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SUMMARY. We prove that a solution of the system of linear elastodynamics in an unbounded do-
main, having a finite total initial energy with a suitable weight, decays at large distance with a rate
depending on the weight, provided the acoustic tensor satisfies the hyperbolicity condition. More-
over, we show that this condition is necessary and sufficient for the equipartition in mean of the total
energy.

1 INTRODUCTION
As is well–known, the motion of a linearly elastic body Ω ⊂ R3 fixed at the boundary is governed

by the differential system1

div C[∇u] = ρü in Ω× (0,+∞),

u = 0 on ∂Ω× (0,+∞),

u = u0 in Ω× {0},
u̇ = u̇0 in Ω× {0},

(1)

with C elasticity tensor, i.e. a map from Ω×Lin to Sym, linear on Lin and such that C[W ] = 0, for
every W ∈ Skw, ρmass density, u(x, t) (unknown) displacement field and u0, u̇0 initial conditions.

If Ω is a bounded domain and C is symmetric, a solution u of (1) satisfies the basic theorem of
elastodynamics, as the conservation of the total energy, Graffi’s reciprocity relation, uniqueness, etc..
Nevertheless, many problems of elastodynamics (as the wave propagation phenomena, the scattering
theory [9], etc...) find their natural collocation in unbounded domains; the hypothesis making pos-
sible the extension of such theorems in unbounded domains is the so–called hyperbolicity condition
on the acoustic tensor A, introduced the first time in [2]. If C is symmetric and positive definite,
then this condition assures, for instance, that a solution corresponding to initial data vanishing out-
side a bounded region has compact support at every instant, so that (what we naturally expect) it
implies that a finite perturbation in the body Ω cannot reach the infinity in a finite time. It is of some
interest to detect whether, assuming that the initial data have a total initial energy density ε[u](x, 0)
summable with a suitable weight, the (corresponding) solution decays at infinity with a rate depend-
ing on the weight. We prove that if C is symmetric and positive definite, A satisfies the hyperbolicity
condition and rβε[u](x, 0) ∈ L1(Ω) (r = |x − o|, with o the origin of a reference frame), then the
mean of |u|2(x, t) over the unit ball tends to zero at infinity as r−(β+1). Moreover, if C and ρ satisfy
reasonable additional hypotheses, we show that |u|2(x, t) decays at infinity as r−β . For exterior
domains and under the above assumptions on C and A, in [1] the equipartition in mean of the total

1We essentially follow the notation of [7].
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energy is proved: denoting by K[u](t), U[u](t) and E(0) respectively the kinetic and strain energies
of a solution u at instant t and its total initial energy, it holds

lim
t→+∞

1
t

∫ t

0

K[u](s) = lim
t→+∞

1
t

∫ t

0

U[u](s) =
1
2
E[u](0). (2)

We complete this result by extending it to arbitrary unbounded domains and by constructing a coun-
terexample which shows that the hyperbolicity condition is also necessary for the validity of (2).
Finally, we select a sharp subclass of solutions where (2) holds even if the acoustic tensor does not
satisfy the hyperbolicity condition.

2 THE MAIN ASSUMPTIONS
Let Ω ⊂ R3 be an unbounded domain of class C∞ such that the Hardy inequality∫

Ω

rσ−2|u|2 ≤ c
∫

Ω

rσ|∇u|2 (3)

and the Korn inequality ∫
Ω

rσ|∇u|2 ≤ c
∫

Ω

rσ|∇̂u|2, (4)

hold for every field u vanishing on ∂Ω, with ∇̂u = sym∇u ∈ L2(Ω). In (3), (4) σ ≥ 0 and c is a
positive constant depending only on Ω and σ.

