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SUMMARY. The identification of mode-I parameters of a cohesive-zone model for the analysis of
adhesive joints is presented. The data set for inverse analysis is provided either by kinematic full-
field data, such as those obtained via Digital Image Correlation, or a suitable combination of it with
by static global data. The results of numerical identification exercises are presented for a Double
Cantilever Beam specimen subject to pure mode-I bending under displacement control.

1 INTRODUCTION
The development of new and advanced materials puts new challenges on processing technology.

This is particularly true when different materials have to be joined to make composites in which one
aims to retain the individual beneficial properties of the component products. In this perspective, the
choice of the joining technique is often as important as the material itself. Adhesive bonding has
several advantages compared to mechanical fastening, i.e. high corrosion and fatigue resistance and
superior strength properties that often allow structures that are mechanically equivalent to, or even
stronger than, conventional assemblies to be built at lower weight and cost. Moreover, adhesives can
transmit stresses between structural members with a more uniform distribution with respect to bolts
and rivets that, on the contrary, are often responsible of high stress concentrations that can lead to
structures having a lower static and fatigue strength than an adhesively bonded system.

As for most structural components consisting of the assembly of individual elements, failure of
adhesive joints due to damage growth at bonded interfaces is one of the most important failure modes
and for its simulation cohesive interfaces can be usefully resorted to.

The cohesive-zone concept, originally introduced by Barenblatt and Dugdale to describe the
near-tip fracture process, has gained major popularity in recent years for simulating delamination,
debonding, fracture and fragmentation via finite element methods. This approach is mainly moti-
vated by the consideration that prior to the development of macroscopic fractures there exists a zone
in a state of progressive damage located in front of the crack, the so-called cohesive process zone,
where an interaction across the crack sides is specified via a constitutive relationship relating surface
tractions to displacement discontinuities.

In this work the mode-I parameters governing the damage mechanics-based formulation devel-
oped in [1] are estimated as the solution of a nonlinear programming problem. A least-squares
norm is used as objective function that quantifies the distance between experimental data and the
analogous quantities computed via finite elements as a function of the unknown parameters.

The data set of the identification process is provided either by the conventional reaction force data
provided by a load cell, or by kinematic full-field data. These last ones can be obtained by a Digital
Image Correlation (DIC) procedure, and concern the deformation process of the tested specimens
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or of a suitable region of interest extracted from it [2]. In this preliminary validation exercise the
data set is only pseudo-experimental, i.e. it has been generated by using a priori known material
parameters corrupted via a random noise with zero mean value and varying standard deviation.

The computation of gradients of the response functions, typically displacements or reactions
forces, with respect to the parameters to identify is referred to in the literature as sensitivity anal-
ysis and represents a key ingredient for identification purposes. In this study the sensitivities are
computed using the Direct Differentation Method (DDM); this requires, at each step of the forward
finite element analysis, the solution of an auxiliary linear problem whose right-hand side is a pseudo-
load vector and the coefficient matrix is the mechanical tangent. Numerical identification exercises
are presented concerning a Double Cantilever Beam (DCB) geometry subject to pure mode-I bend-
ing under displacement control. The numerical simulations show the effectiveness of the proposed
approach and the stability of the identification procedure when increasing the noise-to-signal ratio.

2 COHESIVE MODEL
In the general case the formulation of a cohesive-zone-like model relies upon two main ingre-

dients: the definition of a traction-separation law describing the relationship between the interface
tractions t and the displacement discontinuities [[u]] = u+ − u−, and the introduction of a damage
criterion to be met for the cohesive process zone to grow and the crack to advance. In particular, in
this paper we shall make reference to the interface model proposed by Valoroso and Champaney [1]
and consider the only one-dimensional (mode I) case, that is governed by the following equations:

t =
∂ψ

∂[[u]]
= (1 −D)k〈[[u]]〉+ + k−〈[[u]]〉−

Y = − ∂ψ

∂D
=

1
2
k〈[[u]]〉2+

φ = Y − Y ∗ ≤ 0

Ẏ ∗ = Ḋ
∂F

∂D

φ ≤ 0; Ḋ ≥ 0; Ḋφ = 0

(1)

In the above equations t and Y respectively denote the interface traction and the damage-driving
force, D ∈ [0, 1] is the scalar damage variable, [[u]] is the displacement jump in the direction normal
to the interface while k and k− are the undamaged interface stiffnesses in tension and compression,
respectively. The impenetrability constraint is introduced in penalty form via the stiffness coeffi-
cient k− and by explicitly distinguishing between the positive 〈·〉+ and negative part 〈·〉− of the
displacement jump.

