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SUMMARY. Epoxy adhesive anchor systems are widely usedviha@mngineering. They are used to
anchor both threaded rods and reinforcing bar into hardeardrete. The pullout test is a standard
experimental procedure to evaluate the bond strength ketateel/concrete or steel/adhesive/concrete
interfaces. The overall response is strongly related tattisotropy of the structure, and therefore

to the mutual static and kinematic relations between ttferdint materials that compose the system.

A mesoscale interphase model has been implemented in acks®&énted finite element code to
simulate experimental tests. In this model the failure capplen both at the contact surfaces (be-
tween the joint and bodies interacting with it) and withie ame joint. The constitutive laws of the
interphase are written in terms of internal state of stresscantact tractions and related kinematic
variables.

1 INTRODUCTION
Epoxy adhesive anchor systems are widely used in civil @sging. They are used to bond
both threaded rods and reinforcing bars into hardened etancFor instance, common applications
include bridge widening, structure-mounted signs, lum@saand light poles, concrete repair and
rehabilitation, and tunneling finishing. In concrete stanes chemically bonded anchors are used to
cast secondary floor slabs, close temporary openings, eastvall or expand existing buildings.

Nowadays there is an oncoming wider use of high quality epegins that improve the adhesion
between the bonded materials. The use of chemically bormetbes is sometimes preferred to the
cast-in-place method especially in presence of high pttesistances.

The pullout test is a standard experimental procedure tluaeathe bond strength between
steel/concrete or steel/adhesive/concrete interfacks.oVerall response is strongly related to the
anisotropy of the structure, and therefore to the mutualhmeical and kinematical relations be-
tween the different materials that compose it. In pristiopditions the bond between steel and the
adhesive, or adhesive and concrete, is due to the chemivasimth. Chemical adhesion provides the
necessary strength to avoid the slipping off of the rebay deplending on the steel/adhesive/concrete
interfaces properties, different failure modes can takegl Different failure modes are discussed
in [1]. If the chemical connections fail, relative displacents occur between the two surfaces and,
in case of compressive normal stresses or for dilatancgtsffériction forces dominate. In this case
the failure mode occurs for frictional sliding.

During the sliding, the mechanical response is affected bgtwappens on the singularity sur-
faces. Sliding implies a damaging of the contact surfacessna consequence a diminishing value
of tangential stress up to a residual value. Moreover, therkiatical mode mostly depends on the
roughness of the contact surfaces, that also inducesmtilatHfects.

A possibility to simulate the interface response is to apgihenomenological constitutive model
for which the sliding mode is associated with the interfaieddycondition expressed in terms of con-
tact tractions and interface state variables whose ewolutepends on tangential slip and dilatancy.
Another important factor is the microslip effect occurriogfore the sliding mode takes place at the



contact. Slip and sliding constitute the inelastic behawat the fracture surface.

In this paper the pullout behaviour of chemically bondedhams on concrete cylinders is ex-
perimentally and numerically investigated. Experimemallout tests were conducted on rebars
embedded in concrete cylinders by means of polyester r@sivay to simulate the presence of the
resin joint is by using interphase elements [2]. The usual@mption used in zero-thickness interface
elements where the response is governed by contact str@g®oents, may require a correction by
introducing the effect of internal stresses into the anslySonsequently, in this work a mesoscale
interphase model has been implemented in a research atiénite element code to simulate ex-
perimental tests. In this model the failure can happen botthe contact surfaces (between the joint
and bodies interacting with it) and within the same jointeTonstitutive laws of the interphase are
written in terms of internal state of stress and contactitvas and related kinematic variables.

2 THE INTERPHASE MODEL
With the term "Interphase” we refer to a model utilized tonegent a material layer able to
take into account stresses and strains within and outsaliht. The interface model is substan-
tially an enachement of the "Interface” model (that conssdmly contact tractions and the relevant
displacement jump) so that the response is corrected bygdadé contribution of internal state of
stresses to the contact ones.

