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SUMMARY. The first part of this paper reports a one-dimensional model, proposed in [1], for simu-
lating the microstructural evolution of phase transforming thin wires in uniaxial constrained recovery
conditions. The model can explain the shift to higher transformation temperatures observed in ex-
periments on shape memory wires [2, 3, 4, 5]. The effect of increasing the pre-straining on the
evolution of the recovery stress and on the martensite volume fraction can also be captured [6, 7].
In the second part of the paper, we report a work that is still in progress [8], in which we apply the
model in order to study a composite with shape memory wires. The model is able to qualitatively
reproduce the deformation of a prototype realised in the Laboratory of Metallurgy of the Department
of Engineering at the University of Ferrara.

1 INTRODUCTION
Shape memory alloys are characterised by a reversible, diffusionless, solid-solid phase transfor-

mation between two different crystal configurations (known asausteniteandmartensite). At tem-
peratures lower than a pre-defined critical temperatureθcr, the alloy exists in the martensite phase.
In this phase, the material can be deformed into any arbitrary shape with strains up to 8%. When
the alloy is heated overθcr, it begins to transform back into the austenite or parent phase. During
the reverse transformation from martensite to austenite, the material returns to the pre-deformed
shape. After that, if the temperature falls underθcr once again, the alloy goes into direct, austenite
to martensite transformation. In direct transformation the specimen shape remains unchanged until
an external force is applied. The recovering of the original shape upon heating is known as the shape
memory effect.

The constrained shape memory effect is observed when an external constraint prevents the ma-
terial from returning to the shape it had in the parent phase. For example, in shape memory wires
embedded or bonded to an elastic matrix, shape recovering induced by phase transformation is re-
stricted by the matrix. In this situation, large recovery stresses, up to 700 MPa, are generated [3].

Several studies propose constitutive phenomenological models able to reproduce the macro-
scopic response of shape memory materials in constrained recovery conditions [9, 10, 11, 6, 2]
and in shape memory composites [12, 13, 14]. However, recent experimental work shows that the
evolution of the material microstructure plays an important role in the mechanism at the basis of the
recovery stress generation. In fact, several studies have established that, for pre-strained NiTi fibres,
the reverse (from martensite to austenite) transformation is spread over a much wider temperature
range than the transformation of a fibre in free conditions [2, 4]. Zheng et al. attributed this phe-
nomenon to microstructure evolution, in particular to the transformation of preferentially oriented
martensite variants [5].

In Section 2, we present a one-dimensional model developed in [1], which can simulate the mi-
crostructural evolution of a phase transforming single crystal thin wire. The model is based on the
constrained theory of martensite[15, 16, 17]: stable equilibrium configurations are found among
deformations lying at the energy wells on most part of the wire and minimise the free energy of the
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material. Notably, the input parameters of the model are a small number of fundamental material
constants. On the other hand, the hysteretic behaviour typical of shape memory materials is not cap-
tured. In fact, hysteresis is commonly believed to be associated with metastable states and therefore
with local minimisers of the total energy while in [1] we identify stable equilibrium configurations
with globalminimisers.

In Section 3 we summarise the results of the analysis of the uniaxial constrained recovery per-
formed in [1] by using the model presented in Section 2. These results theoretically confirm Zheng’s
observations. They can also explain the effect of pre-straining and the matrix stiffness on the evolu-
tion of the recovery stress reported in [6, 7].

Smart composites incorporating pre-strained shape memory wires are becoming more and more
popular for shape and position control of structural elements (see [18] and the reference therein).
Important performance parameters for such smart components include those associated with the
geometry and the transforming characteristics of wires, such as diameter, pre-straining and transfor-
mation temperature, and those associated with matrix, such as thickness and stiffness. The interplay
between all these quantities must be taken into account. For example, a minimum level of matrix
rigidity is required not only to return the actuated composite to its original position but also to pre-
strain the embedded wires again for the next cycle. On the other hand, excessive rigidity of the
matrix could become difficult to overcome when trying to achieve the desired deformation.

To understand this and related issues, we have undertaken a study of the deformation of a com-
posite made of a shape memory wire attached to a thin elastic isotropic plate [8]. The thermome-
chanical behaviour of the wire is described by the model presented in Section 1. The plate is assumed
to deform according to the classical small-deformation Kirchhoff theory. We write the total potential
energy of the system and we invoke the principle of stationary potential energy to determine optimal
values of the deformation parameters involved. These give elementary formulae for the relationships
between the in-plane strains and curvatures of the layer and the wire temperature. These formulae
qualitatively describe the deformation of a prototype realised in the Laboratory of the Department
of Engineering at the University of Ferrara.

