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SUMMARY. Modern theories of complex materials rely on the construction of specific potentials
for inner actions; such a procedure may be linked with an approach by Poincaré. In this contribution
we examine Poincaré’s approach to the ordinary theory of linear elasticity and find out how it is
related to the standard molecular model by Navier, Cauchy and Poisson and to the refined molecular
model by Voigt. In the end, we comment on the relationships among these approaches and the
contemporary theories of complex material behaviour.

1 INTRODUCTION
In the XIXth century most of the studies on elasticity were developed in a linearised framework

adopting a central-force scheme. The matter constituting physical bodies was thought composed
of ultimate elements considered as body-points exchanging opposite forces through the line joining
them. Such models, developed by Navier, Cauchy and Poisson, led to experimental contradictions
as far as the number of elastic constants was concerned (‘rari-constant’ theories [1, 2]).

Other studies, initiated by Green’s research on the mechanical properties of the luminiferous
ether, by-passed the question by resorting to a continuous model of matter, giving up an explanation
per causas of elasticity. Green solely admitted that the internal actions derive from a potential; the
results of such a model were confirmed by experiments but gave rise to a long debate among me-
chanicians as to the ‘real’ number of elastic constants and the ‘correct’ model for elastic phenomena.

Voigt [3, 4] presented a way to solve the problem (‘multi-constant’ theory [2, 5, 6]) on one hand
by improving the molecular model: the ultimate components of matter, or ‘molecules’, are not body-
points but small rigid bodies; on the other hand by considering an elastic potential of both the forces
and the moments exchanged by the ‘molecules’. His results – obtained by adopting a molecular
model but abandoning the central-force scheme – were confirmed by experiments.

Poincaré proposed a slightly different approach to the subject [7]. He did not abandon a molecu-
lar description of the matter and made use of an elastic potential that does not specify which kind of
actions are exchanged by the ultimate components of bodies. Both the views of Voigt and Poincaré
were well accepted by the scientific community [8].

The mechanistic/molecular and the energetic/continuum approaches to standard problems in
physics, like that of linear elasticity for solids, are present also in modern problems. Indeed, when
studying new materials, either the simple molecular or the energetic approach may seem inadequate:
the ultimate components of these materials are far from being simply body-points, and postulating a
reasonable form for the potential of inner actions may not be an easy task. A constitutive character-
ization of such materials is necessary to perform a thorough study of their behaviour.

In physics the inadequacy of the central-force scheme is often avoided by resorting to multi-body
interaction potentials. Yet, papers in which the validity of the central-force scheme is assumed are
also present. In many other circumstances the physicists resort to non-harmonic pair central-force
potentials, leading to suitable constitutive characterizations; an overview is found in [9].
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In this contribution we will present a modern exposition of Voigt’s model [3, 4] first, then
Poincaré’s approach [7], still valid and predictive in the theories of new complex materials. Cor-
respondences between the multi-body and Voigt approaches will also be indicated, observing that
in both cases angular potentials appear, respectively depending on the angles between the lines con-
necting particles and on the particle orientations.

2 VOIGT’S MODEL FOR ELASTICITY
Around the beginning of the XXth century Voigt [3, 4] advanced the hypothesis that the critical

points in the ‘ancient’ molecular theory of elasticity, that of Navier, Cauchy and Poisson, lie in the
assumption of molecules exchanging only central opposite forces. Voigt, on the basis of studies on
crystals, proposed a different point of view: matter is composed by ultimate elements (Bausteine, or
‘bricks’) which are aggregations of atoms that behave like rigid bodies, assembled in regular lattices
in space. These bricks-molecules interact in pairs via a system of actions reducible to a force and a
couple and in conservative processes the potential function of a pair of bricks h, k is

−dΦhk = fhk · δph +mhk · δθh + fkh · δpk +mkh · δθk (1)

where fhk, mhk are the force and the couple exerted by k on h, respectively, δph, δθh are the
first-order displacement of the centre of gravity and the rotation of h, respectively; and similarly for
the actions of h on k and the first-order rigid motion characteristics for k.

