
Shell-like inclusions with high rigidity: an asymptotic approach

Michele Serpilli1; Anne-Laure Bessoud2, Françoise Krasucki31 Dipartimento di architettura, costruzioni e strutture, Università Politecnica delle Marche, Italy
E-mail: serpilli@univpm.it2 IMATI - CNR, Pavia, Italy
E-mail: AnneLaure.Bessoud@imati.cnr.it3 Institut de mathématiques et de modélisation de Montpellier, Université Montpellier II, France
E-mail: krasucki@math.univ-montp2.fr

Keywords: Asymptotic analysis, inclusions, shell models.

SUMMARY. We study the problem of an elastic shell-like inclusion with high rigidity in a three-
dimensional domain by means of the asymptotic expansion method. The analysis is carried out
in a general framework of curvilinear coordinates. After defining a small real parameter", we
characterize the limit problems when the rigidity of the inclusion has order of magnitude1" and 1"3
with respect to the rigidities of the surrounding bodies. Moreover, we prove strong convergence
of the solution of the initial three-dimensional problem towards the solution of the simplified limit
problem.

1 INTRODUCTION
After the pioneering works of Pham Huy-Sanchez [1], Brezis et al. [2] and Caillerie [3], the thin

inclusion of a third material between two other ones when therigidity properties of the inclusion
are highly contrasted with respect to those of the surrounding material has been deeply investigated.
More recently, Chapelle-Ferent [4], in order to justify some methods used in the FEM approximation,
have studied the asymptotic behavior of a shell-like inclusion of 1"p -rigidity (p = 1 or p = 3) in a
three-dimensional domain. In a slightly different geometrical and mechanical context, Bessoud et al.
[5] have studied the behavior of a"-thin three-dimensional layer of1" -rigidity. More precisely, they
assume that the thin layer can be written as!�℄ � "; "[ where! is a projectable two-dimensional
surface, and that all the materials are linearly elastic anisotropic. Then the limit problem is a Ventcel-
type transmission problem between two three-dimensional linearly elastic anisotropic bodies. When! is planar and in the isotropic case, the associated surface energy term can be interpreted as the
membranal energy of a Kirchhoff-Love plate.

Here we study the situation where the shell-like thin layer is obtained by the translation along the
normal direction of a general two-dimensional surface. Using a system of curvilinear coordinates
we deduce the formal limit problem for the two casesp = 1 andp = 3. In this way we obtain the
same limit problems as in [4], also if the kinematical assumptions for the physical problem are not
the same. Indeed in [4] the authors a priori assume a shell-like energy in the thin layer. As in [4] one
must stress that the well-posedness of the limit problems isessentially linked to the well-posedness
of the shell models [6, 7]. Afterwards we prove some results of strong convergence in a specific
functional framework.
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2 GEOMETRICAL PRELIMINARIES
2.1 Three-dimensional curvilinear coordinates
This section is aimed at laying down an appropriate ground for the rest of the article. In the se-

quel, Greek indices range in the setf1; 2g, Latin indices range in the setf1; 2; 3g, and the summation
convention with respect to the repeated indices is adopted.

Let us consider a three-dimensional Euclidian space identified byR3 and such that the three
vectorsei form an orthonormal basis. Let
 be a non-empty open subset ofR3 . A mapping� 2C3(
;R3 ) is an immersion if the three vectors�i�(x) are linearly independent for allx = (xi) 2 
.
The imageb
 := �(
) is always an open set immersed inR3 . The three coordinatesxi of a pointx 2 
 represent the curvilinear coordinates of the pointbx = �(x) 2 b
, while the three coordinatesbxi of the pointbx 2 b
 are the Cartesian coordinates.

The three vectorsgi(x) := �i�(x) form the covariant basis atbx = �(x) and the three vec-
torsgj(x), defined by the nine independent relationsgi(x) � gj(x) = Æji for all x 2 
; form the
contravariant basis atbx.

The immersion� induces a Riemannian metric on
, defined respectively by its covariant com-
ponentsgij(x) := gi(x) � gj(x); and contravariant componentsgk`(x) := gk(x) � g`(x): The
contravariant components of this metric can be analogouslydefined by(gk`(x)) = (gij(x))�1 for
all x 2 
.