The critical damage-driving force Y ∗ represents a non-decreasing energy threshold whose value
is determined by a monotonically increasing positive function F given as:

Y ∗ =





Go if D = 0
∫ t

0

Ẏ ∗ dt = F (D) if D ∈]0, 1[

max
τ∈[0,T ]

Y (τ ) if D = 1

(2)

Typical forms of F are that of power laws or exponential functions, and their explicit expressions
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are constructed in a way to ensure that the energy dissipated in the formation of a new unit traction-
free surface equals the critical strain energy release rate Gc, namely:

∫ +∞

0

Y Ḋ(t) dt = Gc (3)

In particular, the exponential traction-separation relationship originally contributed in [1], see
also Figure 1, can be obtained using the following expression:

F (D) = Go +
1

Γ (N + 1)
(Gc − Go)[− log(1 −D)]N (4)

where N > 0 (non integer) is a brittleness parameter and Γ is the complete Gamma function.
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Figure 1: Traction-separation relationship for the exponential model (see also [1]). k = 1.e4 N/mm3,
Gc = 0.125 N/mm, Go = 0. N/mm; N = 1.7

We emphasize that the formulation at hand requires no time-discretization for the computation
of the damage state, that can be evaluated in a completely explicit way. In particular, for damage
loading (Ḋ > 0) at each time τ the damage variable is computed as:

D(τ ) = min
(

1, max
(σ≤ τ)

{F−1(Y ∗(σ))}
)

(5)

2.1 Governing parameters
The one-dimensional cohesive model possesses four material parameters, namely k, Gc, N, Go.

However, as already put forward in [1], certain choices of the material parameters may lead to
traction-separation relationships possessing a substantially different shape with respect to the one
reported in Figure 1. This occurs in particular when N > 1 and Go > 0 simultaneously, since in
this case the material tangent stiffness turns out to be infinite at the onset of damage. In order to rule
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out this possibility, we here consider a reduced set of parameters for identification purposes:

x =

[
k

Gc

]
(6)

while the exponent and the initial energy threshold will be fixed a priori (N = 1 and Go = 0).

3 THE DCB TEST
The DCB is the standard test for obtaining the mode-I fracture toughness Gc of adhesives. Dif-

ferent procedures exist for performing the experiment and for data reduction; in particular, among
those recommended by ASTM and British Standards are corrected beam theories and compliance
calibration methods, which can be modified in various ways in order to compensate material and
geometric uncertainties that are present in the schematization of the test [3, 4]. Both data reduction
schemes share a common drawback, i.e. the fact that they make some strong assumptions on the test
to compute the material parameters from experimental results, and the reliability of these assump-
tions has a direct impact on the determination of such parameters. For this reason, in the authors’
opinion the use of a Finite Element model to compute the material parameters is quite desirable in
order to limit the possible incoherencies with the numerical model to be used for computations.
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Figure 2: DCB test. Geometry and FE mesh.

The geometry of the test considered is shown in Figure 2, where the FE mesh used in numerical
computations is also given. The specimen is made of two 1.5mm thick, 80.0mm wide and 1.0mm
deep aluminum arms, bonded with a layer of resin adhesive and separed by an initial crack of length
a = 15mm that is used as the starting defect.

