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SUMMARY. We study the problem of an elastic shell-like inglon with high rigidity in a three-
dimensional domain by means of the asymptotic expansiohadet The analysis is carried out
in a general framework of curvilinear coordinates. Aftefitiag a small real parameter, we
characterize the limit problems when the rigidity of thelirsion has order of magnitud}geandal3
with respect to the rigidities of the surrounding bodies. rbtiver, we prove strong convergence
of the solution of the initial three-dimensional problenvérds the solution of the simplified limit
problem.

1 INTRODUCTION
After the pioneering works of Pham Huy-Sanchez [1], Breta&l €[2] and Caillerie [3], the thin
inclusion of a third material between two other ones whenrigielity properties of the inclusion
are highly contrasted with respect to those of the surrmgidiaterial has been deeply investigated.
More recently, Chapelle-Ferent [4], in order to justify ®amethods used in the FEM approximation,

have studied the asymptotic behavior of a shell-like incl®f }-rigidity (p=1lorp=3)ina

P
three-dimensional domain. In a slightly different geonwatrand mechanical context, Bessoud et al.
[5] have studied the behavior ofzathin three-dimensional layer éc_f—rigidity. More precisely, they
assume that the thin layer can be writterwas| — ¢, [ wherew is a projectable two-dimensional
surface, and that all the materials are linearly elastis@mpic. Then the limit problem is a Ventcel-
type transmission problem between two three-dimensiamegaily elastic anisotropic bodies. When
w is planar and in the isotropic case, the associated surfaergyeterm can be interpreted as the
membranal energy of a Kirchhoff-Love plate.

Here we study the situation where the shell-like thin lagahitained by the translation along the
normal direction of a general two-dimensional surface.ngs system of curvilinear coordinates
we deduce the formal limit problem for the two cages 1 andp = 3. In this way we obtain the
same limit problems as in [4], also if the kinematical asstioms for the physical problem are not
the same. Indeed in [4] the authors a priori assume a skelkhiergy in the thin layer. Asin [4] one
must stress that the well-posedness of the limit problerassentially linked to the well-posedness
of the shell models [6, 7]. Afterwards we prove some resultstimng convergence in a specific
functional framework.



2 GEOMETRICAL PRELIMINARIES

2.1 Three-dimensional curvilinear coordinates

This section is aimed at laying down an appropriate ground¢hi® rest of the article. In the se-
quel, Greek indices range in the &t 2}, Latin indices range in the sét, 2, 3}, and the summation
convention with respect to the repeated indices is adopted.

Let us consider a three-dimensional Euclidian space ifietitby R> and such that the three
vectorse; form an orthonormal basis. L&t be a non-empty open subset®f. A mapping® ¢
C3(Q; R?) is an immersion if the three vectads® (z) are linearly independent for all = (z;) € .
The imageﬁ = O(N) is always an open set immersedRA. The three coordinates of a point
x € () represent the curvilinear coordinates of the p@iat ®(z) € (2, while the three coordinates
z; of the pointz € Q) are the Cartesian coordinates.

The three vectorg;(z) := 0;0(x) form the covariant basis at = ©(z) and the three vec-
torsg’ (z), defined by the nine independent relatignér) - g’ (z) = ¢/ forall z € €, form the
contravariant basis at

The immersior® induces a Riemannian metric 6h) defined respectively by its covariant com-
ponentsy;;(z) = gi(z) - gj(z), and contravariant componengé’(z) := g*(z) - g’(z). The
contravariant components of this metric can be analogalesiyed by(g*‘(z)) = (g;;(z))~* for
allz € Q.

This metric induces a Levi-Civita connection in the mardftll defined by the Christoffel sym-
bols of the second kintl}; := g” - 9;g; = I';.

Let there be given a vector field defined o@(2). We can rewrite this vector field as a linear
combinationv = v;g’ of the vector fieldgg’ : Q@ — R®, wherev; = v - g; are the covariant
components of the vector fiekd The covariant derivatives; of the covariant components are
defined byv;; := 9;v; — I'¥,v,. The covariant derivatives™ ;. of the second-order tensor field
with contravariant component’ are defined by ||, := 9, T% + F};jT““ + FikT“.

