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SUMMARY. In this paper Saint-Venant torsion problem has been solved taking the advantage of 
complex analysis. In particular three methods framed into complex analysis have been compared: 
the Complex Variable Boundary Element Method (CVBEM),  the Complex Polynomial Method 
(CPM) and the Line Element-less Method (LEM), the latter has been proposed very recently. The 
CVBEM takes advantage of the Cauchy’s integral formula for the solution of Laplace equations 
when mixed boundary conditions on both real and imaginary parts of the complex potential are 
known. The CPM  involves the expansion of the complex potential in Taylor series, computing the 
unknown coefficients by means of collocation points on the boundary. LEM expand the complex 
potential function by a double-ended Laurent series involving harmonic polynomials. Numerical 
implementation of all methods demonstrate the efficiency and accuracy of them. 

1 INTRODUCTION 

This paper aims at showing how complex analysis can be used for the solution of torsion 
problems, defining a complex analytic potential involving the warping and its harmonic conjugate 
function. Three numerical methods will be discussed and compared as regards: the Complex 
Variable Boundary Element Method (CVBEM),  the Complex Polynomial Method (CPM) and the 
Line Element-less Method (LEM) . 

The CVBEM takes advantage of the Cauchy’s integral formula for the solution of Laplace 
equations when mixed boundary conditions on both real and imaginary parts of the complex 
potential are known. The CPM  involves the expansion of the complex potential in Taylor series, 
computing the unknown coefficients by means of collocation points on the boundary. The order of 
the truncation of the series is strictly related to the number on chosen nodes, related to the 
discretization of the domain. Even though the method is characterized by a remarkable 
computational efficiency, it can be applied only for convex simply connected domains. Recently it 
has been developed the Line Element-less Method, a numerical method for finding an approximate 
distribution of the shear stresses in Saint-Venant cylinder. The method is based on the definition of 
a novel complex potential function involving directly shear stresses, that has been expanded in 
Laurent series. The unknown coefficients of the series can be evaluated requiring that the square 
of the net flux across the boundary of the cross-section is minimum under the static equivalence 
relation. The minimization of the so defined functional involves a system of linear algebric 
equations with symmetric and positive definite matrix. In this paper LEM was applied to a 
classical complex potential function, related to the warping function and its harmonic conjugate 
function, in order to have a straight comparison of the results obtained by CVBEM and CPM that 
were applied to this potential function. Also by using this classical potential function,  all integrals 



are conducted to line integrals avoiding any discretization procedure of the domain or the 
boundary. The LEM gives directly a complete description of the shear stresses vector field, twist 
angle and torsional stiffness factor, while other boundary method involving complex analysis, the 
CVBEM and CPM, return results only in terms of Prandtl function (apart from the constant value 
Gθ ). Moreover, for these last two methods, domain integrals are required to evaluate the torsional 
stiffness factor, and then the static equivalence have to be considered to determine the effective 
distribution of the shear stresses.  

 

2 THEORETICAL BACKGROUND 

Let us consider a linearly elastic and isotropic De Saint-Venant cylinder of length L and 
arbitrary cross section A twisted by a moment ( )zM L applied at its end. Cylinder is referred to a 
counter-clockwise coordinate system with x  and y axes coincident as customary with the principal 
axes of inertia of the cross section.  

Stress field in Saint-Venant cylinder is completely defined by  
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where ),( yxω represents the warping function, G  the shear modulus of the material and θ  the 

unitary twist angle. The general three-dimensional equilibrium equations of elasticity, with no 
body forces and particularized through (1), are given by: 
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in addition the stress components should satisfy the free-traction boundary conditions on the 
surface C of the bar,  namely: 

 

0T ==+ nτyzyxzx nn ττ              on C                                  (3) 

 

where ],[T
yx nn=n  is the outward normal vector to the external surface at any point on C.  

In terms of the warping function , ),( yxω the latter may be determined by solving the 
following problem 
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                         (4) 

 known as a Neumann problem, being 2 2 2 2 2x y∇ = ∂ ∂ + ∂ ∂ . Alternatively we can have a 
Dirichlet boundary value problem, through the so-called Prandtl stress function  ( ),x yψ   

( ) ( )2 , 2       in ; ,            on x y G A x y const Cψ θ ψ∇ = − =                     (5) 

being 
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Moreover the static equivalence condition on the cross-section is defined as: 

 ( )T 2 ,z t

A A

M dA x y dA G Jψ θ= = =∫ ∫τ g                                                    (7) 

where [ ]T y x= −g ; tJ  is usually referred to as torsional stiffness factor.  