2 A ONE DIMENSIONAL MODEL FOR PHASE TRANSFORMING THIN WIRES
Let ω ⊂ R2 be an open bounded domain with Lipschitz boundary and unit area, which we iden-

tify with the cross-section of the wire, and letω× (0, L) be the reference, undeformed configuration
of the wire. We introduce a coordinate system so that thex3-axis coincides with the undeformed
wire axis and we denotee3 the x3-axis unit vector. IfL À 1, i. e. if the wire is very thin, its
deformation can be approximately described by the deformation fieldy : (0, L) 7→ R3 of its centre
line [19].

We assume that the wire is in the austenitic phase in the reference configuration and we introduce
the sets of the austenite and of the martensite wells, respectively, defined as

A := SO(3) , M =:
N⋃

i=1

{QUi : Q ∈ SO(3)}, (1)

whereSO(3) is the set of all proper rotations andU1, U2, . . . UN denoteN symmetric and positive
definite3×3 matrices describing the transformation strains from austenite to the martensite variants
[20]. The microstructure of the material is described by a family of Young measuresx3 7→ νx3 , x3 ∈
(0, L), supported onA ∪ M and the macroscopic deformation gradient is viewed as the centre of
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mass of the Young measure:

y,3(x3) =
∫

A∪M

Fe3 dνx3(F ) , a.e. x3 ∈ (0, L). (2)

Thus a couple(νx3 , y) completely describes a configuration of the wire, in the sense that it embeds
information both on the microstructure and on the macroscopic configuration.

The stable equilibrium configurations of the wire are assumed to globally minimise the energy

E((ν, y); θ) =
∫ L

0

(
lm(θ)

∫

M

dνx3(F ) + la(θ)
∫

A

dνx3(F )
)

dx3, (3)

wherela(θ), lm(θ) are the bottom levels of the austenite well and of the martensite wells at temper-
atureθ, respectively. To model the exchange of global minimum between austenite and martensite
occurring in a temperature change, we take∆l(θ) := lm(θ)− la(θ) a monotonic increasing function
in θ, vanishing atθcr. The derivative∆l′(θcr) can be shown to be related to the latent heat of the
phase transformation and, for simplicity, we assume a linear dependence of∆l(θ) from θ nearθcr

∆l(θ) ≈ qρ

θcr
(θ − θcr), (4)

with ρ the density of the material andq the latent heat of transformation per unit mass.
It is interesting to note that the input parameters of the model are a small number of fundamental

material constants: the Bain transformation matricesU1, U2, . . . UN , of which the components can
be obtained from X-ray measurements of lattice parameters of parent and product phases; the equi-
librium transformation temperatureθcr; the density of the materialρ and the latent heat of transfor-
mationq. Both the transformation temperature and the latent heat can be obtained from differential
scanning calorimetry measurements.

3 UNIAXIAL CONSTRAINED RECOVERY
Consider a wire of lengthL in the austenitic state (Fig. 1.a) and deformed in the martensitic state

by an uniaxial extension of amountεc > 0 (Fig. 1.b). To study the constrained shape memory effect,
we suppose that the wire is then bonded to a linear elastic spring of stiffnessk and the system ends
are assumed to be fixed on heating to a temperatureθ > θcr (Fig. 1.c). In the latter configuration,
the wire partially recovers its pre-strainingεc, the spring deforms and stress is generated.

For each value of the temperatureθ, the equilibrium configuration of the wire are the global
minimisers of the total energy

Ek((ν, y); θ) =
∫ L

0

(
lm(θ)

∫

M

dνx3(F ) + la(θ)
∫

A

dνx3(F )
)

dx3 +
1
2
kd2 (5)

among the couples(ν, y) satisfying (2) and the boundary conditions

y(0) = 0 , L(1 + εc) = y(L) · e3 + d, (6)

with d > 0 denoting the spring deformation. To describe the form of the minimiser, we now intro-
duce some notation. We denote

ηi =
1
L

∫ L

0

∫

SO(3)Ui

dνx3(F ), ı = 1, 2, . . . N (7)
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Figure 1: Constrained recovery: (a) initial, reference configuration of the wire (austenitic state), (b)
deformed configuration of the wire after imposing pre-straining below the transformation temper-
atureθcr (martensitic state) and (c) final configuration of the wire attached to a linear spring and
heated aboveθcr (with the material given by a mixture of martensite and austenite).

the volume fraction of thei−th martensite variant and

λ =
N∑

i=1

ηi (8)

the total martensite volume fraction. We also introduce the strain associated to thei−th martensite
variant

γi =| Uie3 |, i = 1, 2, . . . N, (9)

and we denote
γM = max{γi : i = 1, 2, . . . N} (10)

the maximum strain. Note that the martensite variant achieving the maximum may not be unique.
We will call preferentially orientedmartensite variants those variants achieving the maximum in
(10).