The response of the DCB during the debonding tests is simulated using the interface model
discussed in Section 2. This is taken as the constitutive law for interface elements, which have
been implemented as a part of a customized version of the FE code FEAP [5]. In the numerical
simulations plane strain conditions are considered; the left-end of the structure (intact part) is free
whilst on the right side two supports and increasing vertical displacements are prescribed at the end
of each arm. The load-deflection curve corresponding to the target material parameters (k = 800
N/mm3, Gc = 0.1 N/mm) is shown in Figure 3 in terms of reaction force P versus the relative
displacement δ. For comparison purposes here is also shown the analytical solution obtained via
Timoshenko beam theory with plane strain correction.
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Figure 3: DCB test. Load-deflection curves. k = 800 N/mm3, Gc = 0.1 N/mm.

3.1 Sensitivity analysis
The role of the sensitivity information can be crucial for the development of a robust identifi-

cation strategy in presence of noisy residuals, which may generate spurious local minima and/or
solution multiplicity. Moreover, sensitivities could allow one to select the most informative mea-
surable quantities over space and time and to use for identification purposes only those sufficiently
sensitive, i.e. exceeding a suitable threshold.

Finite element aspects of sensitivity analysis for nonlinear problems have been given an exhaus-
tive presentation by [6], to which the interested reader may refer for a more detailed discussion; here
we only summarize the very essential points of the approach with particular reference to the problem
at hand. In a displacement-like formulation the residual form of FE equations reads:

R
(
u(k)(x ), x

)
= 0 (7)

where the dependence of the residual force vector R and of the nodal displacements u from the
vector of material parameters x has been made explicit. Equation (7) holds at the converged equilib-
rium state corresponding to the k−th load step. Sensitivities are obtained by differentiating (7) with
respect to the parameter vector, i.e.

∂R
∂u

∂u
∂x

+
∂R
∂x

= 0 (8)

The above equation results in a linear problem in the unknown response sensitivities whose
coefficient matrix is the tangent stiffness, that is, the same governing matrix as in the last Newton-
Raphson iteration of the equilibrium problem for the k−th load step. Accordingly, the solution of
the problem (8) only requires the formation of a pseudo-load vector, i.e. the computation of some
additional derivatives at the local level to be assembled via the standard FE assembly operator.

It is worth emphasizing that in the present context the evaluation of sensitivities for the vector of
material parameters (6) results in a negligible increase of the computing time since use is made of
the existing factorized tangent matrix to solve for the pseudo-loads.
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4 PARAMETER IDENTIFICATION
Ultimate goal of the present study is the identification of the material parameters of the interface

model presented in section 2 via inverse analysis using as data set kinematic full-field data possibly
enriched by conventional static data such as reaction forces. In a deterministic framework, the
optimal material parameters x̂ can be obtained as the solution of a nonlinear programming problem
where a suitable cost function is minimized [7]. Such a function can be conveniently defined so
to quantify, at all considered instants, the distance between measured quantities, i.e. displacements
inside the monitored sub-domain and reaction forces, and those computed via the mathematical
model as a function of the unknown parameters x .

In the following a pseudo-experimental data set is considered that has been generated via the FE
model by using a priori known material parameters and then corrupting the response by an additive
noise with zero mean value and varying standard deviation. Accordingly, in the present work both
measured and computed quantities have been derived from the Finite Element model of the entire
DCB sample depicted in Figure 2.

The kinematic data set of the identification process (the measured kinematic quantities) is con-
stituted by a time-space sampling of suitable displacements. In particular, it consists of a collection
of nu-dimensional vectors umeas

i each referring to a particular instant ti, i = 1 , ... , nt, of the
loading process. The values of the same displacements that are instead computed via the FE model
will be denoted as ucomp

i . In the same way, we shall denote by Pmeas
i the nP -dimensional vectors

(nP = 1 for the DCB problem) collecting the measured values of the reaction forces at instants
ti, i = 1 , ... , nt, whilst the static quantities computed via the FE model will be denoted as Pcomp

i .
With this notation in hand the identification problem can be stated as follows:

x̂ = arg min
x∈S

ω(x ) (9)

S being the constraint set and ω(x ) the cost function:

ω(x ) =
nt∑

i=1

{
α ||umeas

i − ucomp
i (x )||2W−1

u
+ β ||Pmeas

i −Pcomp
i (x )||2W−1

P

}
(10)

In the previous equation Wu and WP denote weighting matrices that scale and make non-
dimensional the static and kinematic residuals, respectively, while α and β are factors that allow
the definition (10) of the cost function to encompass the different possibilities for the data set of the
identification problem, namely: (i) α = 1, β = 0, kinematic data only; (ii) α = 0, β = 1, static
data only; (iii) α 6= 0, β 6= 0, linear combination of static and kinematic data. As for the situation
(iii), we note in passing that the minimization of the objective function is governed by the ratio β

α
that, consequently, has to be chosen in a way to ensure the simultaneous minimization of both the
addends within the same tolerance.