We suppose C, ρ,u0, u̇0 ∈ C∞(Ω). Moreover, we assume that C is symmetric, i.e.,

L · C[M ] = M · C[L]

for all L,M ∈ Lin, and positive definite, i.e., there is a positive constant µ such that

π[L] = L · C[L] ≥ µ|sym L|2

for all L ∈ Lin. The above hypotheses imply the Cauchy inequality

±2L · C[M ] ≤ π[M ] + π[L]. (5)

The acoustic tensor in the direction m ∈ Unit is the second–order tensor defined by

A[x,m]a = ρ−1C[a⊗m]m

We say that A satisfies the hyperbolicity condition if there is a regular, increasing and unbounded
function p : (a,+∞)→ (0,+∞), a > 0, such that

|A[x,m]| ≤ (p′(r))−2, ∀x ∈ Ω, m ∈ Unit. (6)

Condition (6) is necessary and sufficient (see [2]) for the existence of a global (in time) solution to
problem (1) and for the validity of the basic theorems of elastodynamics. In particular, denoting by

ε[u](x, t) =
1
2

(ρ|u̇|2 + π[∇u])(x, t)

the total energy density and setting

E[u](t) =
∫

Ω

ε[u](x, t),
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the conservation of the total energy holds, i.e.

E[u](t) = E[u](0), (7)

for all t ≥ 0.

3 SPATIAL DECAY
Set

SR = {x ∈ R3 : |x− o| < R}, TR = S2R \ SR.

The following theorems hold.

Theorem 1. Let Ω be an unbounded domain of R3, let A satisfy (6), with p(r) = log r, and let u
be a solution of system (1). If rβε[u](x, 0) ∈ L1(Ω), β ≥ 0, then∫

∂S1

|u|2(R, γ, t) ≤ c(t)
R1+β

. (8)

PROOF – Let w : R → [0, 1] be a regular function vanishing in (−∞, 0] and equal to 1 in [1,+∞)
and let

g(x, s) = w(δ−1(logR− log r + t− s)) (9)

with δ and R positive constants such that δ < logR. It is simple to see that g vanishes outside the
ball SRet−s and is equal to 1 in the ball SRet−s−δ . Moreover,

ġ = −δ−1w′

and

∇g = −δ−1w
′

r
er

with er = r−1(x− o). Multiplying (1)1 scalarly by rβgu̇ and integrating over Ω, we have

d
dt

∫
Ω

rβgε[u](x, t) =
∫

Ω

rβ ġε[u]−
∫

Ω

u̇ · C[∇u]∇(rβg). (10)

Since by (6)

2|u̇ · C[∇u]∇g| ≤ δ−1w′[π[∇u] +
1
r2

u̇ · C[u̇⊗ er]er]

= δ−1w′[π[∇u] +
1
r2
ρu̇ ·A[er]u̇]

≤ 2δ−1w′ε[u] = −2ġε[u],

2|u̇ · C[∇u]∇rβ | ≤ αrβπ[∇u] + αrβ−2u̇ · C[u̇⊗ er]er ≤ 2αrβε[u],

for some α > 0, (10) implies

d
dt

∫
Ω

rβgε[u](x, t) ≤ α
∫

Ω

rβgε[u](x, t).

Hence it easily follows ∫
Ω

rβgε[u](x, t) ≤ eαt
∫

Ω

rβgε[u](x, 0). (11)
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Since rβε[u](x, 0) ∈ L1(Ω), we are allowed to let R→ +∞ to obtain∫
Ω

rβε[u](x, t) ≤ eαt
∫

Ω

rβε[u](x, 0). (12)

Hence by (3) and (4), it follows∫
Ω

rβ−2|u|2 ≤ c
∫

Ω

rβ |∇u|2(x, t) ≤ c(t) (13)

In virtue of the trace theorem [6] we have∫
∂S1

|u|2(R, γ) ≤ c

R2

∫
TR

|u|2 + c

∫
TR

|∇u|2

so that by (13)

lim
R→+∞

∫
∂S1

|u|2(R, γ) = 0.

