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SUMMARY. In this paper Saint-Venant torsion probléas been solved taking the advantage of
complex analysis. In particular three methods frduiméo complex analysis have been compared:
the Complex Variable Boundary Element Method (CVBEMhe Complex Polynomial Method
(CPM) and the Line Element-less Method (LEM), thttdr has been proposed very recently. The
CVBEM takes advantage of the Cauchy’s integral fdarfor the solution of Laplace equations
when mixed boundary conditions on both real andginery parts of the complex potential are
known. The CPM involves the expansion of the caxotential in Taylor series, computing the
unknown coefficients by means of collocation poiotsthe boundary. LEM expand the complex
potential function by a double-ended Laurent sein@slving harmonic polynomials. Numerical
implementation of all methods demonstrate the iefficy and accuracy of them.

1 INTRODUCTION

This paper aims at showing how complex analysis lmarused for the solution of torsion
problems, defining a complex analytic potentialdiving the warping and its harmonic conjugate
function. Three numerical methods will be discussed compared as regards: the Complex
Variable Boundary Element Method (CVBEM), the CdexpPolynomial Method (CPM) and the
Line Element-less Method (LEM) .

The CVBEM takes advantage of the Cauchy’s intefpainula for the solution of Laplace
equations when mixed boundary conditions on bo#dl amd imaginary parts of the complex
potential are known. The CPM involves the expamgibthe complex potential in Taylor series,
computing the unknown coefficients by means ofamation points on the boundary. The order of
the truncation of the series is strictly relatedthe number on chosen nodes, related to the
discretization of the domain. Even though the meths characterized by a remarkable
computational efficiency, it can be applied only é@nvex simply connected domains. Recently it
has been developed the Line Element-less Methondireerical method for finding an approximate
distribution of the shear stresses in Saint-Vegglimder. The method is based on the definition of
a novel complex potential function involving dirgcshear stresses, that has been expanded in
Laurent series. The unknown coefficients of theesecan be evaluated requiring that the square
of the net flux across the boundary of the crossi@e is minimum under the static equivalence
relation. The minimization of the so defined fupctl involves a system of linear algebric
equations with symmetric and positive definite mxattn this paper LEM was applied to a
classical complex potential function, related te tharping function and its harmonic conjugate
function, in order to have a straight comparisomhef results obtained by CVBEM and CPM that
were applied to this potential function. Also byngsthis classical potential function, all intelgra



are conducted to line integrals avoiding any diszagon procedure of the domain or the

boundary. The LEM gives directly a complete desmipof the shear stresses vector field, twist
angle and torsional stiffness factor, while otheutdary method involving complex analysis, the
CVBEM and CPM, return results only in terms of Rithflunction (apart from the constant value

GO). Moreover, for these last two methods, domaiagrls are required to evaluate the torsional
stiffness factor, and then the static equivalerereehto be considered to determine the effective
distribution of the shear stresses.

2 THEORETICAL BACKGROUND

Let us consider a linearly elastic and isotropic $snt-Venant cylinder of length and
arbitrary cross sectioA twisted by a momenM, (L) applied at its end. Cylinder is referred to a
counter-clockwise coordinate system witrandy axes coincident as customary with the principal
axes of inertia of the cross section.

Stress field in Saint-Venant cylinder is completeégfined by
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where (X, Y) represents thwarping functionG the shear modulus of the material afAche

unitary twist angle. The general three-dimensiceglilibrium equations of elasticity, with no
body forces and particularized through (1), areqify:
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in addition the stress components should satiséy fthe-traction boundary conditions on the
surfaceC of the bar, namely:

T, +T,N, =1'N=0 orC ®)

wheren'’ = [Ny, ny] is the outward normal vector to the external sigfat any point o.

In terms of the warping function& (X, Y) the latter may be determined by solving the
following problem

D’w=0 inA; g—?‘):y@—xq onC @)

known as a Neumann problem, beifig =32/ax?+d2/dy?. Alternatively we can have a
Dirichlet boundary value problem, through the stbechPrandtl stress function)l/(x, y)

D% (x y)=-2G8 inA; (x,)= const on ( (5)
being
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Moreover the static equivalence condition on tlessrsection is defined as:
M, =[tTgdA=2[g(x y) dA= @ ) @)
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whereg’ =[—y x]; J, is usually referred to as torsional stiffnessdact

3 COMPLEX POTENTIAL FUNCTION FORMULATION

The elastic equilibrium problem for Saint-Venantimger may be framed iAnto corqplex
analysis introducing a complex analytic functibh(i) of the complex variablez = X+ 1y
defined in the cross section domain[1].

