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SUMMARY. In this paper the analysis of waves scattering in a fractional-type viscoelastic 
material is analyzed. Such a material involves, in the constitutive equation,  the presence of non-
integer order derivatives of the strain filed yielding  a memory-type behavior of the material model. 
The presence of such a term has been also justified experimentally reporting the relaxation 
modulus of  polymeric materials, obtained from experimental test, that are well-fitted by a power-
law of fractional order. Some numerical applications reporting the standing-waves condition of an 
1D solid varying the fractional differentiation order has also been reported in the paper.  
 

1 INTRODUCTION 

Viscoelastic materials have been more and more used nowadays for their low-cost productions 
as well as for their dissipative capabilities that may be coupled with others, more performing 
materials, to form complex-type engineering elements. The main feature of viscoelastic behavior 
is the relaxation of the stress state and the creep of the strain field that may be experienced, 
respectively, in hard or soft test devices.  Such phenomenological consideration has been 
extensively analyzed yet at the beginning of the twentieth century and simple rheological models 
representing linear, constitutive, stress-velocity relations of the studied material have been 
proposed. Moreover the rheological relations have been also represented by a linear mechanical 
model, represented by a linear, viscous, dashpot relating the relative speed of its components to the 
applied load by a viscous coefficient. Combination of the dashpot, respectively in parallel or in 
series with a linear elastic spring corresponds to the Kelvin-Voigt or to the Maxwell model, 
respectively.  

Large use of linear viscoelastic materials have been reported in scientific literature and 
engineering applications yet at the end of the fifties of the last century [1, 2]. These applications 
used the high damping characters of viscoelastic materials to provide passive controls of 
engineering systems in the form of bearing support or artificial dampers. The main feature of the 
viscoelastic material model provided with the linear models, either Kelvin-Voigt and Maxwell 
models, is related to the presence of a relaxation time that is characteristic parameter of the model.  

Despite their wide diffusion, linear-type viscoelastic models do not match experimental 
evidences and suitable modifications of the rheological relations have been proposed in scientific 
literature as reported  by several authors. Such improvements of the rheological relations have 
been obtained generalizing the Kelvin-Voigt model with different combinations of other 
mechanical elements, either dashpots or linear springs. In this way the mechanical response is 



obtained as combination of the responses of the various elements and the presence of multiple 
relaxation times is involved.  

The generalization of such an approach, with an infinite number of Kelvin-Voigt or Maxwell 
elements yields a response function obtained as a convolution integral of an exponential-type 
function, as representing the kernel, and the external load applied to the element. 

A different choice of the kernel may, in the form of a power-law decay, corresponds to a 
Riemann-Liouville fractional derivative of the external load [3]. Such a model of fractional 
viscoelasticity has been introduced, recently, to represent the rheological behavior of more 
complexes viscoelastic media.  

The fractional model of viscoelasticity, introduced on mathematical basis, possesses an 
equivalent self-similar mathematical structure so that a fractal-type mechanical model has been 
introduced to represent such a kind of rheological model [4]. 

In this study axial waves propagation analysis will be faced in a fractional viscoelastic 
continuum in the simple monodimensional case. Such a problem is ruled by a fractional 
differential equation of second-order in the axial displacement function whose solution will be 
performed by Fourier transform for stationary, standing-waves analysis in unbounded  domain, 
whereas in bounded domains, standing waves analysis will be conducted resorting to a suitable, 
spatial projection of the displacement function, and subsequent analysis of the time-dependent 
fractional differential equation. 

Some numerical analysis will be reported also provided to include the effect of fractional 
viscoelasticity in the context of waves propagation. 

