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SUMMARY. Epoxy adhesive anchor systems are widely used in civil engineering. They are used to
anchor both threaded rods and reinforcing bar into hardenedconcrete. The pullout test is a standard
experimental procedure to evaluate the bond strength between steel/concrete or steel/adhesive/concrete
interfaces. The overall response is strongly related to theanisotropy of the structure, and therefore
to the mutual static and kinematic relations between the different materials that compose the system.
A mesoscale interphase model has been implemented in a research oriented finite element code to
simulate experimental tests. In this model the failure can happen both at the contact surfaces (be-
tween the joint and bodies interacting with it) and within the same joint. The constitutive laws of the
interphase are written in terms of internal state of stress and contact tractions and related kinematic
variables.

1 INTRODUCTION
Epoxy adhesive anchor systems are widely used in civil engineering. They are used to bond

both threaded rods and reinforcing bars into hardened concrete. For instance, common applications
include bridge widening, structure-mounted signs, luminaries and light poles, concrete repair and
rehabilitation, and tunneling finishing. In concrete structures chemically bonded anchors are used to
cast secondary floor slabs, close temporary openings, cast new wall or expand existing buildings.

Nowadays there is an oncoming wider use of high quality epoxyresins that improve the adhesion
between the bonded materials. The use of chemically bonded anchors is sometimes preferred to the
cast-in-place method especially in presence of high pullout resistances.

The pullout test is a standard experimental procedure to evaluate the bond strength between
steel/concrete or steel/adhesive/concrete interfaces. The overall response is strongly related to the
anisotropy of the structure, and therefore to the mutual mechanical and kinematical relations be-
tween the different materials that compose it. In pristine conditions the bond between steel and the
adhesive, or adhesive and concrete, is due to the chemical adhesion. Chemical adhesion provides the
necessary strength to avoid the slipping off of the rebar and, depending on the steel/adhesive/concrete
interfaces properties, different failure modes can take place. Different failure modes are discussed
in [1]. If the chemical connections fail, relative displacements occur between the two surfaces and,
in case of compressive normal stresses or for dilatancy effects, friction forces dominate. In this case
the failure mode occurs for frictional sliding.

During the sliding, the mechanical response is affected by what happens on the singularity sur-
faces. Sliding implies a damaging of the contact surface andas a consequence a diminishing value
of tangential stress up to a residual value. Moreover, the kinematical mode mostly depends on the
roughness of the contact surfaces, that also induces dilatancy effects.

A possibility to simulate the interface response is to applya phenomenological constitutive model
for which the sliding mode is associated with the interface yield condition expressed in terms of con-
tact tractions and interface state variables whose evolution depends on tangential slip and dilatancy.
Another important factor is the microslip effect occurringbefore the sliding mode takes place at the
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contact. Slip and sliding constitute the inelastic behaviour at the fracture surface.
In this paper the pullout behaviour of chemically bonded anchors on concrete cylinders is ex-

perimentally and numerically investigated. Experimentalpullout tests were conducted on rebars
embedded in concrete cylinders by means of polyester resin.A way to simulate the presence of the
resin joint is by using interphase elements [2]. The usual assumption used in zero-thickness interface
elements where the response is governed by contact stress components, may require a correction by
introducing the effect of internal stresses into the analysis. Consequently, in this work a mesoscale
interphase model has been implemented in a research oriented finite element code to simulate ex-
perimental tests. In this model the failure can happen both on the contact surfaces (between the joint
and bodies interacting with it) and within the same joint. The constitutive laws of the interphase are
written in terms of internal state of stress and contact tractions and related kinematic variables.

2 THE INTERPHASE MODEL
With the term ”Interphase” we refer to a model utilized to represent a material layer able to

take into account stresses and strains within and outside the joint. The interface model is substan-
tially an enachement of the ”Interface” model (that considers only contact tractions and the relevant
displacement jump) so that the response is corrected by adding the contribution of internal state of
stresses to the contact ones.

Consider the third bodyΩ in contact with the two bodiesΩ+ andΩ− by means of the two phys-
ical interfacesΣ+ andΣ− respectively, and characterized bydx an dy base dimensions and with
thicknessh as in Fig. 1. The static and kinematics quantities are referred to a Cartesian coordinate
system (x, y, z) with x, y axes lying within the middle plane ofthe joint and the z-axis coincid-
ing with the normal unit vectorn directed towards the bodyΩ+. In correspondence with the two
physical interfacesΣ+ andΣ−, the jointΩ interacts with the two bodiesΩ+ andΩ− through the
following traction components.

t
+ =

[

t+x t+y t+z
]

on Σ+; t
− =

[

t−x t−y t−z
]

on Σ−,

which can be regarded as external surface loads for the joint.

