Invisibility to in-plane elastic waves
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SUMMARY.

In the present work we propose a cylindrical cloak for etastaves, which has been designed
for fully-coupled in-plane shear and pressure waves. Toekihg device is a functionally graded
material where the elastic properties are deduced frondauate transformation [A. Greenleaf et al.
Maths. Res. Lett. 10,1 (2003), Pendry et al., Scien8&2, 1780 (2006)]. The main property of the
proposed model lies in the fact that the chosen repararmatienmn is such that the elasticity equations
maintain their initial form under the transformation, whiic generally untrue in the elasticity case
[Milton et al., New J. Phys8, 248 (2006)].

Numerical checks that freely vibrating obstacles locatesidie the neutral region are cloaked
disrespectful of the frequency and the polarization of tte®ming elastic wave validate the model.

1 INTRODUCTION

Invisibility has been a source of fascination and an inspiration of mgth&ls and films, from
the mythical magical artifact Ring of Gyges mentioned by phdosopher Plato irThe Republic
to the Cheshire Cat frorAlice's Adventures in Wonderland and the ships in th&ar Trek universe
equipped with hardware known as cloaking devices that adrtbem from most varieties of scans.
Recently invisibility turned from a device of fiction into algect of science, in particular signifi-
cant progress has been made on the control of acoustic atttbefagnetic waves. Transformation
based solutions to the conductivity and Maxwell's equationcurvilinear coordinate systems, sub-
sequently reported by Greenletfil. [1] and then by Pendrst al. [2] and Leonhardt [3], enable one
to bend electromagnetic waves around arbitrarily sizedsiwaghed solids. More precisely, the elec-
tromagnetic invisibility cloak is a metamaterial which nsapconcealment region into a surrounding
shell: as a result of the coordinate transformation the fiivity and permeability are strongly het-
erogeneous and anisotropic within the cloak, yet fulfillimpedance matching with the surrounding
vacuum. The cloak thus neither scatter waves nor induceadoshin the transmitted field. In [4],
a cylindrical electromagnetic cloak constructed usingcigly designed concentric arrays of split
ring resonators, was shown to conceal a copper cylindenai®a GHz. Other routes to invisibility
include reduction of backscatter [5] and cloaking througbraalous localized resonances, the latter
one using negative refraction [6]. To date, a plethora oéaesh papers has been published in the
fast growing field of transformation optics.

In the case of elastodynamic waves and structural mecharesformation based invisibility
cloaks received less attention, since the Navier equatomsn general variant under geometric
changes[7, 8]. For cylindrical geometries the problemighsly simplified since out-of-plane shear
waves decouple from in-plane waves; however, in-planersdr@pressure waves remain inherently
coupled. Neutral elastic inclusions were proposed in thet psing asymptotic and computational



methods to find suitable material parameters for coateddasital inclusions [9]. The latter has
proved successful in the elastostatic context in the casiplane shear and in-plane coupled
pressure and shear polarizations. However, neutraligidsrdown for finite frequencies.

Restricting the analysis to acoustic waves in a fluid, theagos of motion undergo the same
geometric transform as electromagnetic waves do and tireredtain their form [7, 10]. This result
has been since then generalized to three-dimensionalticolagaks for pressure waves [11, 12].
Importantly, such cloaks require an anisotropic mass tiemdiich can be obtained via a homog-
enization approach, which presents the advantage to bellteod. Acoustic cloaking for linear
surface water waves was chiefly achieved via the same merhémbetweeri0 and15 Hertz [13].

In the present work, we show that it is also possible to deaigglindrical cloak for in-plane
coupled pressure and shear elastic waves. We demonstatetioally its unigue mechanism and
further perform finite element computations checked agaadydical calculations of the Green's
function for the Navier equations in transformed coordiésatThe main difference with previous
work [6] is that our elasticity tensor in the transformed iboates is no longer symmetric, which is
a necessary condition for the Navier equations to retaiim fbem. Quite remarkably, we find that
the density remains a scalar quantity in the transformeddtoates.

2 EQUATIONS OF MOTION
We consider time-harmonic propagation of in-plane elastiges, the problem is described by
the Navier equations
V-C:Vu+pw’u+b=0, (1)

whereu is the displacemenp the densityC the 4t_order constitutive tensor of the linear elastic
material and = b(x) represents the spatial distribution of a simple harmonéylforceb(x, t) =
b(x) exp(iwt), with w the wave-frequency anthe time.

3 TRANSFORMED EQUATIONS OF MOTION
In fig. 1, we consider the following coordinate transforroatir, 6) — (r,6’) of [1, 2]

(2)

r':ro—l—%r,e’zﬁ, forr <ri
r=r,0 =80, forr > rl.

The geometric transform is expressed in cylindrical cauatés: = /2% + 22 andf = 2atar(zs/(z1+
V2% + z3)), with ro andr, the inner and outer radii of the circular cloak, respectivel

As a result of the transformation (2), in the regidne [rq, 1] the Navier equations (1) are
mapped into the equations
V-C:Vu+puw?u=0, (3)

where the support of the body force is outside the ring. Tietcdted density is

’ r—To T1 2

P = T(m) Ps (4)



Figure 1: Geometric transform of eqn.(2) frdm 6) (Fig.1(a)) to(+', 8’) (Fig.1(b));ro andr; are
the inner and the outer radius of the cylindrical cloak, eespely. The elastic constitutive tensor
and the density in the undeformed and in the deformed donaaimslenote byC, p andC’, o/,
respectively.

and the elasticity tensdt’ has non zero cylindrical components
C;’T’F’P == (>‘ + 2:“’)7 (C/GGGG = T—T—ro ()\ + 2:“’)7

T
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with X\ andy the Lamé moduli characterizing the isotropic behaviorcdesd byC. Note thatC’
has not the minor symmetries.