If the pair h, k undergoes a rigid motion, the equation of virtual work provides the balance
equations for inner actions, once posed × the cross product between vectors:

fhk + fkh = 0,

mhk +mkh + (pk − ph)× fkh = 0
(2)

and, by inserting (2) into (1) and posing phk = ph − pk, one obtains the following equivalent
reduced expressions for the potential:

−dΦhk = fhk · (δphk + phk × δθk) +mhk · (δθh − δθk) =

= fkh · (δphk + phk × δθh) +mkh · (δθk − δθh)
(3)

Voigt accepts the existence of a sphere of molecular action, following Navier, Cauchy and Pois-
son: the molecular interaction is appreciable only inside this sphere and vanishes outside. The radius
of the molecular sphere of action is neligible with respect to ordinary dimensions, yet contains a huge
amount of molecules. Voigt advances the strong hypothesis that within this sphere the bricks have
the same first-order rotation. This inner constraint is implicitly assumed perfect, hence the power
expended by constraint reactions shall vanish on any motion compatible with the constraint and (3)
imply that the intermolecular force fhk = −fkh is entirely active, while there exists a reactive part
of the intermolecular couplesmhk, mkh. Keeping into account this constraint the reduced form for
the pair potential is

−dΦhk = fhk · (δphk + phk × δθh) (4)

Since the bricks inside the sphere of actions rotate of the same amount Voigt remarks that it is
always possible to refer the relative positions of the pair h, k to a new basis. This is rigidly rotated
with respect to the basis in the reference shape by the same amount of the bricks. The expressions
for the relative motion of rigid bases provides, denoting with an asterisk the vectors with respect to
the moving basis,

δp∗hk = δphk + phk × δθh (5)
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Voigt proves, by introducing (5) into (4), that the final reduced form for the pair potential

−dΦhk = fhk · δp∗hk , (6)

does not depend on rotation, which can be skipped via a change of basis.
Thus, the active part of intermolecular forces are

fhk =
∂(−dΦhk)
∂(δp∗hk)

(7)

while there is no active part of the molecular couplesmhk, mkh, which are mere constraint reactions
and can be determined only via balance equations.

Voigt follows Poisson’s approach in terms of forces in order to define the densities of contact
force fn (Druck, or ‘pressure’– nowadays stress) and couple mn (flachenhaft Moment, or stress-
couple). His results can however be obtained and will be presented here by means of a purely
energetic approach.

Voigt considers a surface element of area dA with outer unit normal n which is the base of a
straight cylinder with height ρ equal to the radius of the sphere of molecular action. We denote by
the subscript i (e) the molecules inside (outside) the cylinder (that is, on opposite sides of n), and
we consider only those pairs i, e separated by a distance less than ρ. Indeed, the other pairs do not
interact since the elements of the pair lie outside the sphere of molecular action.

The work expended by the actions that the molecules outside the cylinder exert on those inside is

δWie =
∑
i

∑
e

f ie · (δpie + pie × δθi)

=
∑
i

∑
e

(δpie · f ie) + δθi ·
∑
i

∑
e

(pie × f ie)
(8)

We define the stress fn and the couple-stress mn by means of the following equivalence of
expended works:

δWie = (fndA) · (δρ)n+ (mndA) · δθi , (9)

where the first addend has the same form of the work spent by a pressure on the elementary variation
of volume in thermodynamics and the second is obvious.

From (8), (9) standard arguments of calculus of variations provide, on one hand,

fn · (δρ)n =
1
dA

∑
i

∑
e

f ie · δpie , (10)

and stress is an average of intermolecular forces crossing the surface dA.
On the other hand, (8), (9) yield

mn =
1
dA

∑
i

∑
e

(pie × f ie) (11)

Hence, the couple-stress is an average of the moments of intermolecular forces; from (10), (11)
a constitutive relation for the force suffices to define both the stress and the couple-stress.

Voigt remarks that in the definition for the couple-stress (11) the lever arm is small and the
sums are vanishingly small when compared with those in (10), hence if the stress is finite (which is
implicitly assumed) the couple-stress vanishes.
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Voigt can so recover the standard results on stress known since Navier, Cauchy and Poisson:
external surface actions and inner contact actions are well described by the stress field and Voigt
proves that, on the basis of (10), the latter is linear in the normal to the surface element on which
stress acts.

Voigt operates a standard linearization procedure on the pair potential (6), which is a function
only of the relative distances between the centres of gravity of the elementary bricks. Indeed, as we
have already seen, the assumption of the constraint on the rotation of the bricks inside the sphere of
molecular action makes the pair potential independent of the rotation.