Figure 1: The interphase model.
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In order to derive the basic relations of the interphase model, we assume that fibers inside the
interphase along thez-direction during the deformation process are maintained rectilinear. Under
this assumption the displacement fieldu =

[

ux uy uz

]

within the layer can be easily obtained
from the displacement fieldsu+ andu

− on the interfacesΣ+ andΣ−, thus

u (x, y, z) =

(

1

2
+

z

h

)

u
+ (x, y) +

(

1

2
−

z

h

)

u
− (x, y) (1)

where

u
+ =

[

u+
x u+

y u+
z

]

u
− =

[

u−
x u−

y u−
z

]

The strain tensor inside the joint is derived in a classical way from the displacement field

ε = ∇S
u (2)

with ∇S = 1

2

(

∇ + ∇T
)

.
Since the thickness of the jointΩ is small if compared to the characteristic dimensions of the

elementsΩ+ andΩ−, we can assume a representative strain stateε̂ constant along the thickness of
the joint.

By inserting Eq. 1 into 2, the mean value ofε along the thickness is given by:

ε̂ (x, y) =
1

h

h

2
∫

−h

2

εdz =
1

2h

[

∆u ⊗ I3 + (∆u ⊗ I3)
T
]

+
1

2
∇S

(

u
+ + u

−
)

(3)

where∆u = u
+ − u

−, andI3 = {δi3}.
Equilibrium equations are derived by applying the principle of virtual displacements that asserts

that the external work produced by the contact tractions must be equal internal work developed in
the joint

∫

Σ+

δu+ · t+dΣ+ +

∫

Σ−

δu− · t−dΣ− =

∫

V

δε̂ : σ dV (4)

In Eq. 4, the independency of̂ε with respect toz allows to convert the right side integral calculated
on the entire volume in an integral expressed on the middle surfaceΣ by defining a mean valuêσ of
the stresses along the thickness of the joint.

∫

V

δε̂ : σ dV =

∫

Σ

δε̂ : σ̂ dΣ (5)

σ̂ =
1

h

h

2
∫

−h

2

σ dz (6)
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If we assumeΣ+ = Σ− = Σ, substituting Eq. 3 into Eq. 4 and by applying the divergence
theorem we obtain:

∫

Σ

δu+T [

t
+ − σ̂ · I3 + h

2
divσ̂

]

dΣ +
∫

Σ−

δu−
[

t
− + σ̂ · I3 + h

2
divσ̂

]

dΣ =

= h
2

∫

Γ

m · σ̂ · (δu+ + δu−) dΓ
(7)

with m the normal specifying lateral surfaceΓ tractions and the perimeter of the joint middle plane
Σ.

Since Eq. 7 has to be valid for all the virtual displacementsδu+ andδu−, the following equilib-
rium equations are derived:

t
+ = σ̂ · I3 −

h

2
divσ̂ on Σ; t

− = −σ̂ · I3 −
h

2
divσ̂ on Σ, (8)

m · σ̂ = 0 on Γ. (9)

3 THE INTERPHASE FINITE ELEMENT
In this work applications have been developed with regard to2D problems and in particular

plane stress and axisymmetric cases have been faced. The plane stress formulation is here discussed.
The interphase model has been introduced as a new user element in the open-source finite element

program FEAP ([3]). The finite element is characterized by 4-node rectangular shaped and two or
three Gauss points are used as quadrature rule.

The local reference system is fixed once the vectorsn ands are known (Fig. 2), and the rotation
matrix from the local system to the global one is therefore given by

θ =
[

s n
]

(10)

The displacement at each point of the finite element is obtained as a function of the nodal dis-
placements.

If we define the vectorU collecting all the nodal displacements as:

U =
[

Ux3 Ux4 Ux2 Ux1 Uz3 Uz4 Uz2 Uz1

]T
, (11)

the displacements at each point of the upper or lower boundaries of the interface are therefore given
by:

u = NU (12)

whereu =
[

u+
x u−

x u+
z u−

z

]T

andN =









N2 N1 0 0 0 0 0 0
0 0 N2 N1 0 0 0 0
0 0 0 0 N2 N1 0 0
0 0 0 0 0 0 N2 N1









.

