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ABSTRACT. We specialize to the case of infinitesimal perturbations a finite deformation model for
the dynamic behaviour of fluid saturated porous biphasic media. The original model exploits eight
kinematic scalar fields: the displacement field of the solid phase, the velocity and the density of
the fluid, and an additional scalar field associated with the microscopic volumetric deformation of
the solid phase. We also discuss a procedure for the determination of the elastic parameters that
characterize the present linearized model; it is based on the set of experimental measures originally
considered by Biot and Willis [1] for calibrating Biot’s seminal model. In particular, we select from
this set the shear test, the unjacketed compressibility test and two jacketed tests in which drainage is
either completely allowed or prevented.

1 INTRODUCTION
Gas filled open cell flexible polymeric foams are widely employed for absorption of impact en-

ergy due to their excellent dissipation properties which originate from several mechanisms, involv-
ing, among others, the deformation driven viscous flow of gas through interconnected pores which
may be expelled or drawn into the solid [2]. These materials can undergo large deformations and
find applications in cushioning systems to minimize injuries of passengers during impact; actually,
by properly selecting the polymer, density and cell morphology, the microstructure can be tailored
so as to achieve desired stiffness and damping properties [3].

The development of mechanical models for the prediction of the mechanical response of this
class of materials requires a biphasic formulation able to describe pore-gas interaction at finite de-
formations [4, 5]. This family of mechanical problems is also of primary interest in several other
fields of engineering and physics science; for instance, in biomechanics, multiphase formulations
have been used for simulating the deformation of soft biological tissues, such as heart muscle and
cartilage [6] and to account for mass transport through tissues associated with cell nutrition. Bipha-
sic formulations in the finite deformation regime enter also in the analysis of the loss of strength of
saturated soils subjected to seismic excitations, referred to in geotechnics as liquefaction [7].

A biphasic formulation in the finite deformations regime has been developed by the authors
[8], [9], with the main objective of predicting the response of polyurethanic open cell foams by
means of finite element techniques. Such formulation exploits eight kinematic scalar fields: the
displacement field of the solid phase, the velocity and the density of the fluid, and an additional
scalar field associated with the microscopic volumetric deformation of the solid phase. The proposed
formulation is also suitable for describing the response of biphasic media for which the ratio between
volumetric unjacketed and jacketed compressibility is different from zero.
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Besides being totally formulated in terms of work-conjugate variables, the model is sufficiently
general to account for the volumetric compressibility of the bulk material constituting the solid
phase, so that the elastic response of the medium to isotropic infinitesimal loading conditions de-
pends upon four elastic coefficients as in the original work by Biot. Moreover, the formulation is
completely biphasic, i.e. the independent constitutive behavior of each phase is separately intro-
duced thus allowing one to separately identify the response of the isolated phases and to combine
them to obtain the total response of the medium. This property is made possible since the equations
of motions are written separately for the solid and the fluid phases and no use is made of the Cauchy
total stress tensor [10] . Furthermore, no restriction is imposed on the compressibility of the fluid
and of the solid skeleton.

In the present contribution, we focus on the specialization of the above mentioned formulation
to infinitesimal perturbations and report some results concerning the linearized model. We first
illustrate the set of linear PDEs that arises from the original system of governing equations when
this is subjected to infinitesimal perturbations of the state fields starting from a base configuration
which, in general, may also differ from the reference one. The interest in the linearized system
is twofold since, on one hand, a linearized system turns out to be a convenient simplification of
the most general problem when the objective of the analysis is a medium actually experimenting
infinitesimal strains due to the small entity of the perturbations compared with the stiffness of the
medium. This class of problems has been the subject of fundamental researchs in the past [11] and is
encountered, for instance, when studying the propagation of elastic waves in a shock tube filled with
sand particles [12]. On the other hand, the linearized system is also required in step-wise methods for
the incremental solution of geometrically nonlinear media in the context of finite element methods,
e.g. following the strategy illustrated in [7] based on a hypoelastic formulations.

Owing to space reasons we report here only the set of equations resulting fom the linearization
around the reference configuration under the additional hypotheses that typically hold in static lab-
oratory tests of initially motionless, stress-free, isotropic and homogeneous medium. The reader is
referred to [9] for the most general linearized set of equations and further details on their derivation.