 

2 REMARKS ON FRACTIONAL CALCULUS 

In this section we give some details on fractional calculus and we consider functions defined in 
a finite interval. Given a Lebesgue measurable function ( )w x  on the closed interval[ ],a b , 
briefly ( ) [ ]( )1w x Leb a,b∈  it is possible to define the left–handed RL fractional derivative, 
( )( )a w xγ

+D withγ ∈ℜ , given by:  
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and the right–handed RL fractional derivative, ( )( )b w xγ

−D  in the form: 
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with 0 1γ< <  and the latter terms in eqs. (1, 2) are the so-called RL fractional integrals that 
reads: 
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Useful representations of Eqs.(1, 2) are: 
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as reported in [3]. In order to extend the definition of fractional derivative of order greater than 1, 
first, we recall a standard notation, indicating with [ ]γ  the integer part of a real number and with 
{ }γ  the fractional part, that is [ ] { }γ γ γ= + . Then, for every positive real number γ  the 
Riemann–Liouville fractional derivatives are defined as: 
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where [ ] 1n γ= + . Comparing the definitions, it follows that the fractional derivatives and 
fractional integrals are related by the simple relations: 
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The presence of the derivatives of order n in the fractional derivatives definitions involves more 
strict conditions to the existence of the fractional derivative. A sufficient condition is the function 
having continuous derivatives up to the order [ ] 1α − .  
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for 0 1γ< <  or, for 0γ > , it is expressed as: 
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On the real axis the Eq.(8) can be written in more convenient form, working out a little on 
definition and those considerations, together with other useful properties and definitions may be 
found in basic books on fractional calculus.  
Another useful definition of fractional derivatives, often used in a context of viscoelasticity and 
hereditary materials is represented by the Caputo’s version of fractional derivatives, that reads: 
 

( ) ( ) ( )
( ) ( )

( ) 1

1
   ;   1

x n

C a n
a

f
f x d n n

n x

γ
α
ξ

ξ α
α ξ + −= − ≤ ≤

Γ − −∫D

 

 
(9) 

 
That coincides with the Riemann-Liouville and Marchaud fractional derivative in presence of 
unbounded domains as a → −∞ . An useful property of the fractional differential operators defined 
in eqs.(7-9) are represented by the Fourier and Laplace transforms, denoted respectively, [ ]ℑ •  and 

[ ]℘ • as:   
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The basic equations of the 1D linear elastodynamics in presence of fractional damping will be 

outlined in sec.3 whereas the origin of the fractional model of linear viscoelasticity based upon 
experimental set ups will be reported in the next section.  

 

3 THE FRACTIONAL MODEL OF LINEAR VISCOELASTICITY 

As afore mentioned in the introduction, all type of material behaviour are usually schematized 
starting from spring and dashpot and then generalizing a several of both in parallel or in series. In 
any case from the simplest to the generalized one, the analytical formulation or briefly the 
constitutive law is governed by derivatives of displacement of order zero, one or of integer n. This 
differential equation also finds an integral representation that is the Duhamell integral response to 
a mathematical  impulse  having an exponential function as kernel. This schematization is also 
wide used dealing with viscoelastic materials as rubber, polymers, concrete, bitumen and etc., 
however the experimental data, pertaining these viscoelastic materials, lead to different 
considerations as above. For instance in fig.(1 a) it is depicted a relaxation test of a rubber with 
density 180 (Kg/m3). From a sharp observation of this fig.(1a)  it is apparent that, experimental 
results are best fitted by a power law and not by an exponential function. These results show just 
one test done in the lab of university of Palermo, pertaining a wide campaign of tests to capture the 
viscoelastic behaviour of rubber with different value of density. Here it has been chosen just one 
because all tests show the same behaviour: the best fit is obtained by a decay power law. Of course 
the order parameter of this function was changing test by test, depending on the density of the 
rubber. But it has to be stressed that all of these parameters had a common feature: they were not 



integer numbers but a number between zero and one, for instance the power law of the relaxation 
modulus depicted in fig..(1 b) has been obtained with values: 
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Figure 1: Static set-up on viscoleastic rubber: a) Continuous line experimental, dashed-line 
exponential best fit, b) Continuous line experimental, dashed fractional-power law best fit 

  
as already observed in other pioneeristic studies [5]. In order to find the Duhamell integral we 
have to get the creep compliance function ( )J t  starting from ( )E t . This may be easily done by 
considering that creep compliance and relaxation modulus must obey to the relationship 