N1 andN2 are the two shape functions given by:

N1,2 (ξ) =
1

2
(1 ∓ ξ) ; ξ ∈

[

−1, 1
]

(13)
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Figure 2: 4-node interphase element.

Strain and stresses at the interphase can be separated into internal and contact components as
follows:

ε̂i =
[

ε̂x 0 0
]T

σ̂i =
[

σ̂x 0 0
]T

ε̂c =
[

0 ε̂z γ̂xz

]T
σ̂c =

[

0 σ̂z τ̂xz

]T (14)

In particular, strains can be related to nodal displacements using:

ε̂i = B
i
U

ε̂c = B
c
U

(15)

whereBi andB
c are two matrices containing the derivatives of the form functions. The total strains

at the Gauss point is given by

ε = ε̂
i + ε̂

c = BU (16)

whereB = B
i + B

c.
Once the strains are known, the corresponding strains are obtained, in the elastic range, using the

constitutive equations:

σ̂ = Eε̂ (17)

with E = E
1−ν2





1 ν 0
ν 1 0
0 0 1−ν

2



.

By applying the rotational operatorθ theB matrix can be rewritten with respect to the global
reference system:

B
∗ = Bθ (18)

By using the classical procedure, minimizing the total potential energy, the nodal forces and the
elastic stiffness matrix of the element are written as:

F = KU; K =

∫

V

B
∗T

EB
∗dV. (19)
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4 INTERPHASE DAMAGE
The above interphase model can be characterized by a non-linear response if dissipation mech-

anisms such as damage or plasticity are included.
Following a thermodynamical approach, a local isotropic elastic-damage model can be created

by adopting a free Helmholtz energy defined as

Ψ(ε, ξd, ω) =
1

2
(1 − ω) ε

T
Eε + Ψd (ξd) (20)

whereω is the damage parameter calculated as the ratio between the damaged and the total area
of a representative volume element of the material. It can assume values in the range0 ≤ ω ≤ 1,
with boundaries having the meaning of a pristine (ω = 0) and a fully damaged material (ω = 1)
respectively. By evolution ofω the material’s stiffness is continuously reduced.E is the material’s
undamaged elastic tensor, whileε is the strain tensor.Ψd represents a convex inelastic potential ac-
counting for the evolution of the domain of linear elastic behaviour as a consequence of the activation
of damage mechanisms, and it has been chosen equal to the expression furnished by [5]:

Ψd = hd

[

p−1
∑

i=0

p!

i!
lni c + lnp c − (1 − ξd)

p
∑

i=0

p!

i!
lni c

1 − ξd

]

(21)

ξd has the rule of an internal variable used to describe the damage evolution.hd, p andc are mate-
rial’s constants.

The state equations are obtained by derivation of Eq. 20 byω, ε andξ respectively:

σ =
∂Ψ

∂ε
ς = −

∂Ψ

∂ω
χd =

∂Ψ

∂ξd

(22)

Since the theorem of maximum dissipation is valid, the flow rules are derived looking for the
maximum value of dissipation with respect to the static variables. The Lagrangian method is used to
solve this problem. The Lagrangian is given by:

L = σ
T
ε̇ − Ψ̇ − λ̇dφd (23)

where the dot means time derivative of the corresponding variable,λd is a lagrangian multiplier, and
φd is a function that governs the activation and the evolution of damage.λ̇d andφd have to respect
the following loading/unloading complementarity conditions (Kuhn-Tucker relations):

φd ≤ 0; λ̇d ≥ 0; φdλ̇d = 0 (24)

An explicit expression ofς is

ς =
1

2
ε

T
Eε. (25)

On the other side,ε can be rewritten as the sum of two different vectors, if we would separate the
contribution of positive or negative values of longitudinal strains. As such:

ε = ε
+ + ε

− =





〈εx〉
〈εz〉
γxz



 −





〈−εx〉
〈−εz〉

0



 (26)

6



where〈•〉 indicates the McAuley brackets defined as〈•〉 = •+|•|
2

.
By substituting Eq. 26 into 25 and by simple calculation it isobtained that:

ς = ς+ + ς− (27)

with

ς+ =
E

2 (1 − ν2)

[

〈εx〉
2

+ 〈εz〉
2

+ 2ν 〈εx〉 〈εz〉 +
1 − ν

2
γ2

xz

]

(28)

ς− =
E

2 (1 − ν2)

[

〈−εx〉
2

+ 〈−εz〉
2

+ 2ν 〈−εx〉 〈−εz〉 − 2ν 〈εx〉 〈−εz〉 − 2ν 〈−εx〉 〈εz〉
]

. (29)

It can be observed from Eq. 28 that only positive parameters’values are included intoς+, while
negative or mixed (positive and negative strains) contributions are relegated intoς−.