With every displacement field, we associate the linearized change of metric tensor defised
follows:

1
eij (v) i= 5 (vily + j10)-

2.2 Curvilinear coordinates on a surface

Let w be a non-empty open subsetli. The coordinates of € w are denoted by,. A
mapping® € C3(w;R3) is an immersion if the two vectord,6(z) are linearly independent at
each pointt = (z,) € w. The imageS := #(w) is a surface immersed iR*, equipped withz,,
curvilinear coordinates.

The two vectora,, (7) := 0,0(Z) form the covariant basis of the tangent plane to the sui§aate
6(%), and the two vectora® (%) defined by the relations, (%) -a® (Z) = 67, form the contravariant
basis of the tangent plane to the surf&cat 6(z). The unit normal vector t§ at@(z) is defined by

aa(%) = 2°(%) = eERaEy

The covariant components of the first fundamental form oftréace are defined by, () :=
a,(7) - ag(7), and its contravariant components are definedb¥(z) := a® (%) - a’(z).

The covariant components of the second fundamental forhecfurface are defined by (7) :=
Onap(T) - a3(Z), and its mixed components are definedyz) := a™” (%)bas (7).

The Christoffel symbols on the surfageof the second kind are given iy, ; := a” - 0, a3.

Any vector field on a surface can be written as a linear contioina = 7,a’ of the vector field
a’ : w — R?, where the functiong, = n- a; are the covariant components of the vector figldhe



covariant derivatives,, 5 of the covariant components, are defined by, 5 := 9sn, — I'f,5n-.
The covariant derivativéE*? |, of the second-order tensor field with contravariant comptsie~?
are defined by'*?|, := 9, 7% + g, T77 + I'Y_n%. For more details about differential geometry
of surfaces, see [6].
With every displacement fielgl, we associate the linearized change of metric tensor fididestk
by
1
%ﬁ(n) = 5(%\3 + 773|a) — bagsns,
and the linearized change of curvature tensor field, defiged b

paﬁ(n) =N3ja8 — bgbaﬁ% + bgna\ﬁ + bgn‘r\a + (aabg - Fgﬁb; + Fgabg)n‘r'

The symmetric tensor fields, ;) and(p,z) play a key role in the theory of linearly elastic shells
(see, e.g., P.G. Ciarlet [6]).

3 POSITION OF THE PROBLEM

Let QT andQ~ be two disjoint open domains with smooth boundafi€s™ and9Q~. Let
w = {00% N 9N~ }° be the interior of the common part of the boundaries whictsgsimed to be
a non empty domain iit?> having a positive two-dimensional measure andlet C%(w; R?) be an
immersion.

Let0 < € < 1 be an adimensionamallreal parameter. Let us considef* := wx] — ¢, ¢|
andS* < := w x {+¢}. Letz* denote the generic pointin the $&t"° with 2, = z,,. We consider
ashell-likedomain with middle surfac@(w) and thicknes&¢, whose reference configuration is the
image®™ < (1""°) ¢ R? of the sef?™" through the mapping given by

O™ (¢°) := (%) + 25a3(F), forall ® = (Z,25) € Q" .

We denote b2 (resp.Q—¢) the translation of2™ (resp2 ™) in the directiones (resp.e; )
of the quantitye. _
Moreover, we suppose that there exists an immer@idn 1” — RR? defined as follows:

, @:i:,S(Si,s) — (_)m,S(S:i;s),

o = O on 0°°
’ @™ on Q"

. —+, . . —+, - . . =4,
with ® % : 0° — R® immersions ovefl” * defining the curvilinear coordinates 6h . Let us

stress that the physical domain of the assembly is obtaipéaserting in the directiomas the shell
within the two bodies, see Figure 1. The structure is clangetl and the complementary part
of the boundary is free. Obviously one can there considesrdilpe of boundary conditions. The
structure is also submitted to applied body for¢éso that the work of the external loading is given
by the linear form
Lf(vF) = fivida®.
QE.c

We suppose that the materials are linearly elastic ancbigiotwith Lamé’s constants™* andp*-=
for Q= \™* andp™* for ™=,