It is important to stress the fact that the transformatigmg2serves the isotropy of the density,
which remains a scalar (yet spatially varying) quantity3dj, @nd the stress = C’ : Vu depends
directly only on the displacement gradient and not on thpldeementu. This is a very unlikely
situation for elastodynamic waves propagating in anigitréieterogeneous media [7]. We also
note that the proposed formulation poses no limitationsherajppliedv ranging from low to high
frequency, as the elasticity tensor and the density do numupono.

4 MATCHING OF ELASTIC IMPEDANCE
At the cloak outer boundary, namely for= r;, the geometric transform (2) provides= r,.
Therefore on this interface the transformed density is

1
P = 2 (6)
M —7To

and the following transformed cylindrical components & glasticity tensor are
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Figure 2: Elastic cloak in an elastic medium subjected to recentrated load. (a) Displacement
magnitude: = \/u? + u3; (b) deformatiore;; = g—gi; (c) deformatioress = g—gz; (d) deformation

1,0 P
€12 = €21 = (Gt + 522)-

The elastic impedances

Zy=\pCrrppw=VpA+t W w,  Zs=/pClyw=\ppw, €)

do not suffer any jump at = r{, avoiding any reflection.

5 NUMERICAL RESULTS

For the purpose of validation of the model we show in the feifg some finite element compu-
tations performed in the COMSOL multiphysics package. Inipalar, the elastic cloak of equation
(5) is embedded in an isotropic elastic material with Lamgdndi A = 2.3 andy = 1 and density
p = 1, which correspond to normalized parameters for fusedssilltie inner and outer radii of the



elastic cloak arey = 0.2 m andr; = 0.4m, respectively.

Figure 3: Harmonic Green'’s function in homogeneous elagtice. (a) Displacement magnitude
(b) deformatiore;;; (c) deformatioress; (d) deformatiore,.

We apply an harmonic unit concentrated force applied inctima z; and vibrating with angular
frequencyw = 40 Hz. In order to model the infinite elastic medium surroundimgcloak a perfectly
matched cylindrical layer has been implemented (cf. ougran panels a, b, ¢ and d of Fig.2); this
has been obtained by application of the geometric transfb#in

" =1y + (1 —i)(r —r), 0" =0, 9)

wherers = 1m is the inner radius of the outer ring in Fig. 2.

It is shown in fig. 2 that the wave patterns of the displaceraedtdeformations are smoothly
bent around the central region within the cloak (where thgmitades are nearly zero). Irrespectively
of the fact that the coupling of shear and pressure wavegsgiueby the concentrated force creates



the optical illusion of interferences, the comparison vk analytic harmonic Green’s function
in homogeneous elastic space (see e.g. [15]) reported inF&hows, at least qualitatively, that
there is neither forward nor backward scattering. The atesefscattering is better detailed in Fig.
4, where results of Fig. 2 and Fig. 3 are compared: the pesafgetement of the displacement
and deformation fields in the external matrix with and withthe cloak is shown, the distortion
being bounded to the central region delimited by the cloakesE are non-intuitive results, as the
profiles of the horizontal and vertical displacements in. Figshould display a visible phase shift,
since the associated acoustic paths are different. Moigetg, let us look at the expression of the
elasticity tensor given in (5). On the inner boundary of tleak, that is forr = rg, its components
C..,,, andC,,,, vanish, whereas its componefits,,, andCy,,, tend to infinity. This physically
means that pressure and shear waves propagate with areingtdcity in the azimuthdl-direction
along the inner boundary, which results in a vanishing pkhgebetween a wave propagating in a
homogeneous elastic space and another one propagatinglat@miconcealed region: this explains
the superimposed profiles of horizontal and vertical disphaents in Fig. 4.
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Figure 4: Comparison between numerical results in presehtee elastic cloak of Fig. 2 (black
dots) and Green’s function in homogeneous elastic spac&ofd(grey lines). Results are given
along the lineAB detailed in Fig. 2(a). (a) Horizontal displacement (b) Vertical displacement
ug.

In addition, we point out that the concentrated load propesghoth shear and pressure com-
ponents of elastic waves, which are inherently coupled;displacement and deformation field
distributions in Fig. 3 show that the inclusion is cloakeddépendently of the polarization.

Another property of the proposed model, which is importamate, is that the transformation
does not affect the radian frequenegyand, therefore the formulation works for every applied
This can be easily checked by comparing the Navier eqn. (i the modified Navier equation
(2) and it is represented in Fig. 5 where the displacemennihate « distribution is plotted for
w = 20,40, 60.
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Figure 5: Elastic cloak in an elastic medium subjected torecentrated load. The displacement
magnitudeu is plotted for the same material parameters of Fig. 2 and fer20, 40, 60.

6 CONCLUSIONS

In the present work an elastic cloak bending the trajectbiy-plane coupled shear and pressure
elastic waves around a cylindrical obstacle has been pedbdehe device can be designed by the
use of heterogeneous density and heterogeneous and apis@tastic stiffness; the distribution of
the physical properties has been obtained with the intrboluof stretched coordinates. Our results
open new vistas in cloaking devices for elastodynamic wavetastic media with non-symmetric
constitutive tensor yet with an isotropic density. These lsa fabricated with the introduction of
metamaterials (in particular of structural interfaceglsigned down to the microscopic level.
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