This metric induces a Levi-Civita connection in the manifold 
 defined by the Christoffel sym-
bols of the second kind�pij := gp � �igj = �pji:

Let there be given a vector field defined over�(
). We can rewrite this vector field as a linear
combinationv = vigi of the vector fieldsgi : 
 ! R3 , wherevi = v � gi are the covariant
components of the vector fieldv. The covariant derivativesvikj of the covariant componentsvi are
defined byvikj := �jvi � �pijvp: The covariant derivativesT ijkk of the second-order tensor field

with contravariant componentsT ij are defined byT ijkk := �kT ij + �ìjT `k + �j̀kT `i:
With every displacement fieldv, we associate the linearized change of metric tensor definedas

follows: eij(v) := 12(vikj + vjki):
2.2 Curvilinear coordinates on a surface
Let ! be a non-empty open subset inR2 . The coordinates ofex 2 ! are denoted byx�. A

mapping� 2 C3(!;R3 ) is an immersion if the two vectors���(ex) are linearly independent at
each pointex = (x�) 2 !. The imageS := �(!) is a surface immersed inR3 , equipped withx�
curvilinear coordinates.

The two vectorsa�(ex) := ���(ex) form the covariant basis of the tangent plane to the surfaceS at�(ex), and the two vectorsa�(ex) defined by the relationsa�(ex) �a�(ex) = Æ��; form the contravariant
basis of the tangent plane to the surfaceS at�(ex). The unit normal vector toS at�(ex) is defined bya3(ex) = a3(ex) := a1(ex)^a2(ex)ja1(ex)^a2(ex)j :

The covariant components of the first fundamental form of thesurface are defined bya��(ex) :=a�(ex) � a�(ex); and its contravariant components are defined bya��(ex) := a�(ex) � a�(ex):
The covariant components of the second fundamental form of the surface are defined byb��(ex) :=��a�(ex) � a3(ex); and its mixed components are defined byb��(ex) := a��(ex)b��(ex):
The Christoffel symbols on the surfaceS of the second kind are given by���� := a� � ��a� :
Any vector field on a surface can be written as a linear combination� = �iai of the vector fieldai : ! ! R3 , where the functions�i = � �ai are the covariant components of the vector field�. The
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covariant derivatives��j� of the covariant components�� are defined by��j� := ���� � ������ :
The covariant derivativesT��j� of the second-order tensor field with contravariant componentsT��
are defined byT�� j� := ��T�� +����T �� +����n�� : For more details about differential geometry
of surfaces, see [6].

With every displacement field�, we associate the linearized change of metric tensor field defined
by ��(�) := 12(��j� + ��j�)� b���3;
and the linearized change of curvature tensor field, defined by���(�) = �3j�� � b��b���3 + b����j� + b���� j� + (��b�� � ����b�� + ����b��)�� :
The symmetric tensor fields(��) and(���) play a key role in the theory of linearly elastic shells
(see, e.g., P.G. Ciarlet [6]).

3 POSITION OF THE PROBLEM
Let 
+ and
� be two disjoint open domains with smooth boundaries�
+ and�
�. Let! := f�
+ \ �
�gÆ be the interior of the common part of the boundaries which is assumed to be

a non empty domain inR2 having a positive two-dimensional measure and let� 2 C2(!;R3 ) be an
immersion.

Let 0 < " < 1 be an adimensionalsmall real parameter. Let us consider
m;" := !�℄ � "; "[
andS�;" := !�f�"g. Letx" denote the generic point in the set
m;"

with x"� = x�. We consider
ashell-likedomain with middle surface�(!) and thickness2", whose reference configuration is the
image�m;"(
m;") � R3 of the set
m;"

through the mapping given by�m;"(x") := �(ex) + x"3a3(ex); for all x" = (ex; x"3) 2 
m;":
We denote by
+;" (resp.
�;") the translation of
+ (resp
�) in the directione3 (resp.-e3 )

of the quantity".
Moreover, we suppose that there exists an immersion�" : 
" ! R3 defined as follows:�" := ( ��;" on 
�;"�m;" on 
m;" ; ��;"(S�;") = �m;"(S�;");

with ��;" : 
�;" ! R3 immersions over
�;" defining the curvilinear coordinates on
�;". Let us
stress that the physical domain of the assembly is obtained by inserting in the directiona3 the shell
within the two bodies, see Figure 1. The structure is clampedon �"0 and the complementary part
of the boundary is free. Obviously one can there consider other type of boundary conditions. The
structure is also submitted to applied body forcesf" so that the work of the external loading is given
by the linear form L"(v") := Z
�;" f"i v"i dx":
We suppose that the materials are linearly elastic and isotropic with Lamé’s constants��;" and��;"
for 
�;", �m;" and�m;" for 
m;".