The physical variational problem in curvilinear coordestiefined over the variable domé&in
can be written as

{Find u® e V= {ve € HY(Q%; R?); Vipe = 0} such that

1
A7 (0, ve) + AT (uf, ve) + A™E (uf,v®) = L°(v®) forall v¢ € V©. @)



Figure 1: Initial and reference configuration of the assgmbl

The bilinear formsd®-<(-,-) and A" (-, -) are defined by

A )= [ AR el () Vo
Ame(ut v = [ AR (el (v Vg do

Here AWkbs .= \*giie gkt = (gihse gits 4 gite gik2) are the contravariant components of the
elasticity tensor ang® := det(g;;).

If we suppose thaff € L?(Q2**), then problem (1) has one and only one solution thanks to
Lax-Milgram lemma.

In order to study the asymptotic behavior of the solution @figem (1) where tends to zero,
we rewrite the problem on a fixed domdihindependent of. By using the approach of [6], we
consider the bijection® : z € 0 — 2= € Q" given by

—+
(21, T, 23) = (T1,22,23 — (1 —¢)), forallz e Q,,,
- m
7w (w1, T2, x3) = (21, X2, ET3), forallz € O,

7 (w1, 22, 73) = (71,22, 73 + (1 —¢)), forallz € Q,,,

whereQf = {z + ez, « € QF}, Q" := wx] — 1,1[and S* := w x {#1}. In order to
simplify the notation, we identiff2: with QF, andQ with QT un™ Consequently, one has
95 =0, and 05 = 195 in Q™.

For e sufficiently small, we associate with functiodd’"*, g%, 7 . Q
tionsAZ", g*, T, .0 = R defined by

¢ _, R the func-

AQZM () := Aiﬁjke’g (zf), forallz® ==n°(z) € ﬁi’g,

gt (z) i= g2 (z°), forall z° = 7°(z) € 0,
I? (x) := I%° (%), forall z° = 7°(z) € 0,

—m,E

3?,? we associate with functiod§/*<, g™, 7 : Q
Q2 — Rdefined by

A%k‘q(g)(m) = A%kl’s(ajs), for all ¢ = Wg(w) c ﬁm,s,

— Rthe functionsd7¥- (¢), g™ (), I, (e) :

g™ (e)(x) = g™ (), forallz =7°(z) € Q"
I7i(e)(x) == TP (=), forallzcs =7*(z) € Q .



More precisely, one has

g 1 .

AlM () = — AZF(0) + O('77) and A77% (e) = A% (e) = 0 for p € {1,3},
S
where
A;xnﬁa"r(o) — )\maaﬁaar + Ium(aozo'aﬁ‘r + aa‘raﬁa'),
A%B33(0) := A™aP | A%373(0) 1= p™a®?, A33(0) := A 4 2u™,
AP73(0) = Ap2*(0) = 0.

We suppose that® (v®) = L(v). Finally the covariant components of the linearized charfge o
metric tensor;;(;v) € L?(2™), transformed byr® and associated with the displacement field
v € HY(Q™;R?), are defined as follows:

1
eaple;v) = 5(851)& + 0auvg) — I 5(€)vp,
1.1
eas(e;v) = §(g83va + 0qv3) — 75 (€) vy,
:v) = —03v3.
633(5,V) c 3U3

According to the previous assumptions, problem (1) can f@nailated on a fixed domaifi
independent of. Thus we obtain the following re-scaled problem:

{Find u(e) € V= {ve H(%R); v, =0} such that )

A~ (u(e),v) + AT (u(e),v) + eA™(u(e),v) = L(v) forall veV,

where
(o)) = [ AL e ()ey () Vo do,
A" (u(e),v) := A%“ (e)ere(e;ule))esi(e; v)/ g™ (e) da.

Qm
4 THE LIMIT PROBLEMS
We can now perform an asymptotic analysis of the re-scalebl@m (2) and distinguish the two
cases when the rigidity of the shell-like layer has its oafenagnitude equal té or 8% with respect
to the rigidities of the surrounding three-dimensionaliesd
Since the re-scaled problem (2) has a polynomial structitrerespect to the small parameter
we can look for the solution of the problem as a series of pswés:

u(e) =u’ +eu' +%u’ +.... 3)

Hence, by substituting (3) in (2) and by identifying the termith identical power, we can finally
characterize the limit problems fpr= 1 andp = 3.