A procedure is also presented for the determination of the elastic parameters that characterize
the present linearized model; it is based on the set of experimental measures originally considered
by Biot and Willis [1] for calibrating Biot’s seminal model. In particular, we select from this set
the shear test, the unjacketed compressibility test and two jacketed tests in which drainage is either
completely allowed or prevented.

2 SUMMARY OF THE FINITE DEFORMATION MODEL
The model presented in [8] is based on a macroscopic continuum formulation which accounts for

the presence of a heterogeneous structure at the microscale. The state of the solid phase is described

by the relevant average macroscopic configuration changeφ̄
(s)

and by an additional macroscopic
field Ĵ (s) defined as the Jacobian of the transformation of the solid phase averaged over the part
of the RVE occupied by the solid phase [9]. A local hyperelastic isotropic behaviour, with uncou-
pled spheric and deviatoric constitutive responses, is assumed for the solid phase according to the
following strain energy density function:

ψ̄(s) = ψ̄
(s)
dev

(
F̄dev

)
+ ψ̄

(s)
sph

(
J̄ , Ĵ (s)

)
(1)

whereF̄dev = J̄− 1
3 F̄ is the deviatoric part of the macroscopic deformation gradientF̄ and J̄ =

det F̄ is the macroscopic Jacobian.
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It is further assumed the existence of a kinetic energy density fieldχ̄(s) which, apart from the

macroscopic velocitȳv(s) of the RVE, also depends on the time ratėĴ (s)

χ̄(s) =
1
2
ρ̄(s)||v̄(s)||2 + χ̄

(s)
add(

˙
Ĵ (s)) (2)

whereρ̄(s) is the macroscopic mass density of the solid in the current configuration andχ̄
(s)
add is an

additional kinetic energy density, associated withĴ (s), which accounts for the microscopic fluctua-
tions of the velocity field inside the RVE.

The equations governing the motion of the biphasic media have been presented in [8] and the
reader may refer to [9] for a thorough discussion on these results and on the relevant derivation.

n(f) = 1 − Ĵ (s)n
(s)
0

1
J̄

(3)

(
J̄ ρ̄(f)

)·(s)
+

∂

∂Xj

[
J̄
∂Xj

∂xi
ρ̄(f)(v̂(f)

i − v̄
(s)
i )

]
= 0 (4)

[
J̄ ρ̄(f)

(
v̂
(f)
i − v̄

(s)
i

)]·(s)
+

∂

∂XK

[
Π̄iK + J̄

∂XK

∂xj
ρ̄(f)

(
v̂
(f)
i − v̄

(s)
i

) (
v̂
(f)
j − v̄

(s)
j

)]
=

= J̄ b̄
(fsn)
i + J̄ b̄

′(fs)
i + J̄ b̄

(f)(ext)
i −

(
J̄ ρ̄(f)

) ˙
v̄
(s)
i −

[
J̄ ρ̄(f)

(
v̂
(f)
j − v̄

(s)
j

)] ∂v̄(s)
i

∂xj

(5)

ρ̄
(s)
0

¨
ū

(s)
i =

∂P̂
(s)
iJ

∂XJ
+ J̄ b̄

(sfn)
i + J̄ b̄

′(sf)
i + J̄ b̄

(s)(ext)
i (6)

(
J̄ q̄

(s)
add.

)·
+ SĴ(s) = 0 (7)

Equation (3) expresses the condition of complete saturation while equations (4)-(5) express, re-
spectively, the local form of the macroscopic mass balance and momentum balance for the fluid
phase with respect to the reference configuration of the solid phase. The last two equations (6) and
(7) express the local form of the Euler-Lagrange momentum balance for the solid phase stemming
from the satisfaction of Hamilton’s principle respectively with respect to infinitesimal variations of
of the macroscopic displacement field and to infinitesimal variations of the fieldĴ (s). The sym-

bols in this set of equations have following meaning:x = φ̄
(s) (X) indicates the vector defining

the current position of pointX while v̄(s) = ˙φ̄(s) denotes the macroscopic velocity.n(f) andn(s)
0

respectively denote the current void volume fraction and the volume fraction of the solid phase in
the reference configuration. The field̄ρ(f) is the macroscopic density of the fluid phase obtained
by averaging over the entire volume of the RVE whilev̂(f) indicated the macroscopic velocity of

the fluid obtained by averaging over the void parts of the RVE. The notation
·(s)
(•) denotes thesolid

time derivative[9] and represents, from the physical point of view, the rate measured by an observer
attached to the solid phase. The term̄Π in (5) denotes the pull-back of the tensorn(f)p̂δij ,