In the numerical simulations documented in the following the pseudo-experimental data umeas

and Pmeas have been numerically generated assuming the following target parameters:

x =

[
k

Gc

]
=

[
800 (N/mm3)

0.1 (N/mm)

]
(11)

The minimization of the objective function (10) is performed through a gradient-based Trust Re-
gion algorithm, available in the Matlab package [8], that communicates with the FE code via an ad-
hoc developed interface. In order to assess the robustness of the inverse procedure, the pseudo-expe-
rimental vectors umeas

i and Pmeas
i have been subsequently generated by corrupting the response

6



with uncorrelated (over time and space) additive Gaussian noises independently for displacements
and reaction forces. The added noise has zero mean values and time-independent standard devia-
tions. The latter are denoted by the symbols σu and σP , as for the displacements and the reaction
force, respectively. In presence of background noise it is important to assess the experimental infor-
mation required to achieve a sufficient accuracy on the parameter estimates. For this reason in the
following we examine the two possible sources of information and three basic possibilities of com-
bining them for constructing the cost function to be minimized. In other words, we shall consider
cost functions depending upon: (a) only displacements u i, (α = 1, β = 0); (b) only the reaction
force P (α = 0, β = 1); (c) a combination of kinematic and static data (α = β 6= 0).

4.1 Identification via kinematic data
In this section the results of identification exercises based on kinematic data only are analyzed.

In view of a thorough validation of the inverse procedure, in the following the effects of quality
and quantity of input data on the parameter estimates have been investigated by considering a three-
inputs two-outputs parametric study. The three independent input variables are time sampling, space
sampling and and the standard deviation of the additive Gaussian white noise σu,while the output
variables are the relative errors of the two material parameters. The numerical results of the inverse
analysis exercises are shown in the following.

Figure 4: Identification via kinematic data. Relative errors on parameters k (left) and Gc (right), as
function of space and time sampling. Surfaces refer to equal noise levels.

Figure 4 shows the relative errors on the parameter estimates, as function of the input nodal dis-
placements nu and measurement instants nt. It is noted that the estimation of the fracture energy Gc

is always robust and the relevant error is very low, almost independently from the quantity and qual-
ity of processed data. On the contrary, accuracy in the estimation of the initial stiffness k decreases
as the noise standard deviation σu exceeds 10µm. Moreover, the relative error on the initial stiffness
grows rapidly if the time-space sampling is too poor (nu < 100 and nt < 100, respectively).
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Figure 5: Identification via kinematic data. Relative errors on parameters k (left) and Gc (right), as
function of space sampling and noise level. Surfaces refer to equal time sampling.

Figure 5 shows the relative errors as functions of the number of input displacements nu and noise
standard deviation σu. Each surface in the Figure corresponds to a given number of measurement
instants nt from 25 to 200. In this case it is noted that, even in the presence of a very poor time-space
sampling, the relative error on the initial stiffness remains under 15 % if the noise standard deviation
σu is lower than 10µm. In other terms, the high quality of data (i.e. their information content) can
balance their shortage.

Figure 6: Identification via kinematic data. Relative errors on parameters k (left) and Gc (right), as
function of time sampling and noise level. Surfaces refer to equal space sampling.