Therefore, since∫
∂S1

|u|2(R, γ, t) =
∫
∂S1

(∫ +∞

R

∂ru

)2

≤
∫

{SR

|∇u|2
∫ +∞

R

1
r2
,

it holds ∫
∂S1

|u|2(R, γ, t) ≤ 1
R

∫
{SR

|∇u|2 ≤ c

Rβ+1

∫
{SR

rβ |∇u|2. (14)

Hence the desired result follows, taking into account (13). �

Theorem 2. Let Ω be an unbounded domain of R3, let A satisfy (6), let

ρ, ρ−1, C, ∇C ∈ L∞(Ω), (15)

and let u be a solution of system (1). If u0 ∈ L2(Ω) and rβε[u](x, 0), rβε[u̇](x, 0) ∈ L1(Ω), then

|u|2(x, t) ≤ c(t)
rβ

(16)

for large r.

PROOF – Making use of (12) we obtain∫
{SR

ε[u](x, t) ≤ eαt

Rβ

∫
Ω

rβε[u](x, 0),∫
{SR

ε[u̇](x, t) ≤ eαt

Rβ

∫
Ω

rβε[u̇](x, 0).
(17)

Since by the basic calculus

|u|2(x, t) =
∣∣∣∣∫ t

0

u̇(x, s) + u0

∣∣∣∣2 ≤ 2
∣∣∣∣∫ t

0

u̇

∣∣∣∣2 + 2|u0|2 ≤ 2t
∫ t

0

|u̇|2 + 2|u0|2,
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(17)1 implies ∫
{SR

|u|2(x, t) ≤ c(t)
Rβ

∫
Ω

rβε[u](x, 0). (18)

Consider now the equation
div C[∇u] = ρü

in the shell TR. In virtue of well–known estimates about the solutions to an elliptic system, (see,
e.g. [6], Ch. 10), (15) assures that∫

TR

|∇2u|2 ≤ c

{∫
S4R\SR/2

|∇u|2 + |ρü|2
}
≤ c

Rβ

{∫
S4R\SR/2

rβ(|∇u|2 + |ρü|2)

}
.

so that ∫
TR

|∇2u|2(x, t) ≤ c

Rβ

∫
Ω

rβ(ε[u] + ε[u̇])(x, t). (19)

By Sobolev’s lemma, (17), (18) and (19) we get

|u|2(x, t) ≤ c‖u‖2W 2,2(S1(x)) ≤
c(t)
Rβ

∫
Ω

rβ(ε[u] + ε[u̇])(x, 0)

for all x ∈ TR such that S1(x) ∈ TR. Hence (16) follows. �

4 THE EQUIPARTITION OF THE ENERGY AND COUNTEREXAMPLES
An interesting property of the solutions of system (1) is the so–called equipartition in mean of

the total energy, first proved by W.D. Day [4] for bounded domain and then extended to exterior
domain in [1]. In fact with few changes it is possible to prove the result for an arbitrary unbounded
domain.

Let
K[u](t) =

1
2

∫
Ω

ρ|u̇|2(x, t),

U[u](t) =
1
2

∫
Ω

π[∇u](x, t)

denote the kinetic energy and the strain energy of B at instant t respectively.
The following theorem holds

Theorem 3. Let Ω be an unbounded domain of R3, let A satisfy (6) and let u be a solution of system
(1). If

ρ|u0|2, ε[u](x, 0) ∈ L1(Ω) and rρu̇0 ∈ L2(Ω), (20)

then

lim
t→+∞

1
t

∫ t

0

K[u](s) = lim
t→+∞

1
t

∫ t

0

U[u](s) =
1
2
E[u](0). (21)

Open problem. Starting from (21) we can prove that along infinite sequences {sk}k∈N, sk → +∞,

lim
k→+∞

K[u](sk) = lim
k→+∞

U[u](sk) =
1
2
E[u](0). (22)
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But it is not known whether

lim
t→+∞

K[u](t) = lim
t→+∞

U[u](t) =
1
2
E[u](0). (23)

�

We aim at showing now that the hyperbolicity condition is also necessary to the validity of (21).
To this end we use a minor modification of a famous example by De Giorgi (see [5], [10]) to construct
an elastodynamic system for which the hyperbolicity condition is not met and whose solutions do
not satisfy (21) [11]. Let consider the fourth–order tensor field C0 defined by