Π̄iJ = J̄
∂XJ

∂xi
n(f)p̂ (8)

wherep̂ is the interstitial pressure of the fluid.
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The body force terms appearing on the right hand side of (5)3 have different physical origins.
Actually, the vectors̄b(f)(ext) andb̄(s)(ext) respectively collect all body forces per unit total RVE
current volume which are exerted by the external environment on the fluid and on the solid, while
b̄(fsn) andb̄′(fs) are internal interaction body forces between fluid and solid, so that by virtue of
the action-reaction principle one hasb̄(fsn) = −b̄(sfn) andb̄′(fs) = −b̄′(sf). In particular,b̄′(fs)

collects all drag body force terms per unit total current volume originated by the fluid-solid relative

motion, whileb̄(fsn) = p̂∂n(f)

∂x is an interaction body force which fluid and solid reciprocally ex-
change also in absence of a relative motion and originates from the porosity gradient. The remaining
symbols arêP(s), which is the two-point stress tensor work conjugated toF̄, SĴ(s) andq̄(s)add. which
are respectively the stress and the linear momentum term associated withĴ (s)

P̂
(s)
iJ =

∂
(
J̄ ψ̄(s)

)

∂F̄iJ
, SĴ(s) =

∂J̄ ψ̄(s)

∂Ĵ (s)
, q̄

(s)
add. =

∂χ̄
(s)
add.

∂
˙

Ĵ (s)
(9)

3 THE LINEARIZED MODEL
Let us now proceed to the linearization of the set of equations(3) − (7) starting from a generic

base configuration, denoted in the sequel by a suffix(B), in which a perturbation is applied.

3.1 Kinematic description of the linearized model
The following representation is considered for the perturbed state fields:

ū(s) = ū(s)
B + dū(s), ρ̄(f) = ρ̄

(f)
B + dρ̄(f), v̂(f) = v̂(f)

B + dv̂(f), Ĵ (s) = Ĵ
(s)
B + dĴ (s)

(10)
whereū(s) is the macroscopic displacements field and the prefixd indicates the infinitesimal varia-
tion fields. In place ofdĴ (s), the infinitesimal incrementdε̂(s)v

dε̂(s)v =
dĴ (s)

Ĵ
(s)
B

=

∫

Ω
(s)
0RV E

(X)

JBdε
(s)
v dV

∫

Ω
(s)
0RV E

(X)

JB dV

(11)

whereε(s)v is the infinitesimal local increment of volumetric strain, may be alternatively employed
andJB is the local Jacobian of the deformation of the solid phase associated with the base configu-
ration.

The first order approximation of the macroscopic Green-Lagrange tensor of the solid phase is
Ē(s) = Ē(s)

B + F̄t
Bdε̄

(s)F̄B wheredε̄(s) is the infinitesimal increment of the macroscopic strain
tensor defined as the symmetric part of the macroscopic displacements gradient. The first order
approximation of the macroscopic Jacobian is

J̄ = J̄B + J̄Bdε̄
(s)
v (12)

wheredε̄(s)v = tr dε̄(s) = ∂dū
(s)
l

∂xl
is the infinitesimal increment of the apparent macroscopic volumet-

ric strain.
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3.2 Linearized constitutive equations
In the finite formulation the following spatial stress terms are employed

σ̂
(s)
ij =

1
J̄
Ŝ

(s)
PQ

∂xi

∂XP

∂xj

∂XQ
, σĴ(s) =

∂ψ̄(s)

∂Ĵ (s)
(13)

whereŜ(s) is derivated from the potential (1). As pointed out in [9], the tensorσ̂(s) is a spatial
tensor which, in general, is different from the Cauchy stressσ(s). The former is related tôP(s) and
to its corresponding material reference tensorŜ(s) by the usual transformations holding between
the ordinary Cauchy stress tensor and the relevant first- and second-Piola transforms. Analogous
transformations allow one to convertσĴ(s) in alternative stress measures associated with the material
and the spatial settings

S
ε̂
(s)
v

=
∂J̄ ψ̄(s)

∂dε̂
(s)
v

, σ
ε̂
(s)
v

=
∂ψ̄(s)

∂dε̂
(s)
v

(14)

In the linearized theory the stress incrementsdσ̂(s) anddσĴ(s) , respectively work-conjugated to
ε̄(s) andĴ (s), have to be computed