By means of standard passages, the first-order approximation to the change in the relative dis-
tance between points is given by the gradient of the displacement, well defined by 9 independent
coefficients. Since stress is linear in the unit normal to the considered surface element, it is also
well defined by 9 components. Thus, the most general linear elastic constitutive relation contains
81 coefficients Cmnhk . Voigt remarks, however, that these coefficients derive from an elastic potential
(we nowadays call such materals hyperelastic) and are expressed, after lengthy calculations which
are only mentioned by Voigt, by

Cmnhk =
1
2
ζ0
∑
i

x0
mx

0
n

(
∂2Φ

∂xh∂xk

)0

(12)

where the superscript 0 indicates that the considered fields are evaluated in the reference shape, ζ
is the number of bricks per unit volume (the body is supposed homogeneous) and the sum may be
extended, for symmetry reasons, only to one half of the molecules inside the cylinder used for the
definition of the stress.

It is obvious, then, that by Schwartz’s theorem on mixed derivatives and the symmetry in the
product x0

mx
0
n in (12) reduce the actual number of elastic coefficients. Voigt further remarks that

under his assumption on rotation: a) the gradient of the displacement does not depend on micro-
rotation and hence reduces to the infinitesimal strain, which is symmetric and well defined by 6
coefficients; b) couple-stresses do not exist and the stress is defined by a linear operator S which is
also symmetric and well defined by 6 coefficients. The hyperelastic potential is thus provided by 21
coefficients because of the symmetries of the quadratic form built on the infinitesimal strain:

(S)lm = (C)pqlm(E)pq , S = S>, E = E>, (C)pqlm = (C)lmpq . (13)

Voigt proves that for homogeneous isotropic bodies the number of elastic constants is 2, as con-
firmed by experiments. As a corollary, he shows that under the ancient traditional hypothesis that
intermolecular forces are central and opposite he can easily obtain the so-called relations of Cauchy
and Poisson, which reduce the number of elastic coefficients to 1 for isotropic homogeneous linear
elastic bodies, as it was remarked for instance also by Marcolongo in [8].

3 POINCARÉ’S MODEL FOR ELASTICITY
In his monograph on elasticity [7] Poincaré assumes a discrete model of matter made up of

molecules of negligible dimension, or body-points, which exchange forces f . Intermolecular forces
are characterized by a force function (potential energy) U depending on the present placement of all
the molecules, sum of the placement xi in the reference shape and of the displacement ui

U = Û(xi + ui), f i =
∂Û

∂ui
. (14)
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The orientation of the body to which the molecules belong is immaterial, since it can be skipped
via a rigid motion (remark that a similar reasoning was put forward by Voigt). Then U depends on
the sole distance rij between pairs of molecules i, j, which can be collected in the N -dimensional
vector r, N being the number of the pairs of molecules composing the body:

U = U(r), (r) = (r12, r13, r14, . . . ) . (15)

Poincaré points out that the potential energy being the sum of the potential of pairs of molecules,

U =
∑
ij

Uij(rij) , (16)

is but a particular case, when intermolecular forces are central and opposite and depend only on
the relative position of the two molecules i, j, not on the relative position of other molecules. This
particular case, remarks Poincaré, is that of the molecular model by Navier, Cauchy and Poisson.

In general, however, intermolecular forces depend on the whole amount of the considered mole-
cules, even if they are necessarily opposite, as it is easily shown as follows. Consider any two
molecules m1, m2, the placements of which are x1, x2; the forces f1, f2 on the two molecules are
provided, by the definition of potential energy (15), by

f1 =
∂U

∂x1
=
∂U

∂r

∂r

∂x1
=
∑
ij

∂U

∂rij

∂ [(xi − xj) · (xi − xj)]
1
2

∂x1
=

=
∂U

∂r12

x1 − x2

r12
+

∂U

∂r13

x1 − x3

r13
+ . . .

f2 =
∂U

∂x2
=
∂U

∂r

∂r

∂x2
=
∑
ij

∂U

∂rij

∂ [(xi − xj) · (xi − xj)]
1
2

∂x2
=

= − ∂U

∂r12

x1 − x2

r12
+

∂U

∂r23

x2 − x3

r23
+ . . .

(17)

It is apparent that f1, f2 are the sum of terms which can be interpreted as the forces exchanged
between the pairs of molecules m1, m2; m1, m3; m2, m3; and so on. It is also apparent that the
forces between m1, m2 (hence between any pair of molecules) are opposite and central.