Figure 6 shows the relative errors Ek and EGc as functions of the measurement instants nt and
noise level σu. Each surface corresponds to a fixed number of input displacements nu. In this case
it can be noted that time sampling can be coarsened without altering the estimation accuracy if the
spatial sampling is sufficiently rich (nu > 100) and the noise level is sufficiently low (σu ≤ 10µm).
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4.2 Identification using mixed kinematic and static data
Identification exercises have also been performed including both kinematic and static data in the

cost function to minimize, as indicated in (10). In this case the choice α = β = 1/2 in equation
(10) leads to kinematic and static residual norms of the same order of magnitude. The results of the
identification are shown synoptically in Figure 7. Here are shown the relative errors on parameter
estimates as a function of the noise standard deviations σu and σP . As in the previous cases, the
critical fracture energy is always correctly estimated with a maximum relative error not exceeding
1 %. In this case a significant improvement is observed in the estimated values of the interface
stiffnessk, which are much more accurate compared to those obtained based on use of kinematic data
only (see Figure 4). In particular, even in presence of high noise (σreac = 0.25N and σu = 100µm),
the relative error remains well under 10 %.

Figure 7: Identification based on the simultaneous use of static and kinematic data. Relative errors
on parameters k (left) and Gc (right), as a function of noise standard deviations (σu) and (σP ).

The results of the identification exercises can be summarized as follows.
As for the evaluation of the material parameters, the critical energy release rate is, in practice,

correctly estimated regardless of the noise level and the time-space sampling of kinematic data.
Unfortunately, in the examined cases the estimation of the interface stiffness provided by the inverse
procedure is not so satisfactory as forGc. In particular, a good evaluation of the parameter k based on
purely kinematic data has been achieved only for very low noise levels, σu ∼ 10µm. However, this
apparent lack of robustness in the identification of the stiffness parameter has not to be understood
as a weakness of the inverse procedure, since the information contained in k in the examined case is
much less characterizing the structural response than the fracture energy.

Improvements in the estimation of both material parameters can however be achieved by properly
using the results of the sensitivity analysis. The sensitivity information can indeed be very helpful
in the development of inverse analysis procedures since it can be taken as the basis of a selection
criterion for the choice of the measurable quantities (displacements and reaction forces) with the
highest information content to be included in the cost function.
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5 SUMMARY AND CONCLUSIONS
A theoretical and numerical investigation has been presented aiming at the characterization of an

interface damage model for the de-cohesion analysis of adhesive joints.
An inverse procedure has been used for the identification of the cohesive relationship under pure

mode-I conditions starting from pseudo-experimental data generated via a Finite Element model
and corrupted with additive white noise. Sensitivity analysis has also been implemented in view
of the application of the developed methodology to the identification and calibration of the model
parameters starting from true experimental data.

The proposed inverse analysis rests on kinematic full-field data at different instants of the load
history such as those provided by DIC procedures. For this reason the noise effects that have been
introduced to corrupt the pseudo-experimental kinematic data have the characteristics of an additive
white noise, which is rather close to the experimental noise arising in DIC measurements.

The numerical results presented in the paper have demonstrated the effectiveness of the inverse
procedure as well as its stability properties with respect to noise and time-space sampling.

ACKNOWLEDGEMENTS
This research has been carried out as part of the project “Structural joints, physical disconti-

nuities and material interfaces: analysis and experimental testing” within the PRIN 2007 research
program. The financial support of the Italian Ministry of University and Research (MIUR) is grate-
fully acknowledged.

References
[1] Valoroso, N. and Champaney, L., “A damage-mechanics-based approach for modelling de-

cohesion in adhesively bonded assemblies,” Engineering Fracture Mechanics, 73, 2774-2801
(2006).

[2] Fedele, R. , Raka, B., Hild, F., Roux, S., “Identification of adhesive properties in GLARE
assemblies by Digital Image Correlation,” Journal of the Mechanics and Physics of Solids, 57,
1003–1016, (2009).

[3] “ASTM D4896-01,” Standard Guide for Use of Adhesive- Bonded Single Lap-Joint Specimen
Test Results, ASTM International, (2001).

[4] “British Standard BS7991,” Determination of the mode I adhesive fracture energy GIc of struc-
tural adhesives using the double cantilever beam (DCB) and tapered double cantilever beam
(TDCB) specimens. British Standard Institution, (2001).

[5] Taylor, R.L., “Feap - Programmer’s Manual,” University of California at Berkeley,
http://www.ce.berkeley.edu/∼rlt, (2008).
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