Consider the third bod§? in contact with the two bodie@™ andQ~ by means of the two phys-
ical interfaces>t and ¥~ respectively, and characterized 8By an d,, base dimensions and with
thicknessh as in Fig. 1. The static and kinematics quantities are refetw a Cartesian coordinate
system (X, y, z) with X, y axes lying within the middle planetbé joint and the z-axis coincid-
ing with the normal unit vecton directed towards the bod@™. In correspondence with the two
physical interface™ andX~, the joint{) interacts with the two bodieQ@* andQ~ through the
following traction components.

tt=[t¢ ¢f th ] on BT t—=[t; t; t;] on X7,

which can be regarded as external surface loads for the joint

Figure 1: The interphase model.



In order to derive the basic relations of the interphase maede assume that fibers inside the
interphase along the-direction during the deformation process are maintaimatiimear. Under
this assumption the displacement field= [ Uy Uy Uy ] within the layer can be easily obtained
from the displacement fieldst andu~ on the interface&* andX—, thus

= (5+2)w s (5-2) oo @
where

5 uj] u_:[u_ u; u;]

ut = [ uf

The strain tensor inside the joint is derived in a classia) Wwom the displacement field
e =Vu 2)

with V& = 1 (V + V7).

Since the thickness of the joifit is small if compared to the characteristic dimensions of the
elements™ and2~, we can assume a representative strain gtatnstant along the thickness of
the joint.

By inserting Eqg. 1 into 2, the mean valuesoélong the thickness is given by:

N S o los, o -
e(ay)—ﬁ/st—%{Au®13+(Au®Ig) }+§v (uf +u”) ?3)

SR

whereAu = ut —u~, andI3 = {d;3}.

Equilibrium equations are derived by applying the pringipf virtual displacements that asserts
that the external work produced by the contact tractionst inesqual internal work developed in
the joint

/5uJr tTdET + / ou” -t dXT = /5é codV (4)
o+ o v

In EqQ. 4, the independency éfwith respect ta: allows to convert the right side integral calculated
on the entire volume in an integral expressed on the middfased by defining a mean valug of
the stresses along the thickness of the joint.

/5ézadV:/(5é:&dZ (5)
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If we assumext = X~ = ¥, substituting Eq. 3 into Eq. 4 and by applying the divergence
theorem we obtain:

JoutT [tF =6 - Ts+ Ldivg| dS + [ bu [t7 + & 15 + Bdive] dS =

) 5- @)
=2 m-6-(fuf +éu)dl
r

with m the normal specifying lateral surfafetractions and the perimeter of the joint middle plane
3.

Since Eq. 7 has to be valid for all the virtual displaceménits andsu—, the following equilib-
rium equations are derived:

h h
tt =613 — §di’u& onY; t =-6-I3— §divé’ on X, (8)

m-6=0 onT. 9)

3 THE INTERPHASE FINITE ELEMENT
In this work applications have been developed with regar2Dd@roblems and in particular

plane stress and axisymmetric cases have been faced. Tieesplass formulation is here discussed.

The interphase model has been introduced as a new user ¢larttenopen-source finite element
program FEAP ([3]). The finite element is characterized hyodle rectangular shaped and two or
three Gauss points are used as quadrature rule.

The local reference system is fixed once the veatoasds are known (Fig. 2), and the rotation
matrix from the local system to the global one is therefovegiby

6=[s n] (10)

The displacement at each point of the finite element is obthas a function of the nodal dis-
placements.
If we define the vectolJ collecting all the nodal displacements as:

U= [ UwS U;c4 Uw? UJI Uz3 Uz4 Uz2 Uzl }Ty (11)

the displacements at each point of the upper or lower boigglaf the interface are therefore given
by:

u=NU (12)
whereu = [ uf uy uf ul ]T
Ny Ny O 0 0 0 0 0
0 0 Ny Ny O 0 0 0
0 0 0 0O Ny Ny O O
0o 0o 0 0 0 0 N M
N7 and N> are the two shape functions given by:

andN =

(1F¢; €e[ -1, 1] (13)

DN | =

Ni2(§) =



N

Figure 2: 4-node interphase element.