By using the last definition ofς, the damage activation function is written as:

φd = ς+ − χd ≤ 0 (30)

that allows to write the flow rules of the kinematic quantities by using the Lagrangian method:

ω̇ = λ̇d ξ̇d = λ̇d (31)

5 INTERPHASE ELEMENT PERFORMANCE
In order to validate the model, some examples were carried out by using the FEAP finite

element program. Different goals were looked for. First, itwas important to show the behaviours
of the elasto-damaging model by means of simple examples such as a single-layer mortar masonry
specimen subjected to compressive loads. Second, it was opportune to highlight the improvements
given by the enriching terms in the interphase with respect to an interface model. Third, it was due
to show the applicability of the interphase elements at the mesoscopic level inside a finite element
model, and results compared with experimental data.

The first example regarded a system made up of two blocks interposed by a mortar layer. The
system was subjected to a compressive monotonic load. In Fig. 3a it is shown the finite element
mesh of bricks and mortar and the Gauss points in the interphase elements. Tests were made using
different ratios of elastic moduli for bricks and mortar. Fig. 3b shows the applied force-vertical
displacement diagram for the two points A and B of Fig. 3a for an elastic modulus of the interphase
higher than the elastic modulus of bricks (Ei = 10Eb).
Due to the different elastic modulus the interphase is subjected to a tensile stress while the bricks

are constrained by the mortar and then subjected to a compressive stress. After an initial elastic
behaviour the tensile stress in the mortar leads to the opening of a fracture starting from the middle
of the mortar joint, step 83. Further increase of the load causes a different behaviour in terms of
vertical diplacement response between central and lateralpart of the joint as shown in Fig. 3b. In
fact the damage increases in the central part, step 120, leading to a snap back phenomenon for central
node A till the complete fracture of the mortar joint, step 170.

In Fig. 4 are represented the response in terms of internal quantitiesεx andσx (Fig. 4a, b) and in
terms of contact stressσz (Fig. 4c) and damage parameterω (Fig. 4d).
As expected for the first steps deformation and stress are almost constant along the joint, step 41.
Due to the increase of internal stressσx damage starts to develope, step 83, leading to a redistribution
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Figure 3: (a) Finite element mesh for compressive test; (b) load-displacement curve at the two nodes
A and B (Ei = 10Eb).

Figure 4:Ei = 10Eb: (a) internal deformationεx, (b) internal stressσx, (c) contact stressσz, (d)
damage parameterω distributions in corrispondence of the Gauss points.
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of stresses, both internal and constant ones, from central part to undamaged lateral one, step 120.
The process follows till the complete fracture of the mortarjoint as shown by the values of stresses
and damage parameter, step 170.

The same test was developed with an inverse ratio between elastic modulus of bricks and mortar
joint, (Ei = Eb/10). Fig. 5 shows the force-displacement curve for this case. It is clear as this
time is node B that went up after step 200. The curve is linear until the onset of the fracture that
was expected to start at the extreme points. The jump in the diagram is due to a sudden rupture
of different Gauss points. Fig. 6 confirms the results in Fig.5. The damage parameter started
to increase at the external Gauss points with a consequent reduction of the stress together with an
increase of vertical displacements at these points. Parameters used to run this first example are:
Eb = 10000 N/mm2; νb = νi = 0.15; ς0 = 0.01 N/mm2; p = 3; c = 3; Ei = 1000 N/mm2

(Figs. 3 and 4);Ei = 100000 N/mm2 (Figs. 5 and 6).

Figure 5:Ei = Eb/10: load-displacement curve at the two nodes A and B.

6 NUMERICAL APPLICATION TO PULL-OUT TESTS
In the second example interphase elasto-damaging elementswere used to model the resin in

chemically bonded anchors. A specimen ready to be tested andthe relative mesh are shown in Fig.
7. Experimental material properties were determined following [6]-[8].

Four different test results are here reported. The first three tests were performed on an anchorage
length of152.4 mm (6 in), the last one on an anchorage length of101.6 mm (4 in).

While in the cast-in-place anchors the load is transferred into the concrete at the anchor head, in
the case of adhesive anchors the load is transferred from thesteel through the adhesive layer along
the entire bonded surface. The bond at the interface consists of three mechanisms: adhesion, friction
and mechanical interlock.