3 COMPLEX POTENTIAL FUNCTION FORMULATION 

The elastic equilibrium problem for Saint-Venant cylinder may be framed into complex 
analysis introducing a complex analytic function ( )ˆU z  of the complex variable ̂z x iy= +  
defined in the cross section domain[1].  

 ( ) ( ) ( )ˆ , ,U z x y i x yω ϕ= +                                                       (8) 

where ( ),x yω  is the previously defined warping function and ( ),x yϕ  its harmonic 
conjugate, related to the latter by Cauchy-Riemann conditions: 
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                                                     (9) 

The torsion function ( )ˆU z  contains information on both displacements and stresses. In fact, 
( ),x yϕ  is related to Prandtl function by: 

 ( ) ( ) ( )2 21
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                                        (10) 

According to the previous relation between ( ),x yϕ  and ( ),x yψ , the Dirichlet problem in 
eq.(5) assumes the following form: 

( ) ( ) ( )2 2 21
, 0                  in ; ,       on 

2
x y A x y x y Cϕ ϕ∇ = = +                    (11) 

For both Neumann and Dirichlet problems exact solutions are available only for a restricted 
class of cross-sectional geometries namely elliptical, circular and equilateral triangular cross-
sections. When dealing with domains of a complex shape, numerical methods such as the 
Boundary Difference Method, and the Finite Element Method, are widely used. However, both 
methods need a discretization of the whole domain very time consuming and with this respect 
Boundary Element Methods make it possible to restrict oneself to the discretization of only the 
boundary domain. In this context the Complex Polynomial Method (CPM), the Complex Variable 
Boundary Element Method (CVBEM) and the Line Element-less Method (LEM) can be 



considered efficient tools for the numerical analysis of the Laplace equation solution improving 
computational facility by use of complex analysis. 

3.1  The CVBEM for torsion problem 

The CVBEM has been developed by Hromadka [2] for the solution of general problems 
involving Laplace or Poisson equations. Let A  be a simply connected domain with a piecewise 
continuously differentiable boundary C , which is a simple closed curve of finite length.  

Chosen n  nodes ̂ kz  on the contour C , the following approximate potential function may be 
defined: 
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                             (12) 

where ( )   ,k k k k ka ib a b Cα = + ∈  are complex unknown coefficients. There are different 

versions of CVBEM, but the widely used is the latter one. Moreover, let us suppose that only 
boundary values for the imaginary part ( )ẑϕ  of the complex potential are known. Then the 

function ( )ẑϕ  can be expressed, by (12), as: 
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The unknown coefficients a , ka  and kb  may be found solving a system obtained imposing 
the known boundary values (11 b) ( )ˆ j jzϕ ϕ=(

, with 1,2,...,3 5j n= + , where the evaluation 
points ˆ jz  are a new set of equally spaced points chosen on the contour of the domain. 

It is worth to note that, although the CVBEM belongs to the category of the boundary element 
methods, the complete solution of the torsion problem can be achieved only by solving a domain 
integral. 

3.2 The CPM for torsion problem 

The Complex Polynomial Method has been proposed by Hromadka and Guymon [3] for the 
evaluation, in a simple connected domain A , of a complex analytic potential function, whose 
values on the boundary C  are known. In particular, the torsion problem for a simply connected 
domain can be solved defining the potential function in eq. (8) that can be expressed in polynomial 
form. Taking into account only its imaginary part and using the polar coordinates cosx ρ ϑ=  
and siny ρ ϑ= , the function ( ),x yϕ  can be written in the following form: 
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1
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r

k k
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k
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where ka  and kb  may be determined imposing the known associate boundary condition, in 



terms ( ) 2, 2ϕ ρ ϑ ρ= . Analogously to the CVBEM case, the torsional stiffness factor may be 

evaluated only by means of the domain integral, that is also for this method boundary conditions 
alone are not sufficient to complete determine the torsion problem solution. 