Strain and stresses at the interphase can be separatedtanual and contact components as
follows:

e=[z 00] &=[6 00]

(14)
=0 & 4. 6°=[0 6. 7. ]"
In particular, strains can be related to nodal displacesasing:
¢ =B'U

whereB? andB¢ are two matrices containing the derivatives of the form fioms. The total strains
at the Gauss point is given by

e=¢+&=BU (16)

whereB = B’ + B°.
Once the strains are known, the corresponding strains aa@el, in the elastic range, using the
constitutive equations:

& =Eé¢ (17)
1 v O
withE=-£,10v 1 0
0 0 iz¢

2
By applying the rotational operaté the B matrix can be rewritten with respect to the global
reference system:

B* = B6 (18)

By using the classical procedure, minimizing the total ptité energy, the nodal forces and the
elastic stiffness matrix of the element are written as:

F=KU; K= /B*TEB*dV. (19)
14



4 INTERPHASE DAMAGE
The above interphase model can be characterized by a near-liesponse if dissipation mech-
anisms such as damage or plasticity are included.
Following a thermodynamical approach, a local isotropastt-damage model can be created
by adopting a free Helmholtz energy defined as

U (e, €a,0) = % (1—w)el Be + Wy (&) (20)

wherew is the damage parameter calculated as the ratio betweerathageéd and the total area
of a representative volume element of the material. It canrag values in the range< w < 1,
with boundaries having the meaning of a pristine=€ 0) and a fully damaged materiab (= 1)
respectively. By evolution of the material’s stiffness is continuously reduc&ilis the material’s
undamaged elastic tensor, whiés the strain tenso; represents a convex inelastic potential ac-
counting for the evolution of the domain of linear elastibé&eiour as a consequence of the activation
of damage mechanisms, and it has been chosen equal to tlessirprfurnished by [5]:

Lty I Popl e
Uy =hy Z%ln’c—l—lnpc—(l—fd)z%lnl1_£d (21)
i=0 i=0

&4 has the rule of an internal variable used to describe the gameolution.h;, p andc are mate-
rial's constants.
The state equations are obtained by derivation of Eq. 20,lzyand¢ respectively:

) 0w ov

T % T Ta Mg

(22)

Since the theorem of maximum dissipation is valid, the flolesware derived looking for the
maximum value of dissipation with respect to the staticalalgs. The Lagrangian method is used to
solve this problem. The Lagrangian is given by:

L=0"é—-U— \idq (23)

where the dot means time derivative of the correspondinighviax; \, is a lagrangian multiplier, and
¢4 is a function that governs the activation and the evolutibdamage.\; and ¢, have to respect
the following loading/unloading complementarity conaiits (Kuhn-Tucker relations):

$a<0; Aa>0; ¢aha=0 (24)
An explicit expression of is

¢ = %ETEE. (25)

On the other sides can be rewritten as the sum of two different vectors, if we M@eparate the
contribution of positive or negative values of longitudisaains. As such:

e=et+e = () | = | (—e2) (26)



where(s) indicates the McAuley brackets defined(as = '+2"| .

By substituting Eq. 26 into 25 and by simple calculation ilgained that:

s=¢t4+¢” (27)
with
= ﬁ [(sﬁ F{ea) + 2 (en) (e2) + - 5 V%fz} (28)
_ E 2 2
= gy [ e v (e (e = (e () — 2w () ()] (29)

It can be observed from Eg. 28 that only positive parameteisies are included intg™, while
negative or mixed (positive and negative strains) contidims are relegated intp-.
By using the last definition af, the damage activation function is written as:

bpi=cs"—xa<0 (30)
that allows to write the flow rules of the kinematic quansti®y using the Lagrangian method:
&=\ IEDY (31)

5 INTERPHASE ELEMENT PERFORMANCE
In order to validate the model, some examples were carri¢dpusing the FEAP finite

element program. Different goals were looked for. Firstyats important to show the behaviours
of the elasto-damaging model by means of simple exampldsasia single-layer mortar masonry
specimen subjected to compressive loads. Second, it wastapp to highlight the improvements
given by the enriching terms in the interphase with respeentinterface model. Third, it was due
to show the applicability of the interphase elements at teeawcopic level inside a finite element
model, and results compared with experimental data.