The physical variational problem in curvilinear coordinates defined over the variable domain
"
can be written as(

Findu" 2 V " := fv" 2 H1(
";R3 ); v"j�"0 = 0g such thatA�;"(u";v") +A+;"(u";v") +Am;"(u";v") = L"(v") for all v" 2 V ": (1)
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Figure 1: Initial and reference configuration of the assembly

The bilinear formsA�;"(�; �) andAm;"(�; �) are defined byA�;"(u";v") := Z
�;" Aijk`;"� e"k`(u")e"ij(v")pg�;" dx";Am;"(u";v") := Z
m;" Aijk`;"m e"k`(u")e"ij(v")pgm;" dx":
HereAijk`;" := �"gij;"gk`;" + �"(gik;"gj`;" + gi`;"gjk;") are the contravariant components of the
elasticity tensor andg" := det(g"ij).

If we suppose thatf"i 2 L2(
�;"), then problem (1) has one and only one solution thanks to
Lax-Milgram lemma.

In order to study the asymptotic behavior of the solution of problem (1) when" tends to zero,
we rewrite the problem on a fixed domain
 independent of". By using the approach of [6], we
consider the bijection�" : x 2 
 7! x" 2 
"

given by8><>: �"(x1; x2; x3) = (x1; x2; x3 � (1� ")); for all x 2 
+tr;�"(x1; x2; x3) = (x1; x2; "x3); for all x 2 
m;�"(x1; x2; x3) = (x1; x2; x3 + (1� ")); for all x 2 
�tr;
where
�tr := fx � e3; x 2 
�g, 
m := !�℄ � 1; 1[ andS� := ! � f�1g. In order to

simplify the notation, we identify
�tr with 
�, and
 with 
� [ 
m
. Consequently, one has�"� = �� and �"3 = 1"�3 in 
m:

For " sufficiently small, we associate with functionsAijk`;"� ; g�;"; �p;"ij : 
�;" ! R the func-

tionsAijk`� ; g�; �pij : 
� ! R defined byAijk`� (x) := Aijk`;"� (x"); for all x" = �"(x) 2 
�;";g�(x) := g�;"(x"); for all x" = �"(x) 2 
�;";�pij(x) := �p;"ij (x"); for all x" = �"(x) 2 
�;";
and we associate with functionsAijk`;"m ; gm;"; �p;"ij : 
m;" ! R the functionsAijk`m ("); gm("); �pij(") :
m ! R defined byAijk`m (")(x) := Aijk`;"m (x"); for all x" = �"(x) 2 
m;";gm(")(x) := gm;"(x"); for all x" = �"(x) 2 
m;";�pij(")(x) := �p;"ij (x"); for all x" = �"(x) 2 
m;":
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More precisely, one hasAijk`m (") = 1"pAijk`m (0) +O("1�p) andA���3m (") = A�333m (") = 0 for p 2 f1; 3g;
where A����m (0) := �ma��a�� + �m(a��a�� + a��a��);A��33m (0) := �ma��; A�3�3m (0) := �ma�� ; A3333m (0) := �m + 2�m;A���3m (0) = A�333m (0) = 0:

We suppose thatL"(v") = L(v): Finally the covariant components of the linearized change of
metric tensoreij(";v) 2 L2(
m), transformed by�" and associated with the displacement fieldv 2 H1(
m;R3 ), are defined as follows:e��(";v) := 12(��v� + ��v�)� �p��(")vp;e�3(";v) := 12(1"�3v� + ��v3)� ���3(")v� ;e33(";v) := 1"�3v3:

According to the previous assumptions, problem (1) can be reformulated on a fixed domain

independent of". Thus we obtain the following re-scaled problem:(

Findu(") 2 V := fv 2 H1(
;R3 ); vj�0 = 0g such thatA�(u(");v) + A+(u(");v) + "Am(u(");v) = L(v) for all v 2 V; (2)

where A�(u(");v) := Z
� Aijk`� ek`(u("))eij(v)pg� dx;Am(u(");v) := Z
m Aijk`m (")ek`(";u("))eij(";v)pgm(") dx:
4 THE LIMIT PROBLEMS
We can now perform an asymptotic analysis of the re-scaled problem (2) and distinguish the two

cases when the rigidity of the shell-like layer has its orderof magnitude equal to1" or 1"3 with respect
to the rigidities of the surrounding three-dimensional bodies.