In [1], we find that three types of qualitatively different minimisers occur, depending on the
temperature.

• θ < θcr. A unique minimizer(νx3 , y) exists with the wire deformation given by

y(x3) = (1 + εc)x3e3, (11)

and microstructure given by the family of Young measures

νx3 =
N∑

i=1

ηiδQiUi , x3 ∈ (0, L) (12)
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with δ denoting the Dirac mass centered atQiUi and the rotationsQi ∈ SO(3), i = 1, 2, . . . N
chosen such thatQiUie3 = γie3. In (12), the volume fractionsηi, i = 1, 2, . . . N are chosen
to be the solution of the algebraic constrained problem:





∑N
i=1 γiηi = 1 + εc

ηi ≥ 0, i = 1, 2, . . . N,∑N
i=1 ηi = 1 .

(13)

• θ = θcr. A family of minimizers exist. The wire deformation can be any element of the family
of deformations

y(x3) = (λ + εc)x3e3, (14)

parameterized byλ ∈ (εc(γM − 1)−1, 1). The microstructure is given by the family of Young
measures

νx3 =
N∑

i=1

ηiδQiUi
+ (1− λ)δI , x3 ∈ (0, L) (15)

with I the identity matrix. The rotationsQi are chosen as in the previous case and the volume
fractionsηi, i = 1, 2, . . . N are now chosen to be the solution of the algebraic constrained
problem: 




∑N
i=1 γiηi = λ + εc

ηi ≥ 0, i = 1, 2, . . . N,∑N
i=1 ηi = λ .

(16)

• θ > θcr. A unique minimizer(νx3 , y) with y andνx3 still given by (14) and (15) evaluated at

λ =
εc

γM − 1
− ∆l(θ)

kL(γ − 1)2
, (17)

respectively.
By putting together these results and the estimate (4), we can predict the evolution of the marten-

site volume fractionλ with the temperature. As the temperature increases, the material, initially
made of a mixture of martensite variants, changes to a mixture of austenite and martensite. In Fig. 2,
the effect of increasing the pre-strainingεc (Fig. 2.a) and the effect of increasing the spring stiffness
k (Fig. 2.b) are shown. Notably, atθ = θcr the martensite volume fraction displays a discontinuity
from the initial value1, corresponding to a mixture of martensite variants, to the valueεc(γM−1)−1.
This drop corresponds to the transformation of the martensite variants not preferentially oriented into
austenite. This is accompanied by a null macroscopic deformation of the wire. Note that the pre-
dicted volume fractionλ is continuous atθ = θcr only whenεc = γM − 1. This is the maximum
strain recoverable by the wire and in this case all martensite present in the configuration depicted in
Fig. 1.b is made of preferentially oriented variants.

The discontinuity of the martensite volume fraction atθcr may explain the sudden drop of the
martensite fraction observed in experimental martensite fraction/temperature profiles obtained from
electrical resistivity measurements [6], differential scanning calorimetry measurements [2, 4] and
X-ray diffraction results [5]. In [5], this drop is explicitly associated with the transformation of the
not preferentially oriented martensite variants into austenite.
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Figure 2: Evolution of the martensite volume fraction during constrained recovery: a) effect of
increasing pre-straining; b) effect of increasing spring stiffness.
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Figure 3: Evolution of the stress during constrained recovery.
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Notably, our results predict the existence of the transformation temperature range(θcr, θf ) for
the preferentially oriented martensite. Using (4) and (17), we can calculate the temperatureθf at
which all the preferentially oriented martensite variants have been transformed into austenite:

θf = θcr(1 +
kL(γM − 1)

qρ
εc) . (18)

This results agrees with the experimental evidence of a temperature range for the preferentially
oriented martensite [2, 4, 5].

The stress-temperature profile, which can be evaluated using Hooke’s law and (4), (6), (11), (14),
(17), is represented in Fig. 3. The stress linearly increases starting from zero atθcr and reaching a
saturation levelσf at θf . As illustrated in Fig. 3, the stressσf increases as pre-straining and spring
stiffness increases. Experimental observations qualitatively confirm these results [6, 7].