Poincaré assumes that U admits a power series expansion in terms of r in a neighbourhood of
the natural shape, described by r0 and characterized by the absence of external forces 1:

U(r) = U(r0) +
∂U

∂r

∣∣∣
r=r0

·∆r +
1
2

∂2U

∂r ⊗ ∂r

∣∣∣
r=r0

·(∆r ⊗∆r) + · · · (18)

The increments ∆r are expressed in terms of the displacements ui of the molecules and of their
relative variation ∆uij = ui − uj :

∆rij = 2rij ·∆uij +∆uij ·∆uij = (∆rij)1 + (∆rij)2 (19)

where rij = xi−xj . Since the magnitudes of the∆uij are much smaller than the relative distances
rij , the term (∆rij)1 is a first-order infinitesimal, while (∆rij)2 is of second order with respect to
the magnitude of the ∆uij .

1This condition, as Poincaré remarks, does not coincide with the usual definition, dating back to Lamé and accepted also
nowadays, of natural state as stress-free. Indeed, a stress-free state implies the absence of external forces but the reverse is
not true since intermolecular forces can be self-balanced, like in a redundant system subject to a thermal action.
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Hence, by arresting the development (18) to the second order and using (19)

U(r) = U(r0)

+
∂U

∂r

∣∣∣
r=r0

·(∆r)1

+
∂U

∂r

∣∣∣
r=r0

·(∆r)2 +
1
2

∂2U

∂r ⊗ ∂r

∣∣∣
r=r0

·(∆r)1 ⊗ (∆r)1

(20)

where (∆r)1, (∆r)2 are vectors collecting the (∆rij)1, (∆rij)2, respectively.
Let us pose, with Poincaré,

U0 = U(r0),

U1 =
∂U

∂r

∣∣∣
r=r0

·(∆r)1,

U2 =
∂U

∂r

∣∣∣
r=r0

·(∆r)2 +
1
2

∂2U

∂r ⊗ ∂r

∣∣∣
r=r0

·(∆r)1 ⊗ (∆r)1

(21)

where the terms are polynomials of order zero, one and two in the ∆rij , respectively.
The second addend in U2 is divided into two other addends, one keeping into account the dis-

tances between the same pair, characterized by rij , ∆rij ,

Ū2 =
1
2

∑
ij

∂2U

∂r2ij

∣∣∣
r=r0

(∆rij)21 , (22)

where the sum is extended over all the pairs of molecules i, j. The other addend keeps into account
the distances between different pairs of molecules:

Û2 =
∑
ij, hk

∂2U

∂rij∂rhk

∣∣∣
r=r0

(∆rij)1(∆rhk)1 . (23)

and the sum is extended over all the different pairs of molecules i, j; h, k.
Poincaré operates what nowadays would be called homogenization: he divides the body into

very small cubes with edge much larger than the radius of molecular action (the same concept of the
classical theory by Navier, Cauchy and Poisson) and hence containing a vast amount of molecules.
Then he shows that the potential energy of the whole body is expressed by the sum of the potential
energies of each cube, once admitted that the potential energy of the layer of molecules next to
the common surface of adjacent cubes is negligible (the number of molecules in that layer is much
smaller than in the rest of the cube because of the dimension of the radius of molecular action).
Thus, keeping into account only the distances rij between molecules inside the volume dV of the
small cubes, Poincaré obtains that U1 is obtained via the volume density W1

W1 =
1
dV

(
∂U

∂r

∣∣∣
r=r0

·(∆r)1

)
(24)

while U2 is obtained via the volume densitiy W2

W2 =
1
dV

(
∂U

∂r

∣∣∣
r=r0

·(∆r)2 +
1
2

∂2U

∂r ⊗ ∂r

∣∣∣
r=r0

·(∆r)1 ⊗ (∆r)1

)
(25)
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and the second addend of W2 may be split in two, W̄2, Ŵ2, by using (22), (23).
If the displacement u is a regular vector field the expressions for (∆r)1, (∆r)2 are obtained

by considering the displacements of the centres of the small cubes and their first-order derivatives,
because of the smallness of the considered cubes.