2( ) ( )E s J s s−=   where ( )E s and ( )J s are the Laplace transform of ( )E t and ( )J t respectively. The 
Laplace transform of ( )E t is readily found ( )1( ) 1E s a sβ β−= Γ − . It follows that after some 
straightforward manipulations, the creep compliance function reads:     
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and the impulse response function ( )J t&  is then provided in the form: 
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By denoting as ( )( ) ( ) ( )2 1 3c aβ β β β β= Γ − Γ − Γ −   eq.(13)  is then written as: 

 

( )
( )

( )
( ) ( )1 0

0

( )
tc

t d c I t
t

β β
ββ

σ τ
ε τ σ

β τ
+−= =

Γ −∫  
  (14) 

 
involving an RL fractional integral of the time-varying stress. Such a relation will be used in the 

Experimental 
Exponential 

Experimental 
Fractional 

t(s) t(s) 

E(t)A E(t)A 



next section to study the wave propagation in a viscolelastic material. 

4 1D WAVES PROPAGATION IN FRACTIONAL VISCOELASTIC  MATERIAL  

In this section the 1D formulation of waves analysis in a fractional viscoelastic continuum will 
be reported for longitudinal (P) waves propagation in an 1D solid. To this aim let us consider the 
1D solid reported in fig.(2a) of length L and referred to a coordinate system positive rightward. Let 
us assume, for shortness, that the solid is homogeneous with uniform cross-section A and uniform 
mass-density ( )xρ ρ= .  

 
 

 
 
 
 
 

 
Figure 2: a) 1D model of viscoelastic bar; b) Equilibrium of 1D volume element  

 
The elastodynamics of the solid is ruled, straightforwardly, by the axial equilibrium equation 

of the discrete volume element of the body, V A x∆ = ∆  with x L m∆ =  and m is the number of 
elements considered to discretize the solid reported in fig.(2b) that reads: 

 

( ) ( ), ,j jA x t q x t xAσ∆ = − ∆  (15) 

 
where ( ),jx tσ  is the axial stress at abscissa ( ) ( )1    1,2,...,jx j x j m= − ∆ = , ( ),jq x t  is the 
volume force applied at element V∆ and ( ) ( ) ( )1, , ,j j jx t x t x tσ σ σ −∆ = − . The body force field 
named ( ),jq x t includes both the external force field, named ( ),jb x t  as well as the inertial body 
forces as: 
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in which we denoted ( ),ju x t  the axial displacement of the volume at abscissa jx at time t. 

Introducing Eq.(15) into Eq.(16) and letting 0x∆ →  the following differential equation is 
obtained: 
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The field equation of the linear elastodynamics is obtained as we introduce a relation between the 
stress field and the axial strain to be included in eq.(16). Thus, the rheological behavior of the 
material must be included in such stress-strain condition and it will be assumed as in eq.(14) to 
model the viscous behavior of the material. After some straightforward manipulations, by using 
the composition rules of fractional calculus [3] the constitutive, rheological conditions between the 
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stress and the strain is assumed in the form: 
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where ( )( )0

,C x tα ε+D  is the Caputo fractional derivative of order α  with respect to time, that 
coincide with the RL derivative for vanishing initial conditions, of the strain field ( ),x tε  and 
[ ] [ ] 1 21E c FT Lα

α α
−= =  is an anomalous force coefficient. Introducing eq.(14) into eq.(13) and 

accounting for the kinematic restraint ( ) ( ), ,x t u x t xε = ∂ ∂ , the governing equation of the 
displacement field ( ),u x t  reads: 
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Representing the governing equation of the linear 1D elastodynamics of a fractional viscoelastic 
continuum. Eq.(19) must be supplemented by the relevant initial and boundary conditions  as:: 
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with Eqs.(21 a, b) representing the kinematic (essential) boundary conditions to be replaced, 
eventually, with the mechanical (natural) boundary conditions that reads: 
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Waves analysis will be limited in this paper to steady-state motion so that the dynamic equilibrium 
equation reported in eq.(22) may be assumed  in the form: 
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where ( )j xϕ  are the standing wave shapes of the undamped solid ( )0Eα =  and ( )jy t  are time-
amplitude, unknown functions that are provided introducing Eq.(22) into Eq.(19) and projecting 
the resulting expression over the complete space spanned by the function set ( ) ( ) 1,2,...k x kϕ =  
yielding: 
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Accounting for the orthogonality conditions between the eigenfunctions that read: 
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where jkδ  is the Kronecker delta 2 2 2 2