4 DEFORMATION CONTROL OF ELASTIC THIN LAYERS
We consider a layer of in-plane dimensionsl1, l2 and thicknessh upon which a shape memory

wire is attached. We choose a rectangular coordinate system oriented as shown in Fig. 4, so that
the directionz is normal to the plane of the layer withz = 0 lying in the midplane of the layer. As
before,e3 denotes the direction of the wire axis and we letα denote the inclination angle of the wire
from thex−axis.

Before being attached to the layer at its extremities, the wire has been pre-strained of an amount
εc in the martensitic state (as sketched in Fig. 1.b). Our goal here is to calculate the layer deformation
as the temperature of the wire is increased aboveθcr.

O

x

y

z
l2

l1

h

i1
i2

i3

e3

SMA wire

Figure 4: Orientation of the rectangular coordinate system with respect to the layer and to the wire.
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In [8] the layer deformation is analysed under the following assumptions:

- the layer deforms according to the Kirchhoff hypothesis of thin plate theory, with the additional
assumption that the normal stress componentsσzz vanishes everywhere;

- the displacements and all components of the displacement gradient tensor are small compared to
unity so that the linear theory of elasticity can be applied;

- the in-plane strains are uniform extensionsεx, εy along the axesx andy, respectively, and a uni-
form shearεxy;

- the three midplane curvatures, denotedκx, κy andκxy, are spatially uniform;

- the material of the layer is linearly elastic and isotropic with Young’s modulusE and Poisson’s
ratioν;

- free edge effects and stress concentration in the layer due to load transfer between the wire and the
layer are neglected;

- heat transfer between the wire and the layer is neglected and the wire temperature is assumed to
be spatially uniform.

Under these assumptions, the layer energy can be expressed in terms of the corresponding strain
components as follows:

EL(εx, εy, εxy, κx, κy, κxy) =
E

2(1− ν2)
l1l2h(ε2x + ε2y + 2νεxεy + 2(1− ν)εxy)

+
E

24(1− ν2)
l1l2h

3(κ2
x + κ2

y + 2νκxκy + 2(1− ν)κxy).

(19)

The total potential energy of the system, given by the sum of (19) and the wire energy (3), depends
upon the deformation fieldy of the wire centre line, the family of Young measurex3 ∈ (0, L), νx3

describing the wire microstructure and the layer strain componentsεx, εy, εxy, κxx, κyy, κxy. The
stable equilibrium configurations of the system are identified with the solution of constrained min-
imisation of the total potential energy. The constraints which have to be taken into account in the
minimisation are (2) and the continuity conditions of the displacement components at the extremi-
ties of the wire. In [8] it is shown that, in view of the assumptions listed above, the latter conditions
reduce to the single condition

(εx + κx
h

2
) cos2 α + (εy + κy

h

2
) sin2 α− (εxy + κxy

h

2
) sin 2α =

1
L

∫ L

0

y,3 · e3dx3 − εc. (20)

In [8] we show that whenθ > θcr the strain components at equilibrium are

εx = ξ
∆l(θ)

E(γM − 1)
(ν sin2 α− cos2 α), (21)

εy = ξ
∆l(θ)

E(γM − 1)
(ν cos2 α− sin2 α), (22)
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εxy = ξ
∆l(θ)

E(γM − 1)
(1 + ν) sin α cosα, (23)

κx = 6ξ
∆l(θ)

Eh2(γM − 1)
(ν sin2 α− cos2 α), (24)

κx = 6ξ
∆l(θ)

Eh2(γM − 1)
(ν cos2 α− sin2 α), (25)

κxy = 6ξ
∆l(θ)

Eh2(γM − 1)
(1 + ν) sin α cos α, (26)

with ξ the ratio of wire volume to layer volume. Whenθ > θcr the total martensite volume fraction is
still given by (17) withk = l1l2hL−2E. The martensite fraction evolution with temperature displays
the same features depicted in Fig. 2.

In Fig. 5 we compare the layer deformation predicted by the relations (21)-(26) with the de-
formation observed on a prototype developed in the Laboratory of Metallurgy of the Department
of Engineering at the University of Ferrara. The prototype is a polymeric layer, onto which a pre-
strained NiTi strip is attached. As the temperature of the strip is increased above the transformation
temperature via ohmic heating, the strip recovers part of the pre-straining and the polymeric layer is
seen to deform. Under the assumption that the strip works in traction, we model the strip as a wire.
The predicted layer midplane deformation, estimated on the basis of relations (21)-(26) and depicted
on the right-hand side of Fig. 5, qualitatively reproduces the prototype deformation, shown on the
left-hand side of Fig. 5.b. Further details on the prototype and on its behaviour can be found in [8].

Figure 5: Prototype deformation under wire heating (left) and simulated deformation of the layer
midplane at temperature above the transformation temperature (right).
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