4.1 The limit problem fop = 1: the membrane transmission condition
The limit problem when the rigidity of the shell gscan be written as follows:

{Fmdu € Vi such that @)

A (U, v) + AT(u®,v) + A7 (u°,v) = L(v) forall v e Vy,
with
Vi = {v € L*(QR); vE € HY Q5 R?), 7,5(v™) € LH(Q™),

Vise = Vi5e, L (QT ) 3 95v™ =0, vir, = 0},

wherev® (resp.v™) denotes the restriction afto Q* (resp.Q™) and

Aﬁ (uO, V) = / aaﬁaT’YUT (uo)vaﬁ (V)\/a di;

aaﬁar — 4)‘ml‘l‘m

. Waa,@aar + 2um(aaaa67 _I_aozraﬁa),

are respectively the bilinear form associated with the nramd behavior of the shell and the con-
travariant components of the elasticity tensor of the shelila := det(a, ). We can notice that the
spacel/y, is isomorphic toVy, = {v € H*(; R?); Valw € H'(w), v|r, = 0} which corresponds

to the well-known inhibited pure bending space in the ctadsheory of shells.

Remark 1. In the limit problem forp = 1 the behavior of the shell is membrane dominated, thus
the pure bending is inhibited. In the simplified model we obtamembrane transmission condition
at the interface between the two three-dimensional bodiéss condition can be interpreted as a
curvilinear generalization of the Ventcel-type transmaisscondition obtained in [5]. Indeed, one
has

Elasticity problemsin Q* Transmission conditionsin w
i ;. o] = n®? inw,
—ofllj=f" inQ*, %033]%] _ na,ﬁ)f inw
u=0 only, - af
u, =7 Inw,

whereo/ := A% e;,(u) and n®? := 0577~ __(n) are respectively the contravariant components

of the first Piola-Kirchhoff stress tensor and of the membratmess tensor of the sher®] :=
o’ — o represents the stress jump at the interfadeetweer2t and2~.

4.2 The limit problem fop = 3: the flexural transmission condition
The limit problem when the rigidity of the shell 18%; can be written as follows:

(5)

Findu® € V7 such that
A= (00, v) + A* (1, v) + A7 (u®,v) = L(v) forall v € Vg,

where

XA/F ={ve H' (O R?); v € H?(Q™), fyaﬁ(vm) =0, 93v™ =0, vp, = 0},

1 ~
AP v) = 3 [ a7, (s (v)Va B3



is the bilinear form associated with the flexural behavighefshell. We can notice that the spé?@e
is isomorphic toVy := {v € H'(;R?); 7 :=v|, € H'(w;R?) x H*(w), V|r, =0, 7,5(n) =
0in w}, which is equivalent to the non-inhibited pure bending sgadheory of shells.

Remark 2. Whenp = 3, the pure bending of the shell is not inhibited. We can dédfrivm the limit
problem a flexural transmission condition between the twedtdimensional bodies as follows:

Elasticity problemsin Q+ Transmission conditionsin w
31 — (pa,,, 008 e o3 H
G i i o [o°°] = (bgm*")|s + bz (m”[5) Inw,
—ofllj=f" InQF, 337 _ 20 aB . aB ;
{ w=0 onTy, [o°°] = b%bsgm m*’|as inw,

u, =17 inw,
wherem®? := %ao"g‘"p(ﬁ(n) are the contravariant components of the moment tensor chbik

5 CONVERGENCE RESULTS
Let us define the spadé:

Vi={v e L (M R); v € H' (A5 R?), 7,5(v™) € L*(Q™),

2 +
d3v; € L7 (w), Vist = V\néi, » VDo = 0},

equipped with|v(ly- := {lles; (V)II§ o+ +llei (VIF o~ +IVIE o +17as (VG 0 +105VIIF o /.
We can prove easily thaf is complete, due to the presencefdf and)~. In general we work in
a space which is not complete, see [4]: hence, we need todmartkie abstract completion of this
space with respect to a certain norm, whose limit is not adaeharacterizable. It is necessary to
make some regularity assumptions on the completion spawéimh the admissible displacements
for the shell are defined. The spdcg, equipped with this norm, is complete, hence the uniqueness
of the solution for problemd() is guaranteed.