σ̂(s) = σ̂(Bs) + dσ̂(s), σĴ(s) = σ
(B)

Ĵ(s) + dσĴ(s) (15)

The quantitydσ̂(s) is computed by linearizing equation (13)1 around the base configuration

dσ̂
(s)
ij = ∂(

ū
(s)
l , Ĵ(s)

)
(

1
J̄
Ŝ

(s)
PQ

∂xi

∂XP

∂xj

∂XQ

)
[dū(s)

l , dĴ (s)] (16)

what provides, for a generic hyperelastic law

dσ̂
(s)
ij = D̄(B)

ijlmdε̄
(s)
lm + D̄(B)

Ĵ(s)ij
dε̂(s)v + σ̂

(Bs)
mj

∂dū
(s)
i

∂xm
+ σ̂

(Bs)
im

∂dū
(s)
j

∂xm
− σ̂

(Bs)
ij

∂dū
(s)
l

∂xl
(17)

It can be recognized that, after moving to the LHS the last three terms appearing on the RHS, a
term reminiscent of the Truesdell rate of the Cauchy-like stress tensorσ̂(s) is obtained. The stiffness
operators appearing in (17) are given by

D̄(B)
ijlm =

1
J̄

∂xi

∂XP

∂xj

∂XQ
C̄(B)

PQHK

∂xl

∂XH

∂xm

∂XK
, D̄(B)

Ĵ(s)ij
=

1
J̄

∂xi

∂XP

∂xj

∂XQ
C̄(B)

Ĵ(s)PQ
(18)

and depend in turn on the following fourth-order and third-order material stiffness operators

C̄(B)
PQHK =

∂2J̄ ψ̄(s)

∂Ē
(s)
PQ∂Ē

(s)
HK

∣∣∣∣∣
F̄B,Ĵ

(s)
B

, C̄(B)

Ĵ(s)PQ
=

∂2J̄ ψ̄(s)

∂Ē
(s)
PQ∂Ĵ

(s)

∣∣∣∣∣
F̄B,Ĵ

(s)
B

(19)

Analogously, the linearization ofσĴ(s) around a generic base configuration provides

dσĴ(s) = D̄(B)

Ĵ(s)lm
dε̄

(s)
lm + D̄(B)

Ĵ(s)Ĵ(s)dĴ
(s) − σ

(B)

Ĵ(s)

∂dū
(s)
l

∂xl
(20)

where

D̄(B)

Ĵ(s)lm
=

1
J̄
C̄(B)

Ĵ(s)HK

∂xl

∂XH

∂xm

∂XK
, D̄(B)

Ĵ(s)Ĵ(s) =
1
J̄
C̄(B)

Ĵ(s) Ĵ(s) (21)
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and the material stiffness coefficients in (21) are defined by

C̄(B)

Ĵ(s)HK
=

∂2J̄ ψ̄(s)

∂Ĵ (s)∂Ē
(s)
HK

∣∣∣∣∣
F̄B,Ĵ

(s)
B

, C̄(B)

Ĵ(s) Ĵ(s) =
∂2J̄ ψ̄(s)

∂Ĵ (s)∂Ĵ (s)

∣∣∣∣
F̄B,Ĵ

(s)
B

(22)

Finally, the following linearized expression around the base configuration holds forq̄
(s)
add.

q̄
(s)
add. = q̄

(s)
add.B + dq̄

(s)
add. (23)

wheredq̄(s)add. = ρ̄
(s)
add.

˙
dĴ (s) being, on account of (2)

ρ̄
(s)
add. =

∂2χ̄
(s)
add.

∂
˙̂

J (s)∂
˙̂

J (s)
. (24)

We remark that, although the notation are similar, there is no relation betweenρ̄
(s)
add. and the added

mass term introduced by Biot in [11].

3.3 Linearization around the reference configuration. The special case of an isotropic, homo-
geneous, initially motionless and stress-free base configuration

The present subsection illustrates the expressions obtained by specializing the most general lin-
earized equations, reported in [9], to the case in which base and reference configuration of the solid
phase do coincide; hencēu(s)

B = 0, Ĵ (s)
B = 1 and indexesB and0 are equivalent. We also introduce

the further hypotheses that such configuration is initially motionless, being all time rates of the base
configuration zero, and stress-free, i.e.σ̂(Bs) = 0.

