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SUMMARY.
In the present work we propose a cylindrical cloak for elastic waves, which has been designed

for fully-coupled in-plane shear and pressure waves. The cloaking device is a functionally graded
material where the elastic properties are deduced from coordinate transformation [A. Greenleaf et al.
Maths. Res. Lett. 10,1 (2003), Pendry et al., Science312, 1780 (2006)]. The main property of the
proposed model lies in the fact that the chosen reparameterization is such that the elasticity equations
maintain their initial form under the transformation, which is generally untrue in the elasticity case
[Milton et al., New J. Phys.8, 248 (2006)].

Numerical checks that freely vibrating obstacles located inside the neutral region are cloaked
disrespectful of the frequency and the polarization of the incoming elastic wave validate the model.

1 INTRODUCTION
Invisibility has been a source of fascination and an inspiration of myths,novels and films, from

the mythical magical artifact Ring of Gyges mentioned by thephilosopher Plato inThe Republic
to the Cheshire Cat fromAlice’s Adventures in Wonderland and the ships in theStar Trek universe
equipped with hardware known as cloaking devices that conceal them from most varieties of scans.
Recently invisibility turned from a device of fiction into a subject of science, in particular signifi-
cant progress has been made on the control of acoustic and electromagnetic waves. Transformation
based solutions to the conductivity and Maxwell’s equations in curvilinear coordinate systems, sub-
sequently reported by Greenleafet al. [1] and then by Pendryet al. [2] and Leonhardt [3], enable one
to bend electromagnetic waves around arbitrarily sized andshaped solids. More precisely, the elec-
tromagnetic invisibility cloak is a metamaterial which maps a concealment region into a surrounding
shell: as a result of the coordinate transformation the permittivity and permeability are strongly het-
erogeneous and anisotropic within the cloak, yet fulfillingimpedance matching with the surrounding
vacuum. The cloak thus neither scatter waves nor induces a shadow in the transmitted field. In [4],
a cylindrical electromagnetic cloak constructed using specially designed concentric arrays of split
ring resonators, was shown to conceal a copper cylinder around8.5 GHz. Other routes to invisibility
include reduction of backscatter [5] and cloaking through anomalous localized resonances, the latter
one using negative refraction [6]. To date, a plethora of research papers has been published in the
fast growing field of transformation optics.

In the case of elastodynamic waves and structural mechanics, transformation based invisibility
cloaks received less attention, since the Navier equationsare in general variant under geometric
changes [7, 8]. For cylindrical geometries the problem is slightly simplified since out-of-plane shear
waves decouple from in-plane waves; however, in-plane shear and pressure waves remain inherently
coupled. Neutral elastic inclusions were proposed in the past using asymptotic and computational
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methods to find suitable material parameters for coated cylindrical inclusions [9]. The latter has
proved successful in the elastostatic context in the case ofanti-plane shear and in-plane coupled
pressure and shear polarizations. However, neutrality breaks down for finite frequencies.

Restricting the analysis to acoustic waves in a fluid, the equations of motion undergo the same
geometric transform as electromagnetic waves do and therefore retain their form [7, 10]. This result
has been since then generalized to three-dimensional acoustic cloaks for pressure waves [11, 12].
Importantly, such cloaks require an anisotropic mass density which can be obtained via a homog-
enization approach, which presents the advantage to be broadband. Acoustic cloaking for linear
surface water waves was chiefly achieved via the same mechanism in between10 and15 Hertz [13].

In the present work, we show that it is also possible to designa cylindrical cloak for in-plane
coupled pressure and shear elastic waves. We demonstrate theoretically its unique mechanism and
further perform finite element computations checked again analytical calculations of the Green’s
function for the Navier equations in transformed coordinates. The main difference with previous
work [6] is that our elasticity tensor in the transformed coordinates is no longer symmetric, which is
a necessary condition for the Navier equations to retain their form. Quite remarkably, we find that
the density remains a scalar quantity in the transformed coordinates.