U(2)=aw(x y)+B(x Y 8)

where w(X,y) is the previously defined warping function amt{X,y) its harmonic
conjugate, related to the latter by Cauchy-Rienw@mditions:
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The torsion functiorlJ (2) contains information on both displacements aness#s. In fact,
#(x, y) is related to Prandtl function by:

t//(x,y)=69(¢(x 3&—%(% ﬁ)j (10)

According to the previous relation betwe@tX, y) and¢/(Xx, y), the Dirichlet problem in
eg.(5) assumes the following form:

O%(x,y)=0 in; p(x gzé( X + )?) orC (11)

For both Neumann and Dirichlet problems exact smhst are available only for a restricted
class of cross-sectional geometries namely eljticircular and equilateral triangular cross-
sections. When dealing with domains of a compleapsh numerical methods such as the
Boundary Difference Method, and the Finite Elemitgthod, are widely used. However, both
methods need a discretization of the whole domaity ¥ime consuming and with this respect
Boundary Element Methods make it possible to retstrneself to the discretization of only the
boundary domain. In this context the Complex Pomgiad Method (CPM), the Complex Variable
Boundary Element Method (CVBEM) and the Line Eletdess Method (LEM) can be



considered efficient tools for the numerical analyaf the Laplace equation solution improving
computational facility by use of complex analysis.

3.1  The CVBEM for torsion problem

The CVBEM has been developed by Hromadka [2] fa #olution of general problems
involving Laplace or Poisson equations. L&tbe a simply connected domain with a piecewise
continuously differentiable boundafy , which is a simple closed curve of finite length.

Chosenn nodesZ, on the contoulC , the following approximate potential function mag
defined:

0(2):a+aoi+zn:ak(‘z— ?log,, (272 (12)

k=1

where a, =a, +ib, (a,,b0C) are complex unknown coefficients. There are diifer

versions of CVBEM, but the widely used is the latbme. Moreover, let us suppose that only
boundary values for the imaginary pat(i) of the complex potential are known. Then the

function ¢(2) can be expressed, by (12), as:

n
#(2)=Db+ glIm[ 3+ QRe[ApZ( am[ £("}+ IRe[ ,(f(A)%) (13)
k=1
The unknown coefficientst, a, andl, may be found solving a system obtained imposing
the known boundary values (11 EXZJ.):¢]. , with j=1,2,...,81+ £, where the evaluation
points 2]. are a new set of equally spaced points chosehebadntour of the domain.
It is worth to note that, although the CVBEM belsrtg the category of the boundary element
methods, the complete solution of the torsion probtan be achieved only by solving a domain
integral.

3.2 The CPM for torsion problem

The Complex Polynomial Method has been propose#itmyadka and Guymon [3] for the
evaluation, in a simple connected domdn of a complex analytic potential function, whose
values on the boundar§@ are known. In particular, the torsion problem #osimply connected
domain can be solved defining the potential functimeq. (8) that can be expressed in polynomial
form. Taking into account only its imaginary partdausing the polar coordinates= pcosd
and y = psind, the function¢(x, y) can be written in the following form:

¢(p,z9)=b0+iakpksinkz9+ ho* coskd (14)
k=1

wherea, andb, may be determined imposing the known associatendary condition, in



terms¢(,0,z9) =,02/2. Analogously to the CVBEM case, the torsionalfséés factor may be

evaluated only by means of the domain integral, ithalso for this method boundary conditions
alone are not sufficient to complete determinettingion problem solution.

3.3 The LEM for torsion problem

Recently Di Paola et al [4] introduced the Line raét-less Method (LEM), where the
potential function defined in (8), being analytit all the domainA, may be expanded in the
double-ended Laurent series as:

U(2)=> a(z-%)" a0 C (15)

k=-c0
Where(i— %)k with k>0 is analytic in the whole domain, while fbr<O0 it is analytic with
exception of the poinf,, that is called a pole of ordér. In eq.(15) the serie} a, (2~ 7) is
k=0
called regular part and it is capable to express any analytic funcewerywhere. While the
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summationz a'k(i— ?o)k is called principal part and accounts for singularities i . It

k=—00
follows that if the functiorlJ (2) is analytic everywhere (including the boundary &jjl then
only the regular part will be accounted for. Geﬂynaowers(i)k are denoted aB, +iQ, where

P and Q, are the so-called harmonic polynomigls’P, =0,0°Q, =0 [0k), defined as
follows:

R(xy)=Re(x+iy); Q(xy=In » i) (16)
and they may be evaluated recursively as
R((X, y): Rax- Q.Y Q( X }’: Qx Py kC (17)
__ R(xy . __Q(xy
P (%) PKZ(X'y)Jer(XQ,Qk(X)) 5% 1F A XY k>0 (18)

with P, =1,Q,=0,B=x,Q= V.
The derivatives of the harmonic polynomials areduby the following recursive properties:

