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SUMMARY The incremental response of a random aggregate of identical, elastic, frictional
spheres, that has been isotropically compressed, is studied. We focus on the behavior of such an
aggregate when an incremental shear strain is applied with the coefficient of friction among parti-
cles assumed to be large enough to prevent any sliding; we see that, depending on the coordination
number (the average number of contacts per particle), a number of local mechanisms occurs. That
is, particles experience a motion not associated to the applied deformation and the aggregate can not
be always considered elastic. Consequently, it is possible to identify two main regimes of deforma-
tion. In the first, we have an almost reversible behavior and a number of mechanisms negligible;
the aggregate is assumed to be elastic and a theoretical model is considered by approximating the
kinematic of contacting particles with an average and fluctuation deformation. The other regime is
characterized by inelasticity; that is, several particles do not return to the initial configuration when
a forward incremental shear strain followed by an identical reverse incremental strain is applied.

1 INTRODUCTION
The mechanical properties of confined granular materials have still several obscure points of un-

derstanding. Both elastic and inelastic behavior of such an aggregate are still poorly described by
few theoretical models available that, at most, work well in particular regime of deformation. Here
we restrict our attention to the first incremental response that finds considerations on wave speed
problems. For example, many industrial applications, such as the optimization of well localization
in an oil reservoir, crucially depend on the correct interpretation of acoustic effects in granular ma-
terials. It is exemplified by the large variation of sound speeds or elastic constants of the granular
formation as a function of the initial confining pressure.

The theoretical models present in literature (e.g [1, 2, 3, 4]) introduce different hypothesis to
describe the kinematic of contacting particles: their comparison with numerical simulations and ex-
periments (e.g. [5, 6]) have shown merit and failure. Among other things, a key issue that emerges is
that the response of the aggregate is strictly related to the coordination number, the average number
of contacts per particle [7]. Our investigation refers to the incremental shear strain response of an
idealized granular material, made by a random aggregate of identical, elastic, frictional spheres, by
means of computer analysis, based on a distinct element method (DEM) [8]. We characterize the
incremental behavior of the packing by the usual parameters of the initial isotropic state, confining
pressure, porosity and coordination number and also, through the incremental partecipation num-
ber Π̇ [9]; it represents a measure of inhomogeneity of the incremental forces and varies with the
coordination number.

We show that particles can experience an irreversible behavior when small increments in strain
are superimposed on the initial prestressed equilibrium configuration. We interpret this phenomenon
as consequence of local lability in the packing [10]. We provide a strength of the irreversibility
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through a parameter ζ that measures the residual displacements of the particles in the aggregate
after an incremental loading and unloading strain. We show how ζ decreases with the coordination
number toward an almost constant regime, irrespective to the confining pressure. Local lability does
not seem to affect the failure of the whole aggregate but it determines a weakness in the response. For
high ζ the agreement between simulation and theory is quite good while for lower ζ the discrepancy
increases. That is, the theory [4], based upon an elastic model in which particles move according to
an average strain field and a fluctuation one, does not include particle rearrangement; therefore, for
lower value of the coordination number such a theory can be seen as an upper bound for the effective
moduli obtained by means of numerical simulation.

2 SIMULATIONS
We use the distinct element method [8] to prepare random assemblies of identical, frictional,

elastic spheres. We deal with aggregates of 10,000 particles with radius R = 0.1mm randomly
generated in a periodic cubic cell. We employ material properties typical for glass spheres with shear
modulus µ = 29GPa and Poisson’s ratio, ν = 0.2. The interaction between particles is represented
by a non-central contact force in which the normal component follows the non-linear Hertz’s law
and for the tangential component we incorporate a bilinear relationship with elastic displacement and
frictional Coulomb sliding with friction coefficient µf = 0.3 (details are given in [5]). Our protocol
creates different initial isotropic states by varying the coefficient of friction among particles during
the preparation. More details about the procedure followed can be found in [7]. All packings are
defined as dense with the solid volume fraction φ close to the RCP value (φ ∼0.64). As final results
we have dense packings of particles with the same confining pressure p0 but different coordination
number Z̄.

3 INCREMENTAL AVERAGE STRESS TENSOR
The general expression for the average incremental stress tensor for an aggregate of N particles

is given by [11]

σ̇ij =
1

V tot

NC∑
c=1

Ḟ c
i d

c
j , (1)

where NC is the total number of contacts in the aggregate, V tot is the total volume of the aggregate,
Fc is the contact force among contacting pair of particles and dc is the contact vector that goes from
center to center of contacting particles. We can rewrite equation (1) by collecting the contact forces
for pairs of particles whose contact vectors are close to a given direction. We take Mp to be the
number of pairs with contact vectors within the pth element of R equal elements ∆Ωp of solid angle
in which the surface of the unit sphere has been partitioned such that

∆Ωp =
4π
R
, (2)

R∑
p=1

Mp = 2q. (3)

Then

σ̇ij =
1

V tot

q∑
c=1

Ḟ c
i d

c
j =

1
2

1
V tot

R∑
p=1

Mp∑
t=1

Ḟ t
i d

t
j . (4)
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Next, following [12], we introduce a conditional average as〈
Ḟidj