3.3 The LEM for torsion problem 

Recently Di Paola et al [4] introduced the Line Element-less Method (LEM), where the 
potential function defined in (8), being analytic in all the domain A , may be expanded in the 
double-ended Laurent series as: 
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where ( )0ˆ ˆ
k

z z−  with 0k >  is analytic in the whole domain, while for 0k <  it is analytic with 

exception of the point 0ẑ , that is called a pole of order k . In eq.(15) the series ( )0
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called regular part and it is capable to express any analytic function everywhere. While the 

summation ( )
1

0ˆ ˆ
k

k
k
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−
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−∑  is called principal part and accounts for singularities in 0ẑ . It 

follows that if the function ( )ˆU z  is analytic everywhere (including the boundary and 0ẑ ) then 

only the regular part will be accounted for. Generally powers ( )ˆ
k

z  are denoted as k kP iQ+  where 

kP and kQ  are the so-called harmonic polynomials 2 2( 0 , 0   )k kP Q k∇ = ∇ = ∀ , defined as 

follows: 
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and they may be evaluated recursively as  
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with 0 0 1 11, 0, , .P Q P x Q y= = = =  
The derivatives of the harmonic polynomials are ruled by the following recursive properties: 
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By letting ( )   ,k k k k ka ib a b Cα = + ∈  in eq.(15) and assuming 0ˆ 0z =  the complex potential 
function is now expanded in terms of harmonic polynomials in the form: 
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If the initial point 0ẑ  of the Laurent series is selected as different from zero, then it is enough 
to define kP  and kQ  as ( ) ( )0 0Re

k

kP x x i y y= − + −    and ( ) ( )0 0Im
k

kQ x x i y y= − + −    and 
the ensuing derivations don’t change. 

This means that, taking into account the expression (8), the Prandtl function ( ),x yψ , being 
defined unless a constant, can be written in terms of harmonic polynomials as: 
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Due to the relations (6) between ( ),x yτ  and ( ),x yψ  an approximation for the shear stresses 
( ),zx x yτ and ( ),zy x yτ  can be expressed in terms of truncated Laurent series of harmonic 

polynomials as follows: 
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By letting: 
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Eqs.(22) can be expressed as: 

 ( ) ( ), ,x y G x yθ=  +  τ D g                                                  (24) 

where: 

 ( ), ;    ;    ;
T T

T T

y
x y

x

−−
= = =

− −
ap q

D w g
bq p

                                  (25) 

As apparent eq.(24) completely fulfils equilibrium and compatibility equations in the domain, 
but, since the series in equations (22) are truncated retaining the first 1 2r r+  terms, equations (24)  
may not fulfil in each point of the contour C  the free-stress boundary conditions (3). 



In order to satisfy the latter, it has been proposed that the unknown coefficients w  are 
evaluated by introducing the following functional: 

 ( ) ( ) ( )2 2
, T

zx x zy yC C
dC n n dCθ τ τℑ = = +∫ ∫w τ n� �                      (26) 

that is the squared value net flux of the shear stress vector τ  through the boundary of the 
domain, and minimizing it with respect to w  and θ  under the static equivalence condition (7): 

 ( ) ( )2

,
, min subjected toT T

zC A
dC dA M

θ
θℑ = = =∫ ∫w

w τ n τ g�                  (27) 

At this step another novel point, introduced in [4], is that surface integrals in equation (27) are 
converted into line integrals avoiding any discretization of the inner domain. In order to do this, 
taking into account relations (19)  between harmonic polynomials and their derivatives, the static 
equivalence condition may be rewritten in terms of harmonic polynomials as: 
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where pI  represents the polar inertia moment. It is straightforward that equation (28) may be 
written in the form: 
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where ku  and kv  are given as:  
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Then, according to the Green lemma, the integrals in equation (29) may be performed as line 
boundary integrals as follows: 
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where: ;    T T
k k k kC C

c dC d dC= =∫ ∫u n v n� � . By collecting kc and kd in the following vector h  as: 
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T
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equation (31) can be expressed in a compact form as follows: T
p zG G I Mθ θ+ =h w   

Then the constrained minimum problem described in equations (27)  may be solved by using 
the Lagrange multiplier method by performing the minimization of the free enlarged functional 



expressed in the following form: 

 ( ) ( ) ( )2

, ,
, , minT T

p zC
dC G G I M

θ λ
θ λ λ θ θℑ = + + − =∫ w

w τ n h w�  (33) 

where λ  is the Lagrange multiplier. Solving the system provided by the minimization, the 
unknown series coefficients w ,as well as the twist angle θ  may be evaluated, that is a complete 
torsion problem is determined in terms of Prandtl function from equation (21), shear stress field 
from equation (24), and warping function and its harmonic conjugate as real and imaginary part of 
the potential function from equation (20). For simply connected regions the contour C  is the 
external one and the series starts from 1k = , that is only the regular part of the Laurent series is 
accounted for. For multiply-connected regions the various line integrals are simply performed on 
the summation of the external and internal contours; hence, as previously pointed out, also the 
principal part of the Laurent series is needed and the poles 0ẑ  must be opportunely selected. 