OR, oR 0 0
a—;:kﬁ-li a_;z_kQ—l; a_?((: kQ—:L; a_?;: k'ﬁl; Ok (19)

By letting a, =a, +ib, (ak,ka C) in eq.(15) and assuming, =0 the complex potential
function is now expanded in terms of harmonic potwials in the form:



U(R)=w(x )+ #(x )= (aP-bQ+ B (aQ+ bB 0
k=-co k=—co
If the initial point Z, of the Laurent series is selected as differenhfmero, then it is enough
to define B and Q. as R =Ref(x—%)+i(y- yo} and Q =Im[(x=x)+i(y- yo} and
the ensuing derivations don t change.
This means that, taking into account the expres@nthe Prandtl functiorql/(x, y), being
defined unless a constant, can be written in teriirmonic polynomials as:

+00

g(xy)=c Z(qq+me)—§( k+ §)+ a (21)

k=-0c0

k#0

Due to the relations (6) betwear(X, y) and¢ (X, y) an approximation for the shear stresses
7, (% y)and 7,,(x y) can be expressed in terms of truncated Laureriessaf harmonic

polynomials as follows:

=Gg Z(akkFl)(—l_qu«l)_ ;sz:_ (P 2( @le*' Qkﬂ)_ (22)
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By letting:
_rlp—rl—l(x' y) - rlQ—rl—l( X y) a—r1 b—r1
=P, (% ) -Q, (%Y a, b,
p\x.y)= o aLxy = ; a= ; b= . (23)
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Eqgs.(22) can be expressed as:
t(x y)=GI[D(x y)+g] 442
where:
_iptoat A Y
D(x,y)= 4 - w=llg=| (25)

As apparent eq.(24) completely fulfils equilibritand compatibility equations in the domain,
but, since the series in equations (22) are tredcedtaining the first; +r, terms, equations (24)
may not fulfil in each point of the conto@ the free-stress boundary conditions (3).



In order to satisfy the latter, it has been prodosigat the unknown coefficient&y are
evaluated by introducing the following functional:

D(W,é?):[ljC T n dC mc rzxnx+rzyny dc (26)

that is the squared value net flux of the shearsstivectorr through the boundary of the
domain, and minimizing it with respect o and & under the static equivalence condition (7):

O(w,6) =[J]C(1:Tn)2dC= min - subjected to [ 7'gdA= M, (27)

At this step another novel point, introduced in, [4]that surface integrals in equation (27) are
converted into line integrals avoiding any dis@ation of the inner domain. In order to do this,
taking into account relations (19) between harmglynomials and their derivatives, the static
equivalence condition may be rewritten in termbafmonic polynomials as:

GHKZ%{% (6P J pj( ax gdih 8J= M (29

where | » represents the polar inertia moment. It is sttégivard that equation (28) may be
written in the form:

GHZ[ [ divu, dA+ B diw, dA+ @ L= M, (29)

k¢0

whereu, andv, are given as:
Ry . _| yQ(xY].
R(xY[ " QU Y

Then, according to the Green lemma, the integraksquation (29) may be performed as line
boundary integrals as follows:

u, = (30)

GHZ[qq(+bKdK]+G9I (31)

—h
k¢0

wherec, = Ululndc; d = mcvln dC. By collectingc, and d, in the following vectorh as:

3 (32)

h' =‘c

W C_2 Q) (;2 d_r1 d_2 q q

equation (31) can be expressed in a compact forfiollasvs: Goh'w + G@Ip =M,
Then the constrained minimum problem describedguragons (27) may be solved by using
the Lagrange multiplier method by performing thenimiization of the free enlarged functional



expressed in the following form:

D(W,H,/\)ZUl(TTn)ZdC+)(G9hTW+ &I, - Mz)zvrpgg (33)
where A is the Lagrange multiplier. Solving the systemvied by the minimization, the
unknown series coefficient& ,as well as the twist anglé may be evaluated, that is a complete
torsion problem is determined in terms of Prandtiction from equation (21), shear stress field
from equation (24), and warping function and itsnmanic conjugate as real and imaginary part of
the potential function from equation (20). For siynponnected regions the contoGr is the
external one and the series starts frkm 1, that is only the regular part of the Laurent eeiis
accounted for. For multiply-connected regions thgous line integrals are simply performed on
the summation of the external and internal contohesice, as previously pointed out, also the
principal part of the Laurent series is neededthacbolesZ, must be opportunely selected.