Since the re-scaled problem (2) has a polynomial structure with respect to the small parameter",
we can look for the solution of the problem as a series of powers of":u(") = u0 + "u1 + "2u2 + : : : : (3)

Hence, by substituting (3) in (2) and by identifying the terms with identical power, we can finally
characterize the limit problems forp = 1 andp = 3.
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4.1 The limit problem forp = 1: the membrane transmission condition
The limit problem when the rigidity of the shell is1" can be written as follows:(

Findu0 2 bVM such thatA�(u0;v) +A+(u0;v) +AmM (u0;v) = L(v) for all v 2 bVM ; (4)

with bVM := fv 2 L2(
;R3 ); v� 2 H1(
�;R3 ); ��(vm) 2 L2(
m);v�jS� = vmjS� ; L2(
m;R3 ) 3 �3vm = 0; vj�0 = 0g;
wherev� (resp.vm) denotes the restriction ofv to 
� (resp.
m) andAmM (u0;v) := Z! a������ (u0)��(v)pa dex;a���� := 4�m�m�m + 2�m a��a�� + 2�m(a��a�� + a��a��);
are respectively the bilinear form associated with the membrane behavior of the shell and the con-
travariant components of the elasticity tensor of the shell, anda := det(a��). We can notice that the
spacebVM is isomorphic toVM := fv 2 H1(
;R3 ); v�j! 2 H1(!); vj�0 = 0g which corresponds
to the well-known inhibited pure bending space in the classical theory of shells.
Remark 1. In the limit problem forp = 1 the behavior of the shell is membrane dominated, thus
the pure bending is inhibited. In the simplified model we obtain a membrane transmission condition
at the interface between the two three-dimensional bodies.This condition can be interpreted as a
curvilinear generalization of the Ventcel-type transmission condition obtained in [5]. Indeed, one
has

Elasticity problems in 
� Transmission conditions in !� ��ij�kj = f i in 
�,u = 0 on�0, 8<: [[��3℄℄ = n�� j� in !,[[�33℄℄ = n��b�� in !,uj! = � in !,

where�ij� := Aijk`� ek`(u) andn�� := a������ (�) are respectively the contravariant components
of the first Piola-Kirchhoff stress tensor and of the membrane stress tensor of the shell,[[�i3℄℄ :=�i3+ � �i3� represents the stress jump at the interface! between
+ and
�.

4.2 The limit problem forp = 3: the flexural transmission condition
The limit problem when the rigidity of the shell is1"3 can be written as follows:(

Findu0 2 bVF such thatA�(u0;v) +A+(u0;v) +AmF (u0;v) = L(v) for all v 2 bVF ; (5)

where bVF := fv 2 H1(
;R3 ); vm3 2 H2(
m); ��(vm) = 0; �3vm = 0; vj�0 = 0g;AmF (u0;v) := 13 Z! a������� (u0)���(v)pa dex;
6



is the bilinear form associated with the flexural behavior ofthe shell. We can notice that the spacebVF
is isomorphic toVF := fv 2 H1(
;R3 ); � := vj! 2 H1(!;R2 )�H2(!); vj�0 = 0; ��(�) =0 in !g, which is equivalent to the non-inhibited pure bending space in theory of shells.
Remark 2. Whenp = 3, the pure bending of the shell is not inhibited. We can derivefrom the limit
problem a flexural transmission condition between the two three-dimensional bodies as follows:

Elasticity problems in 
� Transmission conditions in !� ��ij�kj = f i in 
�,u = 0 on�0, 8<: [[��3℄℄ = (b��m��)j� + b��(m�� j�) in !,[[�33℄℄ = b��b��m�� �m��j�� in !,uj! = � in !,

wherem�� := 13a������� (�) are the contravariant components of the moment tensor of theshell.