〉
d̂p

=
1
Mp

∑
d(CD)⊂∆Ωp

Ḟ
(CD)
i d

(CD)
j , (5)

where F(CD) is a contact force for a pair within the element of solid angle centered on d̂p. Then,
upon assuming that Ḟ and d are not correlated and with 〈d〉d̂p = dp, the incremental stress tensor
becomes

σ̇ij =
1
2

1
V tot

R∑
p=1

Mp
〈
Ḟidj

〉
d̂p

=
1
2

1
V tot

R∑
p=1

Mp
〈
Ḟi

〉
d̂p
dp

j . (6)

The corresponding conditional average of the incremental contact force is〈
Ḟ
〉

d̂p
=

1
Mp

∑
d̂(CD)⊂∆Ω(BA)

Ḟ(CD); (7)

and equation (6) becomes

σ̇ij =
1
2
N

V tot

R∑
p=1

Mp

N

〈
Ḟi

〉
d̂p
dp

j , (8)

where we recall that N is the total number of particles in the aggregate, equal to twice the number
of pairs.

4 INCREMENTAL RESPONSE
4.1 Numerical calculation

The elastic response of the aggregate has been evaluated following [5] where, after an homo-
geneous incremental strain, we let the aggregate relax toward a new equilibrium state. Once the
deformation to apply has been fixed, we are able to measure the stress response of the material and
calculate the modulus as G = ∆σ12/∆ε12. In Figure 1 we note, as already emphasized in [5], a
peak in stress associated to the homogeneous perturbation and a subsequent relaxation. Because of
the random positions of the particles and their different initial contact stiffness due to the isotropic
compression, the homogeneous applied strain is followed by a relaxation. This relaxation may in-
volve a rearrangement of the particles in the aggregate; in this case the incremental response is
irreversible. On the contrary, when the relaxation occurs saving a fixed geometry of the aggregate,
the incremental response can be considered reversible and then elastic. In this case the relaxation is
only associated to the fluctuation motion among particles.

4.2 Theory
The simplest theoretical approach is based upon the effective medium theories, developed by

Digby and Walton [1, 13]. Contact displacement among particles is determined by the average
strain; force and moment equilibrium are identically satisfied by virtue of an assumed symmetry for
each particle. As result we have that the prediction of the elastic moduli is far in agreement with
that obtained by numerical simulation; moreover the shear modulus scale with p1/3 (the aggregate
is seen as a simple collection of Hertian contacting spheres) in contrast with what simulation shows.
Yet, as already underlined by [7], this dependence occurs if we collect aggregates with almost equal
coordination number which seems to exbiht the same number of mechanisms or irreversibility. That
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Figure 1: Numerical protocol for the calculation of the elastic response of the aggregate when an
increment in shear is applied.

is, the peculiarity of the aggregates to behave as a collection of elastic spheres regards all particles
except those that experience a not reversible deformation.

A better agreement between theory and simulation has been obtained by [4] where they introduce
fluctuations in the kinematic of contacting particles and in their geometrical structure. Moreover
force and moment equilibrium are explicitly taken in account because applied for a typical pair
of particles; in this way fluctuations in kinematic are evaluated while statistical consideration are
introduced to reproduce variability of the neighborhood for each pair in the aggregate. The results
for the shear modulus is summarized as follows:

Ḡ =
φZ̄

5πd
(
KN −KT

)
[1− 2 (ρ+ ρ∗)]

+
φZ̄

5πd
KT

[
5
2
− 5 (ρ+ ρ∗) + 3 (ξ + ξ∗)

]
(9)

where

KN =
µd1/2

(1− ν)
δ1/2, (10)

KT =
2µd1/2

(2− ν)
δ1/2 (11)
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are the normal and tangential average contact stiffness and with the normal component δ of the
contact displacement given by

δ = d

[
3π
2

(1− ν)
vZ

p

µ

]2/3

; (12)

and

ρ =
(

22− 3Z
24Z

− 22− 3Z

24Z
2

)
+

1
8
χ, (13)

ρ∗ = ρ(1− 2ρ+ 2ξ), (14)

ξ = −
(

13Z
24

)−1
[

1−
(

13Z
24

)−1
](

22− 3Z
16

)
− 261

676
χ, (15)

ξ∗ = ξ(2ξ + 1− 2ρ). (16)

The terms in ρ and ξ, proportional to Z, are different from zero for Z ≤ 22/3. Moreover we also
underline that Z has been treated as random variable independent and the term χ is function of Z ′2
and Z̄2, where Z ′ is the fluctuation in number of contacts per particle.