0 0=  k k kc Eω κ κ ρ=  is the circular frequency associated to the 
eigenfunction ( )k xϕ  and kκ  is the wavenumber associated to the k-th standing wave ( )k xϕ , 
Eq.(20) may be written in the form: 
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with 2C Eα α ρ=  and the load function ( )kg t is provided by the right-hand side of Eq.(24). The 
associated initial conditions are reported in Eq.(20 a) since the essential boundary conditions are 
accounted for in the shape functions and the natural boundary conditions in the external load field. 
In the following the  differential equation providing the time-amplitude function ( )ky t  (Eq.26) 
will be solved in Laplace domain yielding, accounting for Eq.(11 b), the following relation 
between the Laplace transform of the amplitude function ( )ˆky s  and the Laplace transform of the 
load as: 
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The effect of the fractional viscoelasticity may be highlighted from the observation of the steady-
state response of a clamped-free 1D solid with harmonically time-varying axial force at the free 
end  ( )x L=  modeled as ( ) ( ) ( ), sinb x t b x L tδ= − Ω  with b  is the amplitude and ( )δ •  is the 
Dirac’s delta. In this context the amplitude functions  ( )ˆky s  obtained from eq.(23) yields, after 
straightforward manipulations: 
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so that the vibrating response of the bar, in the standing waves case, is obtained as the inverse 
Laplace transform of each of the Laplace components described in eq.(28) as: 
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with the integration carried out in the complex p-plane along an Henkel contour of real abscissa γ . 
The effect of the fractional differentiation order on the steady-state waves condition may be 
observed from figs.(3 a, b) reporting the vibration response of the column obtained from the 
standing waves analysis outlined above for 0.3α =  (fig. 3a) and for 0.5α = (fig. 3b) . The 
numerical tests have been conducted for an 1D prismatic bar with geometrical parameters   

21  ; 100 A cm L cm= =  whereas the mechanical characteristic used for the numerical analysis 
have been selected as 2 2 3 3

0 5000  ; 10  ; 4.0 10  E Kg cm E Kg s cm Kg cmα
α ρ −= = = . 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 a,b: Standing-waves under harmonic time-varying force  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4 a: Standing-waves under time-window force for 0.3α =  
 
The observation of fig.(3 a,b) shows that as the fractional differentiation α decreases toward zero, 
then the material behavior tends to be more and more elastic with less dissipation characteristic 
whereas as α  increases the dissipation characters are more pronounced. This may be observed by 
the fact that the bar initial conditions are maintained longer in the system prior the steady-state 



condition. Such a consideration is more and more evident observing the behavior of the material 
under a windows force for different values of the fractional exponent  as reported in figs.(4 a, b).  

5 CONCLUSIONS 

In this paper the basic equations of the elastodynamics in a fractional viscoelastic material have 
been outlined and numerical analysis has been conducted under standing-waves condition. The 
considered problem is concerned with an 1D domain and the constitutive equations of the  
viscoelastic material have been assumed in terms of fractional-order Caputo derivatives instead 
than the well-known Kelvin-Voigt  model of material damping  Such a choice has been justified 
from experimental tests conducted on polymeric materials that yields the relaxation modulus well-
described by a power-law function of the time with the exponent of the decay that is not an integer 
power. The fractional power is the equivalent, in the Laplace domain to an impulse response 
function of the material, involved in the Duhamel integral of the response, that is described by a 
power-law kernel yielding the governing equations in the form of fractional differential equations. 
The numerical analysis conducted in the paper has shown that varying the fractional differential 
exponent the response of the material to applied forces may be very different and it must be 
calibrated after accurate experimental set ups.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 b: Standing-waves under time-window force for 0.5α =  
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