C0[L] = (B ⊗B)L + ξ2sym L, ξ ∈ R (24)

for all L ∈ Sym, where
B = 1 + 3er ⊗ er. (25)

It is obvious that C0 ∈ L∞(R3) ∩ C∞(R3 \ {o}) is symmetric and positive definite. A simple
computation (see [5]) shows that the elliptic system

div C0[∇v] = 0 (26)

admits the solutions
v(x) = [c1r−ε−

1
2 + c2r

ε− 1
2 ]er = v1 + v2 (27)

for every constant c1 and c2 and with

ε =
3
2

|ξ|√
16 + ξ2

. (28)

Of course,
lim
ξ→0

ε = 0,

and
∇v1 ∈ L2(R3 \ SR), ∇v2 6∈ L2(R3 \ SR)

for all positive R. Moreover, we can choose the constants c1 and c2 in such a way that v satisfies the
boundary condition

v = 0

on ∂SR. The fields
u(x, t) = v(x)t (29)

are C∞ solutions of the system
ρü = divC0[∇u] (30)

in every domain Ω which does not contain the point o, for every mass density ρ. Moreover,∫
Ω

∇u · C0[∇u](x, 0) = 0 (31)

and ∫
Ω

∇u · C0[∇u](x, t) = +∞ (32)
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for all t > 0. Therefore, choosing

ρ(x) =
1

r2+ζ
, ζ > 2ε, (33)

we can see that the acoustic tensor associated to C0 and ρ does not satisfy the hyperbolicity condition
and

U[u](0) = 0, K[u](t) < +∞ ∀t ≥ 0 and U[u](t) = +∞ ∀t > 0. (34)

Then, by the arbitrariness of ζ and ε we can state

Theorem 4. In an exterior domain of R3, the hyperbolicity condition (6) is necessary and sufficient
for the validity of the conservation and the equipartition (in mean) of the energy.

Now, following [3] we define a subclass of solutions in which we can state the classical theorems
of linear elastodynamics, even if the hyperbolicity condition is not satisfied.

Let

C =
{

u ∈ C∞(Ω× [0,+∞)) : sup
Ω

[
p′(r)r2ρu̇ ·A[m]u̇

]
≤ c(t)

}
, (35)

for some positive and continuous function c(t). We can prove the following relation∫
Ω

(g2ε)[u](x, t) =
∫

Ω

(g2ε)[u](x, 0)

+ 2δ−1

∫ t

0

ds
∫

Ω

gw′p′(r)u̇ · C(∇u)er,

(36)

where g is the function
g(x) = w(δ−1(p(R)− p(r))).

Since
2|δ−1gw′p′(r)u̇ · C[∇u]er| ≤ απ[g∇u] + δ−2(p′(r))2ρu̇ ·A[er]u̇,

taking into account the properties of function g, (35) and choosing α suitably small, it follows that∫
ΩRδ

ε[u](x, t) ≤
∫

Ω

ε[u](x, 0) + cδ−2

∫
∂S1

∫ R

Rδ

p′(r)

≤
∫

Ω

ε[u](x, 0) + cδ−1.

(37)

where Rδ = p−1(p(R) − δ). Letting δ → +∞ in (37), we have that ε[u](x, t) ∈ L1(Ω), for all
t ≥ 0. As a consequence, letting R→ +∞ in (37), we can state, in particular,

Theorem 5. Let Ω be an unbounded domain of R3 and let u ∈ C be a solution of system (1). If
ε[u](x, 0) ∈ L1(Ω), then the conservation of the energy holds. Moreover, if (20) holds, then the
equipartition (in mean) of the energy holds.

The above result is sharp. Indeed, if C is bounded and

ρ(x) =
1

r2+ζ
,

for some positive ζ, then A does not satisfy the hyperbolicity condition and, for p = log log log r,
we have u ∈ C ⇔ |u̇|2 = O(r−1 log r log log r). Therefore, choosing ζ > 2ε, we see that the
solution (29) does not belong to C and does not satisfy (34).
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