Figure 2: Variation of the incremental partecipation number with Z̄.
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4.3 Partecipation Number
In order to study how the distribution of contact forces vary in the aggregate and its influence

on the stress tensor, we introduce a statistical parameter to quantify the degree of localization of the
force during the incremental applied deformation. This parameter is the participation number Π̇,
introduced in [9]; for it we take the incremental form such that

Π̇ =

NC
NC∑
i=1

q̇2
i

−1

(17)

where

q̇i =
∣∣∣Ḟi

∣∣∣ / NC∑
j=1

∣∣∣Ḟj

∣∣∣ (18)

where
∣∣∣Ḟj

∣∣∣ is the magnitude of the incremental total force at contact j. In particular, Π̇ = 1 means

a spatial homogeneous force distribution
(
q̇i = 1/NC∀i

)
. On the other hand, in the limit case of

complete localization, Π̇ ≈ 1/NC− > 0 when NC− >∞.
Π̇ a simple scalar value that characterize the response of the aggregate. That is, the incremental

participation number can be seen as a weight parameter for the active contacts in the aggregate. The
other scalar parameter, the coordination number, has a geometric dependency on the aggregate as it
does not change during the applied increments and it is only function of the pre-compressed state of
equilibrium. The incremental participation number, instead, can be understood as a measure of how
the incremental contact forces have been activated by the incremental loading.

In Figure 2 we plot the results of the calculation of Π̇ and how it varies when an incremental
shear strain is applied to each one of our packings. The variation with the coordination number is
presented and we note that the behavior does not depend on the confining pressure but it is related
to the coordination number alone. In particular, the incremental contact forces are distributed more
equally as the coordination number increases; that is the applied strain actives a large amount of
contacts. On the other hand, for low coordination number a kind of localization of the incremental
contact forces seems to appear.

5 IRREVERSIBLE MOTIONS
The elastic response of the aggregate can only be associated to those deformations that are re-

versible. We take in account the possibility that the incremental shear strain may cause a change of
configuration of the aggregate. We introduce a parameter that measures the residual displacement
of the particles associated to a forward incremental shear strain and a subsequent, identical reverse
deformation such that the initial configuration should be recovered for the pure elastic case. This
paramenter is defined as

ζ =
1
N

N∑
i=1

∣∣∣x(2)
i − x(0)

i

∣∣∣〈∣∣∣x(1)
i − x(0)

i

∣∣∣〉 (19)

where N is the total number of particles in the aggregate, x(0)
i , x(1)

i and x(2)
i are the position

vector of the center the i − th particle, respectively in the reference state, in the relaxed state after
the forward incremental strain and in the relaxed state after the reverse incremental strain.
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Figure 3: Variation of ζ with Z̄ for increments in shear and compression.

Note that in the aforementioned cycle of deformation, for an ideal elastic system,∣∣∣x(2)
i − x(0)

i

∣∣∣ = 0 for every i − th particle. We measure ζ in all our packings by applying an
increment in shear that is function of the confining pressure; the ratio of each magnitude to the vol-
ume strain associated with the confining pressure is constant at about 10−2. The results are plotted
in Figure 3, in which ζ is shown as function of Z̄. It is clear that ζ does not depend on the confining
pressure of the aggregate, but only on the coordination number such that if we collect aggregates
with similar Z̄ they exhibit the same number of mechanisms or irreversibility. ζ increases as Z̄ de-
creases and it is almost zero for Z̄ ≥ 6; when ζ 6= 0 irreversibility occurs for some particles and
we argue that they are associated to the presence of local instability [10]. That is, there are some
neighborhoods that can not sustain a load and a motion not proportional to the load occurs, in order
that a new equilibrated configuration is reached. In the context of shear bands [15], such collective
motion in the absence of shear stress is also seen; it occurs in a region in which particles have fewer
contacts. Such a phenomenon has some kind of connection with our present experience.

For high Z̄ the number of irreversible motions is so small that their effect is negligible and the
response of the aggregate can be assumed to be elastic. On the contrary, when Z̄ decreases, the
strength of the irreversibility increases and the definition of shear modulus is questionable; that is
an elastic theory is not appropriate to describe the incremental response. In Figure 4 the comparison
between the prediction of the shear modulus given by the fluctuation theory (see equation 9) and the
measurements of numerical simulations is proposed. In the range of high Z̄, where it is possible to
consider the behavior of the aggregate as elastic, there is a good agreement between theory and nu-
merical data, showing that such a model is able to reproduce the variation of Ḡ with the coordination
number. When Z̄ decreases, the simulation diverges and we argue that the discrepancy that appears
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Figure 4: Comparison between theory and numerical simulation for the normalized shear modulus
Ḡ/p

1/3
0

is related with the irreversible motions seen in the simulations.

6 CONCLUSIONS
For an isotropic, confined, idealized granular material a detailed description of the response to

an incremental shear strain is given. It is provided in terms of the parameter of the reference state,
pressure, coordination number and porosity and the degree of localization of the contact forces, the
partecipation number. Moreover we see that particles may experience irreversibility even when small
perturbations are applied, those that are typically considered to measure the incremental response of
the aggregate. We introduce a strength for this irreversibility by considering the possibility of mech-
anisms in the aggregate. This feature results to be sensitive to the coordination number. Therefore
we distinguish an elastic regime where the number of mechanism is negligible from that in which
mechanism become relevant (irreversible regime). In the first regime, comparison between fluctua-
tion theory and simulations is appropriate and the results are in a good agreement.
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