5 CONVERGENCE RESULTS
Let us define the spaceV :V := fv 2 L2(
;R3 ); v� 2 H1(
�;R3 ); ��(vm) 2 L2(
m);�3vi 2 L2(!); v�jS� = vmjS� ; ; vj�0 = 0g;

equipped withkvkV := fkeij(v)k20;
++keij(v)k20;
�+kvk20;
m+k��(v)k20;
m+k�3vk20;
mg1=2:
We can prove easily thatV is complete, due to the presence of
+ and
�. In general we work in
a space which is not complete, see [4]: hence, we need to consider the abstract completion of this
space with respect to a certain norm, whose limit is not always characterizable. It is necessary to
make some regularity assumptions on the completion space onwhich the admissible displacements
for the shell are defined. The spacebVM , equipped with this norm, is complete, hence the uniqueness
of the solution for problem (4) is guaranteed.

The following inequality of Korn’s type holds for allv 2 V :kvkV � C �keij(v)k20;
+ + keij(v)k20;
� + keij(";v)k20;
m�1=2
5.1 Weak and strong convergence forp = 1
For all functionsv defined almost everywhere over
m = !�℄ � 1; 1[, we define the averagev(ex) := 12 R 1�1 v(ex; x3)dx3 for all ex 2 !:
Letu(") be the solution of (2) forp = 1. After the assumptions on the loading and the coercivity

of the bilinear formsA� andAm, the followinga priori estimates hold:ku(")kV � C ;keij(";u("))k0;
m � C ;k"u(")k1;
m � C: (6)

Theorem 1 The sequence(u("))">0 converges strongly inV to u0 2 bVM , the unique solution of
problem (4).

Proof. For convenience, the proof is divided into five parts, numbered from(i) to (v).
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(i) From (6) we deduce that there exists a subsequence (not relabeled) andu 2 V , u�1 2 V ,eij 2 L2(
m) such that u(")* u in V ;"u(") := u�1(")* u�1 in H1(
;R3 );eij(";u(")) * eij in L2(
m);�3u3(") = "e33(";u("))! 0 in L2(
m); (7)

We can easily prove thatu�1 = 0.(ii) We show that�3u = 0 in 
m. From (6) and (7), one has�3u3(") = "e33(";u("))! 0 in L2(
m);�3u�(") = 2"e�3(";u(")) � ��("u3(")) + 2���3(")"u�(")* 0 in L2(
m):
Thus, thanks to the definition of convergence inV , �3u(") * �3u = 0 in L2(
m) andu 2 bVM .(iii) The limitse�� satisfy the relatione�� = ��(u). Using the definition of the average and
after some technicalities, we deduce thatke��(";u("))� ��(u("))k0;! � C"�k"u�(")k0;
m + k�3ui(")k0;
m�;
which tends to zero as" ! 0. By definition of the normk � kV , ��(u(")) * ��(u) in L2(
m),
which implies that��(u(")) * ��(u) = ��(u) in L2(!) and, hence,e�� = ��(u) in L2(!):

According to theorem 5.2.1 in [6],k�3e��(";u("))+"���(u("))k�1;
m � C"�kei3(";u("))k0;
m+k"u�(")k0;
m+k"u3(")k1;
m�:
It is evident that the second member tends to zero as"! 0. Thanks to the continuity of the operator�3 : L2(
m) ! H�1
), and since"���(u(")) * 0 in H�1(
m), we derive that�3e�� = 0 and
finally e�� = ��(u) in L2(!): (8)(iv) Multiplying problem (2) by" and letting"! 0 yield to the relationse�3 = 0 and e33 = � �m�m + 2�m a��e�� : (9)

By choosing in (2) test functionsv independent ofx3 in 
m and by applying the limit as"! 0, we
obtain:A+(u;v) +A�(u;v) + Z
m �A���� (0)e���� (v) +A��33(0)e33�� (v)� dx = L(v):
From (8) and (9), we infer thatA+(u;v) + A�(u;v) + 2 Z! a������(u)�� (v)pa dex = L(v):
Hence, by virtue of the uniqueness of the solution, we deducethatu = u0.(v) It remains to show the strong convergence. Let(w�)�>0 be a sequence inD(!;R3 ) such
that � w�� ! ���u03 � 2b��u0� in L2(!);w�3 ! e33 in L2(!);
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and let(��)�>0 be a sequence inD(
;R3 ) such that��(x) := x3w�(ex) pour toutx 2 
m. Thenu(")�u0� "�� 2 V . SettingA(�; �) := A+(�; �)+A�(�; �)+ "Am(�; �), by virtue of the coercivity,
we obtain:A(u(")� u0 � "��;u(")� u0 � "��) � ku(")� u0 � "��k2V : By letting "! 0 and
by using a standard diagonalization argument, one haslim�!0 lim"!0A(u(")� u0 � "�� ;u(")� u0 � "��) == L(u0)�A+(u0;u0)�A�(u0;u0)� Z
m a������(u0)�� (u0) dx = 0:
Hence the announced strong convergence holds.