The first example regarded a system made up of two blockpimded by a mortar layer. The
system was subjected to a compressive monotonic load. InJ&gdt is shown the finite element
mesh of bricks and mortar and the Gauss points in the integpblements. Tests were made using
different ratios of elastic moduli for bricks and mortar.gFi3b shows the applied force-vertical
displacement diagram for the two points A and B of Fig. 3a foekastic modulus of the interphase
higher than the elastic modulus of brickis;(= 10E}).

Due to the different elastic modulus the interphase is stibjeto a tensile stress while the bricks
are constrained by the mortar and then subjected to a cosiymestress. After an initial elastic
behaviour the tensile stress in the mortar leads to the opgagifia fracture starting from the middle
of the mortar joint, step 83. Further increase of the loadsealwa different behaviour in terms of
vertical diplacement response between central and Igtaralof the joint as shown in Fig. 3b. In
fact the damage increases in the central part, step 12Mn¢eda snap back phenomenon for central
node A till the complete fracture of the mortar joint, stef®17

In Fig. 4 are represented the response in terms of interrzaitdiese,, ando,. (Fig. 4a, b) and in
terms of contact stress, (Fig. 4c) and damage paramete(Fig. 4d).

As expected for the first steps deformation and stress arestloonstant along the joint, step 41.
Due to the increase of internal stressdamage starts to develope, step 83, leading to a redistnibut
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Figure 3: (a) Finite element mesh for compressive testp@d{displacement curve at the two nodes
Aand B (£; = 10Ey).
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of stresses, both internal and constant ones, from cerdarak@undamaged lateral one, step 120.
The process follows till the complete fracture of the mojtémt as shown by the values of stresses
and damage parameter, step 170.

The same test was developed with an inverse ratio betwesticataodulus of bricks and mortar
joint, (E; = E,/10). Fig. 5 shows the force-displacement curve for this casés dlear as this
time is node B that went up after step 200. The curve is lin@t the onset of the fracture that
was expected to start at the extreme points. The jump in thgrain is due to a sudden rupture
of different Gauss points. Fig. 6 confirms the results in Fig. The damage parameter started
to increase at the external Gauss points with a consequéumttien of the stress together with an
increase of vertical displacements at these points. Paeasnesed to run this first example are:
E, = 10000 N/mm?; v, = v; = 0.15; o = 0.01 N/mm?; p = 3; ¢ = 3; E; = 1000 N/mm?
(Figs. 3 and 4)E; = 100000 N/mm? (Figs. 5 and 6).
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Figure 5:FE; = E,/10: load-displacement curve at the two nodes A and B.

6 NUMERICAL APPLICATION TO PULL-OUT TESTS
In the second example interphase elasto-damaging elemvengsused to model the resin in
chemically bonded anchors. A specimen ready to be testethan@lative mesh are shown in Fig.
7. Experimental material properties were determined ¥ahg [6]-[8].

Four different test results are here reported. The firsethests were performed on an anchorage
length of152.4 mm (6 in), the last one on an anchorage length @f.6 mm (4 in).

While in the cast-in-place anchors the load is transferrtmitime concrete at the anchor head, in
the case of adhesive anchors the load is transferred fromstéle¢éthrough the adhesive layer along
the entire bonded surface. The bond at the interface cemdiitiree mechanisms: adhesion, friction
and mechanical interlock.