Owing to the coincidence of reference, base and current configurations, all stress tensors col-
lapse to the same tensorσ̂(s) ≡ P̂(s) ≡ Ŝ(s)and the same occurrs for thêJ (s)-conjugated stress
scalarsSĴ(s) ≡ S

ε̂
(s)
v

≡ σĴ(s) ≡ σ
ε̂
(s)
v

as well as for the stiffness operatorsC̄(B) ≡ D̄(B), D̄Ĵ(s) ≡
C̄Ĵ(s) , D̄(B)

Ĵ(s) Ĵ(s) ≡ C̄(B)

Ĵ(s)Ĵ(s) . Employing the usual engineering notation for stress and strain quan-

tities, suitably augmented to account for the additional state variableε̂
(s)
v , the linearized constitutive

relation is accordingly represented by a7×7 symmetrix matrix. The potential (1), after invoking the
isotropy hypothesis, entails a stress-strain relation that admits the following matrix representation




σ̂
(s)
x

σ̂
(s)
y

σ̂
(s)
z

τ̂
(s)
yz

τ̂
(s)
zx

τ̂
(s)
xy

σ
ε̂
(s)
v




=




2Ḡ0 + Z̄0 Z̄0 Z̄0 0 0 0 K̄ ε̄v ε̂v
0

Z̄0 2Ḡ0 + Z̄0 Z̄0 0 0 0 K̄ ε̄v ε̂v
0

Z̄0 Z̄0 2Ḡ0 + Z̄0 0 0 0 K̄ ε̄v ε̂v

0

0 0 0 2Ḡ0 0 0 0
0 0 0 0 2Ḡ0 0 0
0 0 0 0 0 2Ḡ0 0

K̄ ε̂v ε̄v

0 K̄ ε̂vε̄v

0 K̄ ε̂v ε̄v

0 0 0 0 K̄ ε̂v ε̂v

0







ε̄
(s)
x

ε̄
(s)
y

ε̄
(s)
z

γ̄(s)
yz

2
γ̄(s)

zx

2
γ̄(s)

xy

2

ε̂
(s)
v




(25)
We remark that, although this matrix representation is formally similar to the one considered

by Biot and Willis in [1] for the description of the constitutive response of the model devised by
Biot [11], relation (25) describes the elastic response to infinitesimal strains of the solid phase alone,
indipendently from the fluid phase.
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Regarding the physical meaning ofσ
ε̂
(s)
v

, it is shown in [9] that the stress termσ
ε̂
(s)
v

turns out to
be related by the following relation

σ
ε̂
(s)
v

= −p̂n(s) = −p̂
(
1 − n(f)

)
(26)

to the intestitial pressurêp of the fluid in the interconnected cavities.
Finally, having neglected viscous contribution with respect to the drag interaction forces origi-

nated from relative motions between solid and fluid phase, the constitutive relation of the fluid phase
is a simple linear relation connecting the interstitial pressurep̂ and the infinitesimal volumetric strain
of the fluid ε̂(f)

v

p̂ = −K(f)
v0 ε̂

(f)
v (27)

3.4 Linearized governing equations
The linearized governing equations reported in the present work are obtained by specializing

the more general linearized equations, reported in [9], according to the additional above mentioned
hypotheses that characterize experimental static laboratory tests, i.e. both fluid and solid are at rest
and stress-free in the base configuration, homogeneity and isotropy. The linear equations resulting
from the linearization of the set of equations (7) under the above mentioned assumptions are reported
hereafter in the same order:

dn(f) =
(
ε̄(s)v − ε̂(s)v

)
n

(s)
0 (28)

dρ̄(f) = dn(f)ρ̂
(f)
0 + n

(f)
0 dρ̂(f) (29)

·(s)

dρ̄(f) +ρ̄(f)
0

˙
ε̄
(s)
v +

∂

∂xi

[
ρ̄
(f)
0

(
dv̂

(f)
i − dv̄

(s)
i

)]
= 0 (30)

−n(f)
0

∂dp̂

∂xi
+ db̄

′(fs)
i + db̄

(f)(ext)
i = ρ̄

(f)
0

·(s)

dv̂
(f)
i

(31)

ρ̄
(s)
0

¨ū(s)
i = Ḡ0

∂2ū
(s)
i

∂xl∂xl
+

(
Ḡ0 + Z̄0

) ∂2ū
(s)
l

∂xi∂xl
+ K̄ ε̄v ε̂v

0

∂ε̂
(s)
v

∂xi
+ db̄

(sfn)
i + db̄

′(sf)
i + db̄

(s)(ext)
i (32)