The following inequality of Korn’s type holds for alt € V:

1/
Wiy <€ (less IR o + lleis (IR - + lleis (& V). )

5.1 Weak and strong convergence foe 1

For all functionsv defined almost everywhere ov@" = wx] — 1, 1], we define the average
V(@) =3 [, v(#, x3)des forall & € w.

Letu(e) be the solution of (2) fop = 1. After the assumptions on the loading and the coercivity
of the bilinear forms4* and A™, the followinga priori estimates hold:

lu(e)lly-< C,
lleij (€5 u(e))llo,om < C, (6)
lleu(e)liom < C.

Theorem 1 The sequencéu(e)).~o converges strongly i to u® € Vi, the unique solution of
problem (4).

Proof. For convenience, the proof is divided into five parts, nuredlérom(i) to (v).



() From (6) we deduce that there exists a subsequence (noeleiandu € V, u™! € V,
e;j € L*(2™) such that

u(e) ~u inV,
eu(e) :=ut(e) ~u! in H1(Q; R?), 7
eij(e;u(e)) — ey in L2(Qm), (7)

63U3(€) = 8633(8;11(5)) —0 in L2(Qm),

We can easily prove that—! = 0.
(7i) We show thabzu = 0 in Q™. From (6) and (7), one has

Ozus3(e)

cess(g;u(e)) = 0 in L2(Q™),
O3t (€) €

= 2eeq3(g;u(e)) — O (eus(e)) + 215 (e)euy(e) = 0 in L2(Q™).
Thus, thanks to the definition of convergenc#indsu(c) — d;u = 0in L2(Q™) andu € Vy,.

(¢ii) The limitse, s satisfy the relatior,s = 7v,5(u). Using the definition of the average and
after some technicalities, we deduce that

lean (@0 ~ Vas M@)o, < Ce(lleuale)llom + 1sui(e)lo.0m ),

which tends to zero as — 0. By definition of the nornj| - ||, 7,5(u(e)) = 7,5(u) in L*(Q™),
which implies thaty , 5 (u(e)) — 7,5(T@) = 7,5(u) in L?(w) and, hencegas = 7,5(u) in L*(w).
According to theorem 5.2.1 in [6],

103eas (&5 u(e)) +epag(ule))ll-1,0m < Ce (Ileiz (&5 u(@)llo.om +leua(@)llo,am +||6u$(€)||1,nm) :

Itis evident that the second member tends to zero-as0. Thanks to the continuity of the operator
93 : L*(4™) — H~'Q), and sincep,s(u(e)) — 0in H~'(Q™), we derive thabse,s = 0 and
finally

Cap = Vap(u) in L2(w). ®)

(iv) Multiplying problem (2) bye and lettings — 0 yield to the relations

Am af

€q3 = 0 and €33 = —WCL

€ap- (9)
By choosing in (2) test functionsindependent of:; in Q" and by applying the limit as — 0, we
obtain:

A*(u,v) + A~ (u,v) + / (A°577 (0)easyys (v) + AT (0)essr,, (v)) dz = L(v).

m

From (8) and (9), we infer that ™ (u,v) + A~ (u,v) + 2/ aC’B”’yaﬁ(u)’yw(v)\/a dx = L(v).

Hence, by virtue of the uniqueness of the solution, we dethatar = u".
(v) It remains to show the strong convergence. (sef),~, be a sequence iP(w, R*) such
that
wl — —,ud —207ud in L*(w),
wl — es3 in L?*(w),



and let(¢"),~o be a sequence iR(Q2, R?) such thaip”(z) := z3w"(Z) pour toutz € Q™. Then
u(e) —u’ —e¢” € V. SettingA(-,-) := At (-,-) + A (-,-) +eA™ (-, ), by virtue of the coercivity,
we obtain:A(u(e) — u’ —e¢”,u(e) — u’ —e¢") > [Ju(e) — u® —¢"||2.. By lettinge — 0 and
by using a standard diagonalization argument, one has

H H _ 19— n _ 49 = ) —
%%A%A(u(e) u —ep’ ule) —u’ —eg") =

= L)~ A (0 A (0 u) = [ a7y, () do = .
Hence the announced strong convergence holds.