Hence, recalling (19) and posingH = gradu, one has

(∆rij)1 = 2rij ·∆uij = 2rij ·
(
∂u

∂x
rij

)
= 2(rij ⊗ rij) ·E, E = symH (26)

for the first-order term and

(∆rij)2 = ∆uij ·∆uij =
(
∂u

∂x
rij

)
·
(
∂u

∂x
rij

)
= (rij ⊗ rij) · (H>H) (27)

for the second-order term. It turns out that (∆rij)1 is a linear function of the six components of the
symmetric tensorE, the infinitesimal strain, while (∆rij)2 is a linear function of the six components
of the symmetric tensor H>H , the quadratic strain. That is, the potential energy is expressed, as it
is standard also nowadays, in terms of the strain measure.

It is now possible to compute the number of coefficients necessary to define the potential en-
ergy, or better the two density functions W1, W2; this will result in defining the elastic constitutive
relations, because of the definition of potential function.

The density function W1, by (24), (26), is a linear function of the 6 components of the infinites-
imal strain, hence its knowledge requires 6 independent coefficients. From a constitutive point of
view, however, the complete characterization of W1 lets us know the intermolecular force in the
natural state (which, as already remarked, need not be stress-free), hence it can be skipped.

Indeed, in order to know the intermolecular forces in the present deformed shape it is necessary
to characterize the density function W2, which, apart from the term 1/dV , is the sum of two terms.

The first, by (25), (27), is linear in the 6 components of the quadratic strainH>H , hence requires
6 independent coefficients.

The second, by (22), (23), (25), (26), may be expressed as

1
2

∂2U

∂r ⊗ ∂r

∣∣∣
r=r0

·(∆r)1 ⊗ (∆r)1 = 2
∑
ij

∂2U

∂r2ij

∣∣∣
r=r0

(rij ⊗ rij ⊗ rij ⊗ rij) · (E ⊗E)+

+4
∑
ij, hk

∂2U

∂rij∂rhk

∣∣∣
r=r0

(rij ⊗ rij ⊗ rhk ⊗ rhk) · (E ⊗E) ,
(28)

hence is quadratic in the infinitesimal strain and requires 21 independent coefficients.
Of these, 15 are necessary to identify the term of the energy density coming from Ū2, see equation

(22). Indeed, Ū2 is a quadratic form in the (∆rij)1, but 6 of the 21 coefficients multiplying it are
dependent, those comig from posing rij ⊗ rij ⊗ rhk ⊗ rhk = rij ⊗ rij ⊗ rij ⊗ rij in (28). These
dependent relations are called ‘relations of Cauchy and Poisson’ in the literature [8].

The remaining 6 independent coefficients are necessary to identify also the term of the energy
density coming from Û2, see equation (23).

So, a complete characterization of an elastic material requires 21+6=27 independent coefficients.
This number can be reduced if:

1. the reference shape is free of external forces: indeed, Poincaré proves that the coefficients of
the first term defining W2 have the same form as those defining W1, hence in this case they
vanish and one needs only 21 elastic coefficients;
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2. the potential U is the sum of pair potentials, as provided by (16); then the last addend in (28)
vanishes, because the partial derivatives in the coefficients are zero (each term depends only
on the distance of the considered pair and not on others). Hence in this case the number of
independent coefficients are reduced to 15 (as in the model by Navier, Cauchy and Poisson).

Poincaré also proves that for isotropic bodies the number of elastic constants reduces to two, as
confirmed by experiments.

The following table can then be considered:

Potential External forces Coefficients
Coupled Present 27

Absent 21
Uncoupled Present 21

Absent 15

4 A MENTION TO MODERN ATOMISTIC THEORIES
Continuum models derived from discrete descriptions of materials at different length scales,

spanning several orders of magnitude from the submicron scale to the millimeter or even larger
scales, are at present among the most promising approaches in the mechanics of materials with
microstructure.

The development of atomistic-continuous models based on energetic links between continuum
and discrete solid mechanics can be seen as originated from molecular modelling of elastic materials
developed in the 19th century, in particular by Voigt and Poincaré.