2 EQUATIONS OF MOTION
We consider time-harmonic propagation of in-plane elasticwaves, the problem is described by

the Navier equations
∇ · C : ∇u + ρ ω2

u + b = 0 , (1)

whereu is the displacement,ρ the density,C the4th-order constitutive tensor of the linear elastic
material andb = b(x) represents the spatial distribution of a simple harmonic body forceb̂(x, t) =
b(x) exp(iωt), with ω the wave-frequency andt the time.

3 TRANSFORMED EQUATIONS OF MOTION
In fig. 1, we consider the following coordinate transformation(r, θ) → (r′, θ′) of [1, 2]

{

r′ = r0 + r1−r0

r1

r , θ′ = θ , for r ≤ r1

r′ = r , θ′ = θ , for r > r1.
(2)

The geometric transform is expressed in cylindrical coordinatesr =
√

x2

1
+ x2

2
andθ = 2atan(x2/(x1+

√

x2

1
+ x2

2
)), with r0 andr1 the inner and outer radii of the circular cloak, respectively.

As a result of the transformation (2), in the regionr′ ∈ [r0, r1] the Navier equations (1) are
mapped into the equations

∇ · C
′ : ∇u + ρ′ω2

u = 0 , (3)

where the support of the body force is outside the ring. The stretched density is

ρ′ =
r − r0

r
(

r1

r1 − r0

)2 ρ, (4)
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Figure 1: Geometric transform of eqn.(2) from(r, θ) (Fig.1(a)) to(r′, θ′) (Fig.1(b));r0 andr1 are
the inner and the outer radius of the cylindrical cloak, respectively. The elastic constitutive tensor
and the density in the undeformed and in the deformed domainsare denote byC, ρ andC

′, ρ′,
respectively.

and the elasticity tensorC′ has non zero cylindrical components

C
′

rrrr = r−r0

r
(λ + 2µ), C

′

θθθθ = r
r−r0

(λ + 2µ),

C
′

rrθθ = C
′

θθrr = λ, C
′

rθθr = C
′

θrrθ = µ,

C
′

rθrθ = r−r0

r
µ, C

′

θrθr = r
r−r0

µ,

(5)

with λ andµ the Lamé moduli characterizing the isotropic behavior described byC. Note thatC′

has not the minor symmetries.
It is important to stress the fact that the transformation (2) preserves the isotropy of the density,

which remains a scalar (yet spatially varying) quantity in (3), and the stressσ = C
′ : ∇u depends

directly only on the displacement gradient and not on the displacementu. This is a very unlikely
situation for elastodynamic waves propagating in anisotropic heterogeneous media [7]. We also
note that the proposed formulation poses no limitations on the appliedω ranging from low to high
frequency, as the elasticity tensor and the density do not depend uponω.

4 MATCHING OF ELASTIC IMPEDANCE
At the cloak outer boundary, namely forr = r1, the geometric transform (2) providesr′ = r1.

Therefore on this interface the transformed density is

ρ′ =
r1

r1 − r0

ρ, (6)

and the following transformed cylindrical components of the elasticity tensor are

C
′

rrrr =
r1 − r0

r1

(λ + 2µ), C
′

rθrθ =
r1 − r0

r
µ. (7)
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Figure 2: Elastic cloak in an elastic medium subjected to a concentrated load. (a) Displacement
magnitudeu =

√

u2

1
+ u2

2
; (b) deformationε11 = ∂u1

∂x1

; (c) deformationε22 = ∂u2

∂x2

; (d) deformation

ε12 = ε21 = 1

2
(∂u1

∂x2

+ ∂u2

∂x1

).

The elastic impedances

Zp =
√

ρ′C′

rrrr ω =
√

ρ(λ + µ) ω, Zs =
√

ρ′C′

rθrθ ω =
√

ρµ ω, (8)

do not suffer any jump atr = r1, avoiding any reflection.

