into EQ.(16) and lettingx — O the following differential equation is
obtained:

0o _0°u _
o Pz = b(xy (17)

The field equation of the linear elastodynamicehtained as we introduce a relation between the
stress field and the axial strain to be includeedn(16). Thus, the rheological behavior of the
material must be included in such stress-strairditimm and it will be assumed as in eq.(14) to
model the viscous behavior of the material. Aftems straightforward manipulations, by using
the composition rules of fractional calculus [3§ ttonstitutive, rheological conditions between the



stress and the strain is assumed in the form:
o(xt)=Ee(x 1)+ En(cDgs)(xt) ; 0a<] (18)

where(CD;S)(x,t) is the Caputo fractional derivative of ord@r with respect to time, that
coincide with the RL derivative for vanishing imiticonditions, of the strain fiela‘(x,t) and
[Ea] =[:I/ca] = FT‘H/ [? is an anomalous force coefficient. Introducing(®4) into eq.(13) and
accounting for the kinematic restraiax,t) =du( x t)/d x, the governing equation of the
displacement fieldu( , t) reads:

_d%u(xt 2 , 0%u( % t (19)
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Representing the governing equation of the lindarefastodynamics of a fractional viscoelastic
continuum. Eq.(19) must be supplemented by theaekeinitial and boundary conditions as::

a(x)=o(y 20 vy @203,y
u(0t)=uw(t) ; u(LH=y(Y (21 a, b)

with Egs.(21 a, b) representing the kinematic (&= boundary conditions to be replaced,
eventually, with the mechanical (natural) boundaogditions that reads:
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Waves analysis will be limited in this paper toastg-state motion so that the dynamic equilibrium
equation reported in eq.(22) may be assumed ifotine

: (23)

u(xt)=2.4,(x) % (9

=1

where ¢, (x) are the standing wave shapes of the undamped ($Ji¢: 0) and y, (t) are time-
amplitude, unknown functions that are providedadtrcing Eq.(22) into Eq.(19) and projecting
the resulting expression over the complete spaaargsl by the function set (x) (k=1,2,..)
yielding:



5 805, (0, (a3 £y (o (370 .
-;EH(CDS yj)(t)Icﬁk(x)dzj;Z X gye —j;¢k(y; { x) dx

Accounting for the orthogonality conditions betwdba eigenfunctions that read:

L L d2 )
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where J;, is the Kronecker deltaf = kci=k} Eo/p is the circular frequency associated to the
eigenfunctiong, (x) and «, is the wavenumber associated to #th standing wavep, (x),
Eq.(20) may be written in the form:

d?y, (t
dt’
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with CZ = E,/p and the load functiomy, (t) is provided by the right-hand side of Eq.(24). The
associated initial conditions are reported in H.42 since the essential boundary conditions are
accounted for in the shape functions and the nlatotandary conditions in the external load field.
In the following the differential equation provj the time-amplitude functiofy, (t) (Eq.26)

will be solved in Laplace domain yielding, accoagtifor Eq.(11 b), the following relation
between the Laplace transform of the amplitude tfancy, (s) and the Laplace transform of the
load as:

- —-_ @k(p) . k=12
(o p*+ e - G2 (B)° ez @)

The effect of the fractional viscoelasticity may Highlighted from the observation of the steady-
state response of a clamped-free 1D solid with baraally time-varying axial force at the free
end (x=L) modeled a(x t)=bd(x- Usin(Q1) with b is the amplitude and(+) is the
Dirac’s delta. In this context the amplitude fupas Yy, (s) obtained from eq.(23) yields, after
straightforward manipulations:

_ba (L) o 1 (k=12 (28)
o e T A

so that the vibrating response of the bar, in theding waves case, is obtained as the inverse
Laplace transform of each of the Laplace componagesgsribed in eq.(28) as:
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with the integration carried out in the compfeplane along an Henkel contour of real abscigsa
The effect of the fractional differentiation orden the steady-state waves condition may be
observed from figs.(3 a, b) reporting the vibrati@sponse of the column obtained from the
standing waves analysis outlined above &o= 0.3 (fig. 3a) and fora =0.5(fig. 3b) . The
numerical tests have been conducted for an 1D ptisnbar with geometrical parameters
A=1cnf ; L=100cr whereas the mechanical characteristic used forntimerical analysis
have been selected & =5000 Kg/cnf ;E =10 Kg &/ ch p= 4.0 10 Kg cf.
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Figure 3 a,b: Standing-waves under harmonic tinrging force
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Figure 4 a: Standing-waves under time-window fdozea = 0.3

The observation of fig.(3 a,b) shows that as thetional differentiationr decreases toward zero,
then the material behavior tends to be more anceratastic with less dissipation characteristic
whereas agr increases the dissipation characters are morepnmed. This may be observed by
the fact that the bar initial conditions are maima longer in the system prior the steady-state



condition. Such a consideration is more and mordeet observing the behavior of the material
under a windows force for different values of thecfional exponent as reported in figs.(4 a, b).

5 CONCLUSIONS

In this paper the basic equations of the elastaatjesin a fractional viscoelastic material have
been outlined and numerical analysis has been ctediwnder standing-waves condition. The
considered problem is concerned with an 1D domaid tne constitutive equations of the
viscoelastic material have been assumed in ternfsaofional-order Caputo derivatives instead
than the well-known Kelvin-Voigt model of materidhmping Such a choice has been justified
from experimental tests conducted on polymeric maethat yields the relaxation modulus well-
described by a power-law function of the time wvilte exponent of the decay that is not an integer
power. The fractional power is the equivalent, e t_aplace domain to an impulse response
function of the material, involved in the Duhamedeigral of the response, that is described by a
power-law kernel yielding the governing equatiomshie form of fractional differential equations.
The numerical analysis conducted in the paper hawrs that varying the fractional differential
exponent the response of the material to appliedefomay be very different and it must be

calibrated after accurate experimental set ups.
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Figure 4 b: Standing-waves under time-window fdorea = 0.5
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