ρ̄
(s)
add.0

¨
ε̂
(s)
v + K̄ ε̂vε̄v

0 ε̄(s)v + K̄ ε̂v ε̂v
0 ε̂(s)v = 0 (33)

3.5 Relation between the constitutive laws of the solid phase alone
Relation(26) allows one to analyze the connection between the classic Cauchy stressσ(s) and

the tensor̂σ(s). As a matter of fact, the real Cauchy stress is the macroscopic stress when a defor-
mation is applied on the porous medium in absence of fluid. The absence of fluid is characterized
by the condition̂p = 0 and, consequently, by virtue of (26), by the conditionσ

ε̂
(s)
v

= 0. It is thus

recognized that the elastic matrix relating the Cauchy stress to the strainε̄(s) of the porous solid
phase alone is simpy obtained by static condensation of the elastic matrix (25) in which the term
σ

ε̂
(s)
v

is set equal to zero. The seventh elastic relation in (25) accordingly provides

ε̂(s)v = −K̄
ε̂v ε̄v

0

K̄ ε̂vε̂v
0

(
ε̄(s)x + ε̄(s)y + ε̄(s)z

)
(34)
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and, after substitution, an elastic isotropic stress-strain law is obtained for the solid phase alone
which is characterized by the following Lam´e coefficients:

Ḡ(s) = Ḡ0, λ̄(s) = Z̄0 − (K̄ ε̂v ε̄v
0 )2

K̄ ε̂vε̂v
0

(35)

3.6 Experimental calibration of the elastic coefficients of the linearized constitutive equations
A procedure for the calibration of the constitutive coefficients is illustrated in this section and

the evaluation of the macroscopic response of the medium is derived without resorting to homoge-
nization techniques. This task is carried out in relation to the condition that typically characterize
the specimens in experimental static laboratory tests: small deformations, macroscopically homo-
geneous, initially motionless configuration of the medium, isotropy of both the bulk solid material
and of the macroscopic behaviour; finally, it is further assumed that no initial stress is applied before
the test starts. Under these conditions bothσ

(0)

Ĵ(s) = 0 and σ̂(0s) = 0 and the response to small
perturbations is governed by equations (28)-(33).

The constitutive parameters, entering such linearized formulation, which have to be measured
are

Ḡ0, Z̄0, K̄
ε̄vε̂v

0 , K̄ ε̂v ε̂v

0 , K
(f)
v0 , ρ̄

(s)
0 , ρ̄

(s)
add., n

(f)
0 (36)

In particular, we focus on the determination of the parameters entering the static behaviour,
namelyḠ0, Z̄0, K̄

ε̄v ε̂v

0 , K̄ ε̂vε̂v

0 , K
(f)
v0 , n

(f)
0 , leaving to a following specific work a study of the co-

efficient ρ̄(s)
add. which essentially affects the dynamic response of the medium.

The volumetric stiffness of the fluidK(f)
v0 and the initial densitȳρ(s)

0 can be determined by

customary tests directly carried out on the fluid phase alone. The porosityn
(f)
0 can be measured by

exploiting any of the well codified procedures available based on weight or volumetric comparisons.
Uncoupling between volumetric and deviatoric response allow one to measure the shear modulus
Ḡ0 by means of a simple shear test.

Observing that the remaining three coefficientsZ̄0, K̄
ε̄v ε̂v
0 , K̄ ε̂vε̂v

0 in (36) are all associated with
the constitutive response under isotropic loading conditions, it is convenient to refer to the following
isotropic reduced representation of the elastic response of the solid medium associated with the
isotropic strain measures of the solid phaseε̄

(s)
v andε̂(s)v

[
−p(s)

−p̂n(f)

]
=

[ 2
3
Ḡ0 + Z̄0 K̄ ε̂vε̄v

0

K̄ ε̂vε̄v

0 K̄ ε̂vε̂v

0

] [
ε̄
(s)
v

ε̂
(s)
v

]
(37)

which is obtained from (25). In (37)p(s) is simply defined asp(s) = −1/3tr σ̂(s).
Although these parameters in the formulation are specific property of the solid medium, since

they only depend on the elastic properties of the bulk solid matrix and the particular realization of
the RVE geometry, the tests described hereafter are based on experiments in which the voids are
saturated by a fluid. This is motivated by the need of indirectly controlling the kinematic parameter
ε̂
(s)
v , which is related tôp by (26).