When rebars are chemically bonded, the higher tensile limit stress leads to different possible
types of failure modes, depending on the boundary and anchoring conditions. The typical failure
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Figure 6:Ei = Eb/10: (a) internal deformationεx, (b) internal stressσx, (c) contact stressσz, (d)
damage parameterω distributions in corrispondence of the Gauss points.

Figure 7: (a) A specimen for the pullout test; (b) Finite element mesh.

modes are showed in Fig. 8 and can be classified as ([1], [9]):
1) Anchor steel failure characterized by yielding or fracture of the steel;
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Figure 8: Failure modes during a pullout test for unconfined concrete: (a) steel failure; (b) concrete
cone failure; (c) bond failure; (d) combined cone-bond failure.

2) Concrete cone failure occurring when the embedment depthis less than50 mm and the con-
crete is unconfined;

3) Bond failure at the bar/resin or resin/concrete interface;
4) Combined cone-bond failure usually in unconfined concrete and embedment depth greater than

50 − 100 mm.
Several variables influence the tensile pullout strength ofbonded rebars, namely bonding agent,

concrete, steel, surface roughness, temperature, loadinggradient ([1], [9]).
An axisymmetric model has been implemented in the finite element program FEAP to simulate

the pullout tests. Only three materials are needed for the analysis: steel, interphase and concrete.
Bi-dimensional 4-noded rectangular shape elements were used in FEAP to model the solid el-

ements. The concrete has an elastic modulus ofE = 21197 MPa and a Poisson’s ratio equal to
ν = 0.16. The rebar was assumed smooth and elastoplastic, with elastic tensile limit equal to418
MPa and plastic hardening equal to20 MPa, E = 210000 MPa andν = 0.30. Two Gauss
points were selected as integration points for each interphase element. The parameters used for the
interphase elements were chosen on the base of the experimental results.

The boundary condition included restraint of vertical displacements on top of the concrete. This
restraint together with the appropriate bond length allowsfor shear pullout failure only and avoids
the concrete cone failure. Other restraints were imposed tothe vertical displacements at the bottom
of the cylinder, and radial and vertical displacements of the node A indicated in Fig. 7b.

The numerical simulations were carried out using thearclength solution([3]-[4]).
Fig. 9 reports the experimental results together with the numerical ones. The rebars used in

Tests 1 and 2 reached the yielding. At the end of the tests, as the ribs were clearly visible, it can
be deduced that debonding occurred at the rebar/resin interface due to shear pullout failure. Every
experimental curve is characterized by an initial nonlinear behavior due to the start-up and the ad-
justment of the grips of the loading machine, followed by thelinear behavior typical of the linear
elastic range. The onset of debond occurred around85 kN . The tests were conducted until complete
debond was observed. The area where damage onset and propagation occurred is characterized by
the softening branch shown in Fig. 9. The structural response at softening is affected by the amount
of damage occurring at the interface. In addition as the rebar pulls out, the contact surface between
the resin/rebar and the resin/concrete interface decreases. Such a decrease reduces the friction force
between the ribs and the surrounding material affecting theforce-displacement response of the struc-
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Figure 9: Experimental and numerical load-displacement curves during the pullout tests.

ture at softening.
In Tests 1 and 3, the transition from the linear elastic to thesoftening regime was rapid. In

Tests 2, however, a slight variation of the linear slope was visible at about70 kN . This behavior
was probably due to damage onset localized in a weak zone of the interface that failed prior to the
occurrence of the main debonding.

The load-displacement results of Tests 1-3 were used to calibrate the parameters of the interphase
model, that are:ς0 = 4.5 N/mm2; p = 5; c = 40; Ei = 7.5 N/mm2; ν = 0.25. A good agreement
was found between the experimental and numerical results.

In the same figure the result for Test 4 was also reported together with the numerical simulation
for a bonded length equal to101.6 mm (4 in). Obviously, the same interphase parameters were
used. In this case the numerical model overestimated the softening branch, probably because a non
uniform distribution of the resin along the bonded length, even if the general trend was recognized.

7 CONCLUSIONS
In this paper a damage interphase model has been presented and its features discussed. The

model has been implemented as a new finite element. The performance of the interphase element
has been validated by means of a single-layer mortar masonryspecimen subjected to compressive
loads. Finally, an axisymmetric model has been used to compare numerical and experimental results
of pull-out tests on rebars embedded into concrete.
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