5.2 Weak and strong convergence joe 3
Letu(e) be the solution of (2) fop = 3, then we can write the following priori estimates:

. . 1 .
lleis (aEDg. o+ + llei(EDIg.o- + Zllew (& uEgan < C,

1 ) (10)
= lleis(EuE)loon < €

Theorem 2 The sequencéu(e)).~o converges strongly if/1(Q;R?) to u® € Vi, the unique
solution of problem (5).

Proof. For the sake of clarity, the proof is divided into four partswbered fron{i) to (iv).

(i) Thea priori bound (1Q) and the Korn’s inequality establish that there exist H'(Q; R?)
and a subsequence not relabeled suchiffat — u in H(Q;R?). Estimate (19) implies that
Ozuz(e) — 0in L2(Q™), thusdsuz = 0, and thak,s(g;u(e)) — 01in L?(Q™), hencedsu,(e) =
£(2eq3(e5u(e)) — daus(e) + 2I'%5(e)uq(e)) — 0in L*(Q™), so thatdsu, = 0. Finally, one
hasy,s(u) = 0 so thatu € {v € H'(Q,R?) : dsv; = 7,5(v) = 0in Q™, v|r, = 0}. Besides,
estimate (10) also implies the existence ef; € L?(Q2™) such thate;;(e; u(e)) — z; in L*(Q™).

(i7) By multiplying (2) bye? and by lettinge — 0, we deduce that

)\m

_Waaﬁzaﬁ and z,3 =0.

233 =
Afterwards, by multiplying (2) by, by lettinge — 0 and by choosing test functions such that
Osv3 = 0, we obtain:

1
lim —A%393(0)eqs (g5 ule))ess(e; v) de = —/ a®PT 205V (V) da. (11)
e=0 Jom € m
According to theorem 5.2.1 in [6], we can prove that(u) = —ds3z.5 in L*(Q™) . By
choosing test functions such that = ., — x36, andvs = n;, wheref, := 0,15 + 20%7,,, with
n € H'(w,R?) x H?(w) such thaty, 5(n) = dsn; = 0, we obtain

. 1 a3o3 1 _ 2 aBot ~ ~
tim % [ AT O (e @) 300 do = 5 [ @ g, (12)

whered,, = 1(8,0, + 0,0,) — " 6,.

2



(#44) If we choose in (2 € H'(Q2,R*) such thawy* € H*(Q2™) anddsv; = 7,5(v) = 0in
Q™ passing to limit we get:

At(w,v) + A" (u,v) + / a®?77 20525 (D |pvp + Dby vs) da
Qm

: ]‘ a303 . ]' T
+ lim = /o A*73(0)eqs3(e; u(e))(aaavg +bLv;) dz = L(v).
Let 20, := L0,vs + blu,. Then, using (12) and the relation, — b|,v, — beb,,vs = p, . (v),
we obtain that

AT (u,v) + A7 () + 5 [ a7 s ), () dE = L(v),

w

thus,u = u®, the one and only one solution of problem (5).
(iv) Itremains to prove the strong convergence. (¢ggt),,~o C V suchthat! (z) = 22 (b9, ul(Z)+

b2bTud(x)) and gl (z) = %w"(%) forall x € Q™, where(w"),o is a sequence ifP(w) which

satisfiesw” — 93233 in L?(w). Letyp € V suchthat), () = —230,ul(Z) andy,(z) = 0 for all

x € Q™. Thenu(e) — u’ — ey — 29" € V and by applying the previous reasoning, we show that
lim lim A(u(e) —u® —eyp — 29", u(e) —u’ —eyp —?¢") =

n—0e—0

= L)~ AT u) - A (W@ w) = [ 20w, (o) do =0,
which completes the proof.
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