5.2 Weak and strong convergence forp = 3
Letu(") be the solution of (2) forp = 3, then we can write the followinga priori estimates:keij(u("))k20;
+ + keij(u("))k20;
� + 1"2 keij(";u(")k20;
m � C;1"2 keij(";u("))k20;
m � C: (10)

Theorem 2 The sequence(u("))">0 converges strongly inH1(
;R3 ) to u0 2 bVF , the unique
solution of problem (5).

Proof. For the sake of clarity, the proof is divided into four parts numbered from(i) to (iv).(i) Thea priori bound (101) and the Korn’s inequality establish that there existu 2 H1(
;R3 )
and a subsequence not relabeled such thatu(") * u in H1(
;R3 ). Estimate (102) implies that�3u3(") ! 0 in L2(
m), thus�3u3 = 0, and thate�3(";u(")) ! 0 in L2(
m), hence�3u�(") ="�2e�3(";u(")) � ��u3(") + 2���3(")u�(")� ! 0 in L2(
m), so that�3u� = 0. Finally, one
has��(u) = 0 so thatu 2 fv 2 H1(
;R3 ) : �3vi = ��(v) = 0 in 
m; vj�0 = 0g. Besides,
estimate (102) also implies the existence ofzij 2 L2(
m) such that1"eij(";u(")) * zij in L2(
m).(ii) By multiplying (2) by"2 and by letting"! 0, we deduce thatz33 = � �m�m + 2�m a��z�� and z�3 = 0:
Afterwards, by multiplying (2) by", by letting " ! 0 and by choosing test functions such that�3v3 = 0, we obtain:lim"!0 Z
m 1"A�3�3(0)e�3(";u("))e�3(";v) dx = � Z
m a����z���� (v) dx: (11)

According to theorem 5.2.1 in [6], we can prove that���(u) = ��3z�� in L2(
m) . By
choosing test functions such thatv� = �� � x3�� andv3 = �3, where�� := ���3 + 2b����, with� 2 H1(!;R2 )�H2(!) such that��(�) = �3�i = 0, we obtainlim"!0 1"2 Z
m A�3�3(0)e�3(";u("))12�� dx = 23 Z! a�������(u)e�� dex: (12)

wheree�� := 12 (���� + ����)� ������.
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(iii) If we choose in (2)v 2 H1(
;R3 ) such thatvm3 2 H2(
m) and�3vi = ��(v) = 0 in
m, passing to limit we get:A+(u;v) +A�(u;v) + Z
m a����z��x3�b�� j�v� + b��b��v3� dx+ lim"!0 1"2 Z
m A�3�3(0)e�3(";u("))�12��v3 + b��v�� dx = L(v):
Let 12�� := 12��v3 + b��v� . Then, using (12) and the relatione�� � b�� j�v� � b��b��v3 = ��� (v),
we obtain that A+(u;v) +A�(u;v) + 13 Z! a�������(u)��� (v) dex = L(v);
thus,u = u0, the one and only one solution of problem (5).(iv) It remains to prove the strong convergence. Let(��)�>0 � V such that���(x) = x23(b����u03(ex)+b��b��u0� (ex)) and��3(x) = x232 w�(ex) for all x 2 
m, where(w�)�>0 is a sequence inD(!) which
satisfiesw� ! �3z33 in L2(!). Let 2 V such that �(x) = �x3��u03(ex) and 3(x) = 0 for allx 2 
m. Thenu(")� u0 � " � "2�� 2 V and by applying the previous reasoning, we show thatlim�!0 lim"!0A(u(")� u0 � " � "2��;u(")� u0 � " � "2��) == L(u0)�A+(u0;u0)�A�(u0;u0)� Z
m x23a�������(u0)��� (u0) dx = 0;
which completes the proof.
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