When rebars are chemically bonded, the higher tensile litréss leads to different possible
types of failure modes, depending on the boundary and aimghoonditions. The typical failure
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Figure 7: (a) A specimen for the pullout test; (b) Finite ederhmesh.

modes are showed in Fig. 8 and can be classified as ([1], [9]):
1) Anchor steel failure characterized by yielding or fraetof the steel;
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Figure 8: Failure modes during a pullout test for unconfinedceete: (a) steel failure; (b) concrete
cone failure; (c) bond failure; (d) combined cone-bondufia!

2) Concrete cone failure occurring when the embedment dep#iss thars0 mm and the con-
crete is unconfined;

3) Bond failure at the bar/resin or resin/concrete intexfac

4) Combined cone-bond failure usually in unconfined comcaed embedment depth greater than
50 — 100 mm.

Several variables influence the tensile pullout strengthooided rebars, namely bonding agent,
concrete, steel, surface roughness, temperature, logdidgent ([1], [9]).

An axisymmetric model has been implemented in the finite efgrprogram FEAP to simulate
the pullout tests. Only three materials are needed for thbysis: steel, interphase and concrete.

Bi-dimensional 4-noded rectangular shape elements wem insFEAP to model the solid el-
ements. The concrete has an elastic modulug ef 21197 M Pa and a Poisson’s ratio equal to
v = 0.16. The rebar was assumed smooth and elastoplastic, withcellassile limit equal tot18
M Pa and plastic hardening equal 89 M Pa, E = 210000 M Pa andv = 0.30. Two Gauss
points were selected as integration points for each intesplelement. The parameters used for the
interphase elements were chosen on the base of the exp&imesults.

The boundary condition included restraint of vertical tisements on top of the concrete. This
restraint together with the appropriate bond length alléavshear pullout failure only and avoids
the concrete cone failure. Other restraints were imposéuktoertical displacements at the bottom
of the cylinder, and radial and vertical displacements efribde A indicated in Fig. 7b.

The numerical simulations were carried out usingdahdength solutiorn([3]-[4]).

Fig. 9 reports the experimental results together with thmerical ones. The rebars used in
Tests 1 and 2 reached the yielding. At the end of the testdieastis were clearly visible, it can
be deduced that debonding occurred at the rebar/resiridogedue to shear pullout failure. Every
experimental curve is characterized by an initial nonlirgzhavior due to the start-up and the ad-
justment of the grips of the loading machine, followed by finear behavior typical of the linear
elastic range. The onset of debond occurred ar@aridV. The tests were conducted until complete
debond was observed. The area where damage onset and pimpagaurred is characterized by
the softening branch shown in Fig. 9. The structural respasoftening is affected by the amount
of damage occurring at the interface. In addition as therrpbls out, the contact surface between
the resin/rebar and the resin/concrete interface de@e8seh a decrease reduces the friction force
between the ribs and the surrounding material affectindafee-displacement response of the struc-
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Figure 9: Experimental and numerical load-displacementesiduring the pullout tests.

ture at softening.

In Tests 1 and 3, the transition from the linear elastic togbfening regime was rapid. In
Tests 2, however, a slight variation of the linear slope waibke at abou0 £N. This behavior
was probably due to damage onset localized in a weak zone dftirface that failed prior to the
occurrence of the main debonding.

The load-displacement results of Tests 1-3 were used toratdithe parameters of the interphase
model, that aresy = 4.5 N/mm?; p = 5; ¢ = 40; E; = 7.5 N/mm?; v = 0.25. A good agreement
was found between the experimental and numerical results.

In the same figure the result for Test 4 was also reportedhegetith the numerical simulation
for a bonded length equal t®1.6 mm (4 in). Obviously, the same interphase parameters were
used. In this case the numerical model overestimated therso§ branch, probably because a non
uniform distribution of the resin along the bonded lengtlereif the general trend was recognized.

7 CONCLUSIONS

In this paper a damage interphase model has been presemtats datures discussed. The
model has been implemented as a new finite element. The penfae of the interphase element
has been validated by means of a single-layer mortar maspagimen subjected to compressive
loads. Finally, an axisymmetric model has been used to ccenpanerical and experimental results
of pull-out tests on rebars embedded into concrete.
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