It is worth to note that, in spite of CPM and CVBEM, the LEM returns directly the value of the 
twist angle θ , so that the torsional stiffness, defined in equation (7), may be simply evaluated as: 

t zJ M Gθ= without performing any integral on the domain as required from the previous two 

methods. Moreover it has to be emphasized that the torsion problem has been solved without 

requiring any discretization of the boundary or the domain, so that the LEM can be really 

considered a truly no-mesh method. 

4  NUMERICAL APPLICATION 

 
In this section some applications on simply connected cross-sections will be reported in order 

to compare accuracy and efficiency of the three previously described methods. Proper algorithms 
based on the theories described in the previous sections have been developed using Fortran and 
Mathematica 6.0 environments. The cases whose exact solution is known [5], namely circular, 
elliptic and equilateral triangular domains have been performed. Firstly, results provided by CPM 
and CVBEM are reported in terms of torsional stiffness factor tJ  (Table 1) for different set of 
nodes. Then results by  LEM on the same cross-sections are reported in Table 2, specifying the 
terms of unknown series coefficients, Lagrange multiplier λ , shear stresses distributions zxτ  and 

zyτ , Prandtl ( ),x yψ  and warping ( ),x yω  functions and torsional stiffness factor tJ  for the 
elliptic and equilateral triangular cross-sections. As shown in Table 2, all the Laurent series 
coefficients are equal to zero (no matter the value of r), except for 2a  for the elliptical cross-
section and 3a  for the triangular one. It is worth to note that for the circular cross-section all the 
series coefficients are equal to zero, then according to equation (22) zx G yτ θ= −  and zy G xτ θ=  
with z pM GIθ = . 

It has to be emphasized that the method is robust in the sense that it exactly reproduces 
solutions for all the cases in which the analytical solution is already known without requiring any 
discretization neither on the domain nor its boundary, and in this case the boundary condition is 
satisfied continuously on the contour domain.  

 
Table 1) Computed values of torsional stiffness factor tJ  for various values of number nof nodes 

 



n circle (R=1) ellipse (a=2, b=1) triangle (a=1) 
 CPM CVBEM CPM CVBEM CPM CVBEM 

15 1.5708 1.5708 5.02656 5.02907 3.11769 3.11885 
33 1.5708 1.5708 5.02656 5.02701 3.11769 3.11883 
75 1.5708 1.5708 5.02656 5.02667 3.11769 3.11736 

 
Table 2) Results by LEM for shear stresses for elliptical and equilateral triangular cross-sections 
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Moreover, regarding a case whose exact solution is not known, a cross-sections with the form 

of hypocycloid  is reported. In Fig. 1a results in terms of stress lines corresponding to the contour 
lines of the Prandtl function ( ),x yψ obtained by LEM with r=18  are depicted, while in Fig. 1b 
results obtained by CVBEM, that are almost the same with those obtained by CPM, are reported in 
terms of ( ),x y Gψ θ having considered a boundary discretization using 50 nodes. 

5 CONCLUSIONS 

In this paper a comparison among three numerical methods for the solution of torsion problems 
in Saint-Venant cylinder of an arbitrary, but uniform, cross section, has been proposed. In this 
context the Complex Polynomial Method (CPM), the Complex Variable Boundary Element 
Method (CVBEM) and the Line Element-less Method (LEM) can be considered efficient tools for 
the numerical analysis of a torsion problem, improving computational facility by use of complex 
analysis. However, LEM overcomes the limits of the CPM, in the sense that while the CPM can be 
applied only to convex simply connected domains, LEM can be applied both for simply and multi-
connected domains, with the introduction in the last case of the principal part of the Laurent series. 
Moreover, the LEM allows to set the order of truncation of the Laurent series a priori, while for 
the CPM the same order is related to the number of nodes, that is to the boundary discretization. 



The applicability to multi-connected domains result to be a limit for the CVBEM as well, that 
has the only advantage to be able to solve problems for cross-sections with reentrant angles. For 
these cases the LEM can still be applied replacing the reentrant angles with circular joints, and 
introducing opportunely singularity points in the complex potential function.  

 
 
 
 
 
                      
 
 
 
 
 
 
 
                                                                               

 
 

 
 
Figure 1:a) contour lines of the Prandtl function ( ),x yψ obtained by LEM with r=18;  
b)   ( ),x y Gψ θ   by CVBEM and by CPM using 50 nodes. 
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