5 NUMERICAL RESULTS
For the purpose of validation of the model we show in the following some finite element compu-

tations performed in the COMSOL multiphysics package. In particular, the elastic cloak of equation
(5) is embedded in an isotropic elastic material with Lamé moduli λ = 2.3 andµ = 1 and density
ρ = 1, which correspond to normalized parameters for fused silica. The inner and outer radii of the
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elastic cloak arer0 = 0.2 m andr1 = 0.4 m, respectively.
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Figure 3: Harmonic Green’s function in homogeneous elasticspace. (a) Displacement magnitudeu;
(b) deformationε11; (c) deformationε22; (d) deformationε12.

We apply an harmonic unit concentrated force applied in directionx1 and vibrating with angular
frequencyω = 40 Hz. In order to model the infinite elastic medium surroundingthe cloak a perfectly
matched cylindrical layer has been implemented (cf. outer ring on panels a, b, c and d of Fig.2); this
has been obtained by application of the geometric transform[14],

r′′ = r2 + (1 − i)(r − r2), θ′′ = θ, (9)

wherer2 = 1 m is the inner radius of the outer ring in Fig. 2.
It is shown in fig. 2 that the wave patterns of the displacementand deformations are smoothly

bent around the central region within the cloak (where the magnitudes are nearly zero). Irrespectively
of the fact that the coupling of shear and pressure waves generated by the concentrated force creates
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the optical illusion of interferences, the comparison withthe analytic harmonic Green’s function
in homogeneous elastic space (see e.g. [15]) reported in Fig. 3 shows, at least qualitatively, that
there is neither forward nor backward scattering. The absence of scattering is better detailed in Fig.
4, where results of Fig. 2 and Fig. 3 are compared: the perfectagreement of the displacement
and deformation fields in the external matrix with and without the cloak is shown, the distortion
being bounded to the central region delimited by the cloak. These are non-intuitive results, as the
profiles of the horizontal and vertical displacements in Fig. 4 should display a visible phase shift,
since the associated acoustic paths are different. More precisely, let us look at the expression of the
elasticity tensor given in (5). On the inner boundary of the cloak, that is forr = r0, its components
C

′

rrrr andC
′

rθrθ vanish, whereas its componentsC
′

θθθθ andC
′

θrθr tend to infinity. This physically
means that pressure and shear waves propagate with an infinite velocity in the azimuthalθ-direction
along the inner boundary, which results in a vanishing phaseshift between a wave propagating in a
homogeneous elastic space and another one propagating around the concealed region: this explains
the superimposed profiles of horizontal and vertical displacements in Fig. 4.
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Figure 4: Comparison between numerical results in presenceof the elastic cloak of Fig. 2 (black
dots) and Green’s function in homogeneous elastic space of Fig. 3 (grey lines). Results are given
along the lineAB detailed in Fig. 2(a). (a) Horizontal displacementu1; (b) Vertical displacement
u2.

In addition, we point out that the concentrated load propagates both shear and pressure com-
ponents of elastic waves, which are inherently coupled; thedisplacement and deformation field
distributions in Fig. 3 show that the inclusion is cloaked independently of the polarization.

Another property of the proposed model, which is important to note, is that the transformation
does not affect the radian frequencyω and, therefore the formulation works for every appliedω.
This can be easily checked by comparing the Navier eqn. (1) with the modified Navier equation
(2) and it is represented in Fig. 5 where the displacement magnitudeu distribution is plotted for
ω = 20, 40, 60.
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Figure 5: Elastic cloak in an elastic medium subjected to a concentrated load. The displacement
magnitudeu is plotted for the same material parameters of Fig. 2 and forω = 20, 40, 60.

6 CONCLUSIONS
In the present work an elastic cloak bending the trajectory of in-plane coupled shear and pressure

elastic waves around a cylindrical obstacle has been porposed. The device can be designed by the
use of heterogeneous density and heterogeneous and anisotropic elastic stiffness; the distribution of
the physical properties has been obtained with the introduction of stretched coordinates. Our results
open new vistas in cloaking devices for elastodynamic wavesin elastic media with non-symmetric
constitutive tensor yet with an isotropic density. These can be fabricated with the introduction of
metamaterials (in particular of structural interfaces), designed down to the microscopic level.
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