It is worth to note that, in spite of CPM and CVBEtfle LEM returns directly the value of the
twist angle &, so that the torsional stiffness, defined in equaf7), may be simply evaluated as:

J, =M, /G without performing any integral on the domain aguieed from the previous two

methods. Moreover it has to be emphasized thatdtson problem has been solved without
requiring any discretization of the boundary or themain, so that the LEM can be really

considered a truly no-mesh method.

4 NUMERICAL APPLICATION

In this section some applications on simply conegaross-sections will be reported in order
to compare accuracy and efficiency of the threipusly described methods. Proper algorithms
based on the theories described in the previoutosschave been developed using Fortran and
Mathematica 6.0 environments. The cases whose exddion is known [5], namely circular,
elliptic and equilateral triangular domains havereerformed. Firstly, results provided by CPM
and CVBEM are reported in terms of torsional séffa factor], (Table 1) for different set of
nodes. Then results by LEM on the same crossesectire reported in Table 2, specifying the
terms of unknown series coefficients, Lagrange ipligt A, shear stresses distributiong and
T,y Prandtll//(x, y) and Warpinga)(x, y) functions and torsional stiffness factdy for the
elliptic and equilateral triangular cross-sectioAs shown in Table 2, all the Laurent series
coefficients are equal to zero (no matter the vaifig), except fora, for the elliptical cross-
section anada, for the triangular one. It is worth to note that the circular cross-section all the
series coefficients are equal to zero, then acongrti equation (22y,, = -Gy and T, = GOx
with 8 = MZ/GI .

It has to be emphasized that the method is robughé sense that it exactly reproduces
solutions for all the cases in which the analyt®alution is already known without requiring any
discretization neither on the domain nor its boupdand in this case the boundary condition is
satisfied continuously on the contour domain.

Table 1) Computed values of torsional stiffnessdiad, for various values of numberof nodes



n circle (R=1) ellipse (a=2, b=1) triangle (a=1)

CPM CVBEM CPM CVBEM CPM CVBEM
15 1.5708 1.5708 5.02656 5.02907 3.11769 3.11885
33 1.5708 1.5708 5.02656 5.02701 3.11769 3.11883
75 1.5708 1.5708 5.02656 5.02667 3.11769 3.11736

Table 2) Results by LEM for shear stresses foptathl and equilateral triangular cross-sections

Cross-section ellipse triangle
oo -] _
eries coefficients 8, = 2(a2 +b2) & &
Lagrange multipliera 0 0
. , (a®+ )M, 5M,
Unitary twist angled e N
2M, GO
Shear stresses,, (X, y) Y 5(x2 - y? - 2ay)
2M, GO
Shear stresses, (X, y) S x ~(a-y)x
) x°b? + y?a’| M, GO, ,
Prandtl funct|0nt//(x, y) -%monst a(3x y- y*-3ad - 3ayz) + cons
. . 2+ X =3xy?
Warping functlona)(x, y) el o
3 4
Torsional stiffness factod, e Ll o3
a+ b 5

Moreover, regarding a case whose exact solutiowtiknown, a cross-sections with the form
of hypocycloid is reported. In Fig. 1a resultgénms of stress lines corresponding to the contour
lines of the Prandtl functioy/ (X, y) obtained by LEM with r=18 are depicted, while iig.FLb
results obtained by CVBEM, that are almost the saiitte those obtained by CPM, are reported in
terms of(,l/(x, y)/Gé?having considered a boundary discretization usihgddes.

5 CONCLUSIONS

In this paper a comparison among three numericéhads for the solution of torsion problems
in Saint-Venant cylinder of an arbitrary, but umifg cross section, has been proposed. In this
context the Complex Polynomial Method (CPM), themptex Variable Boundary Element
Method (CVBEM) and the Line Element-less Method K)Ecan be considered efficient tools for
the numerical analysis of a torsion problem, imjmgwcomputational facility by use of complex
analysis. However, LEM overcomes the limits of @M, in the sense that while the CPM can be
applied only to convex simply connected domaingyiLéan be applied both for simply and multi-
connected domains, with the introduction in the ¢ase of the principal part of the Laurent series.
Moreover, the LEM allows to set the order of truima of the Laurent series a priori, while for
the CPM the same order is related to the numberodés, that is to the boundary discretization.



The applicability to multi-connected domains resalbe a limit for the CVBEM as well, that
has the only advantage to be able to solve probfemsross-sections with reentrant angles. For
these cases the LEM can still be applied replattiegreentrant angles with circular joints, and
introducing opportunely singularity points in thengplex potential function.

Figure 1:a) contour lines of the Prandtl functigr{ X, y) obtained by LEM with r=18;
b) @(x y)/G8 by CVBEM and by CPM using 50 nodes.
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