These models are based on the assuption that there is an implicit mapping from the large set of
atomistic degrees of freedom to a single displacement vector field. A standard hypothesis to obtain
such a correspondence is the so-called Cauchy-Born rule, which simplistically applies the same
continuum linear transformation to the atom positions in such a way that each point in the solid is
subjected to local homogeneous deformations [10]

xi = FXi , (29)

where Xi and xi are the i − th atom positions in the reference and deformed configuration, re-
spectively, while F = ∂x

∂X is the continuum local deformation gradient. In this way a strain energy
density W (F) can be computed using an atomistic interaction potential, and the continuum stress
as well as the constitutive tensors, i.e. the first Piola-Kirchoff tensor P and the Lagrangian tangent
stiffness fourth order tensor, C, can be derived as

P =
∂W
∂F

, C =
∂2W

∂F⊗ ∂F
. (30)

Such an hypothesis (29) derives from an intuitive judgment and holds when interactions are
quite of short range. It is easy to recognize that in a linearized framework Voigt’s and Poincaré’s
coarse-graining processes imply the same hypothesis. Moreover, the same comceptual framework
applies for the derivation of the stress measures and constitutive relations of non standard continua
equivalent to systems of particles endowed with extension [13, 14].

In this framework, the potential energy of a system of particles has a continuum quadratic form
strain-energy counterpart. In a more general case, the introduction of potentials of order higher than
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two and/or the recourse to multi-body interaction terms are often necessary, for example when long-
range interactions must be considered. In any case, an implicit mapping between the large set of
atomistic degrees of freedom to one or, in the non-standard continua, few vector fields is assumed.

Let xj , xh, . . .xN be the current positions of the jth, hth, . . . , N th particle/atom interacting with
the ith-atom. The multi-body potential of a system of N -particles interacting with the ith-particle
is a function of the N distances riα = |xi − xα|, α = j, h, . . . , N . A basic issue in the physics of
solids is the construction of a good interaction model which provides an accurate estimation of the
total energy and related quantities (e.g. the energy derivatives) of the material. The simplest way
to do that is to expand the potential into series of two-body U2B , three-body U3B ,. . . , n-body UnB

terms
U(rij , rih, . . . , riN ) ∼=

∑
i 6=j

U2B(rij) +
∑
i6=j 6=h

U3B(rij , rih)

+ · · ·+
∑

i 6=j 6=h···6=n

UnB(rij , rih, . . . , rin) ,
(31)

establishing a criterion for the potential cut-off for a suitable number n ≤ N of interacting particles.
If the multi-body potential is expanded in Taylor series it can be recognized that the second order
term depends on the product rijrih, and then the series expansion up to the same order is a three-
body or at least a two-body (for j = h) potential. The n-order term depends on rijrih . . . rin, and
then the series expansion up to the same order is at most an n+ 1-body potential.

The so-called central-force scheme implies the definition of a potential as the sum of two-body
potentials depending only on the relative distance between the two particles. As mentioned above,
in elasticity for instance, this scheme early showed to be inadequate since the symmetries of the
constitutive tensors, including the six Cauchy-Poisson relations, provide a number of independent
coefficients which is in contradiction with experiments (15 in the general anisotropic and 1 in the
isotropic case). In Poincaré’s model, the second order potential depends on the product rijrih, or
equivalently on the angle between rij and rih: θijh = (rij · rih)/|rij · rih|, and it is in general a
three-body potential providing, as shown in the previous session, the necessary 21 elasticities for
anisotropic bodies in the natural state. At the same time, the model by Voigt, having rigid bodies
with constrained rotations, provides a two-body potential description enriched by the presence of
non-central forces, which entails that the Cauchy-Poisson relations are not valid and the resulting
independent elastic coefficients are 21 ([4], pp. 607–608).

From the beginning of the 20th century it was recognized that both these non-central force
schemes were necessary to correctly describe the elastic behaviour of elastic isotropic media [8, 11].
In particular, the latter model was generally interpreted as reduced to the former since the variations
of angles were accounted for.

As mentioned above, in current atomistic modelling there are many circumstances in which
the inadequateness of the central-force scheme calls for the need of improved multi-body potential
descriptions, often obtained resorting to atomistics. This could happen both when the structure of
regular lattices must be properly taken into account in deriving energy-equivalent continuous models
for crystals, and when the developed potentials must be able to capture complex phenomena, such
as brittle fracture in covalent materials accounting for the structures of extended defects [12, 9].

Most of these improved atomistic/continuum models of materials, based on lattice microscopic
(atomistic/molecular) information and on energy equivalence between models at different material
scales, can then be seen as generalized Voigt and Poincaré approaches which allow to describe
materials with various microstructures at different scales (nano-micro-meso) and various (non-linear
and/or non-elastic) behaviours.
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