In particular we consider the unjacketed compressibility test devised in [1] and two jacketed
compressibility tests characterized by drainage which is either completely allowed or completely
prevented.

8



We useΩb0 = Ω(s)
b0 ∪Ω(f)

b0 to refer to the reference domain of the biphasic specimen, and∂Ω(sf)
b0

to refer to the part of the boundary ofΩ(s)
b0 which is in contact with fluid phase, using∂Ω(s ext.)

b0 ⊆
∂Ωb0 to refer to the remaining external boundary.

3.7 Unjacketed compressibility test
In this test a specimen of the solid material is immersed in a fluid subject to a pressurep̂ and full

drainage is allowed. Since no costraint exists on the motion of the fluid phase a relative fluid-solid
motion is activated by the application of the pressure.

Since a uniform pressure field̂p exists in the fluid domainΩ(f)
b0 , a uniform boundary pressure

is applied to the boundary of the solid phase∂Ω(s)
b0 , i.e. on both∂Ω(sf)

b0 and∂Ω(s ext.)
b0 . It can be

recognized that, on account of the isotropy of the bulk material, the solution to this elastic problem
for the solid domainΩ(s)

b0 in terms of stress field turns out to be the uniform isotropic stress field
−p̂δij . In other words, as a matter of fact, the pressure field simply extends from the fluid to the
solid phase. As a direct consequence, since the bulk solid is isotropic, the solution in terms of strain

field in Ω(s)
b0 is the uniform fieldε(s)ij =

ε
(s)
v

3
δij while the solution in terms of displacements is

ū(s)(X) =
ε
(s)
v

3
X (38)

whereε(s) is the local microscopic value of the infinitesimal strain andε
(s)
v the associated volumetric

strain. It is also recognized that the extension of the displacement field toΩb0 is still provided by
(38), and consequently still characterized by a uniform volumetric strain. This particular condition of
uniformity for ε(s)v overΩ(s)

b0 and, after extension over the entireΩb0, entails the kinematic constraint

ε̂
(s)
v = ε̄

(s)
v . Under this constraint the second equation of (37) provides the equation

K̄ ε̂vε̄v

0 + K̄ ε̂vε̂v

0

n(f)
= − p̂

ε̄
(s)
v

(39)

where the ratio on the RHS represents the experimentally measured quantity.

3.8 Drained jacketed isotropic compressibility test
In the jacketed compressibility tests an external hydrostatic stress is applied to the biphasic spec-

imen by means of a film or an equivalent sealing device that covers the external boundary∂Ωb0 and
completely prevents drainage through this surface. However, a communicating duct exists between
the internal fluid and an external chamber. This condition implies thatp̂ = 0 before and throughout
the test, so that the presence of the fluid phase can be neglected in all stress balances as if the test
were carried on the solid phase alone. On account of (35) and (37) an equation relating the unknown
coefficients to the ratio between the spherical component of the externally applied loads and the
measured volumetric strain is obtained

2
3
Ḡ0 + Z̄0 −

(K̄ ε̂vε̄v
0 )2

K̄ ε̂v ε̂v
0

= −p
(s)

ε̄
(s)
v

(40)

3.9 Undrained jacketed isotropic compressibility test
In the undrained jacketed compressibility, as in the drained one, a film or an equivalent device that

completely prevents drainage through the boundary is applied. However, differently from the previ-
ous test, no communicating duct exists for the fluid. Solid and fluid external boundaries undergo the
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same macroscopic deformation and, as shown in [9], solid and fluid undergo the same macroscopic
volumetric strain, a condition that specializes toε̄(s)v = ε̄

(f)
v under infinitesimal deformations. Sub-

sequently, an external hydrostatic stressp̂ext is applied. The equilibrium of this mechanical system
has been analyzed in [9] and the following equilibrium condition has been inferred

2
3
Ḡ0 + Z̄0 + 4n(f)K

(f)
v0 −

(
K̄ ε̂v ε̄v

0 − 2n(f)K
(f)
v0

)2

K̄ ε̂vε̂v

0 + n(f)K
(f)
v0

= − p̂
ext

ε̄
(s)
v

(41)

in which the ratio on the RHS is experimentally determined.
Formula (41) together with (39) and (40) provide an algebraic system that can be solved to obtain

the constituve coefficients̄Z0, K̄ ε̂vε̂v
0 andK̄ ε̂vε̄v

0 , as shown in [9].
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