
On the Contact Problem of Linear Elasticity

Antonio Russo1, Alfonsina Tartaglione1

1Dipartimento di Matematica, Seconda Università di Napoli, Italy
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SUMMARY. We prove sharp uniqueness theorems for the contact problem of homo-
geneous and isotropic linear elastostatics in domains exterior to convex and regular
regions of R3, provided the elasticity tensor is strongly elliptic.

1 INTRODUCTION
It is well–known that the existence and uniqueness theorem for the displacement

problem of homogeneous and isotropic linear elastostatics requires the elasticity ten-
sor to be only strongly elliptic [3], [6]:

µ > 0, λ+ 2µ > 0, (1)

where λ and µ are the constant Lamé moduli. For the traction problem (1) is not longer
sufficient for the uniqueness of a solution modulo an arbitrary additive infinitesimal
rigid displacement, as can be showed by classical counter–examples of W.S. Edelstein
and R.I. Fosdick [2], and has to be replaced by the more restrictive assumption

µ > 0, 3λ+ 2µ > 0. (2)

In a recent paper, R. Fosdick, M.D. Piccioni and G. Puglisi [5] proved that (1) is also
sufficient to the uniqueness of a solution of a mixed boundary value problem in a
bounded domain which is a combination of the displacement, contact and its dual
problems. Precisely, one decomposes ∂Ω in three portions {∂iΩ}i=1,2,3 and assigns
the displacement on ∂1Ω, the tangential component of the displacement and the nor-
mal component of the traction on ∂2Ω, the normal component of the displacement and
the tangential component of the traction on ∂3Ω. Denoted by

K(ξ) = −∇σn(ξ) (3)

the Weingarten tensor on ∂Ω, where ∇σ stands for the gradient over ∂Ω and n is
the exterior (with respect to Ω) unit normal to ∂Ω, they need one of the following
hypotheses:

(a) tr K is positive on ∂2Ω and K is positive definite over ∂3Ω;
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(b) Ω is simply connected, tr K is nonnegative on ∂2Ω, K is positive semi–definite
over ∂3Ω.

The above assumptions require a particular “geometry” to ∂2Ω and ∂3Ω (see Sec-
tion 4 of [5]). In particular, for the contact problem in which ∂3Ω = ∂Ω [6] Ω cannot
be convex. We observe that this restriction is not present for domains exterior to con-
vex regions, where nevertheless other problems appear, as for instance the choice of a
condition at infinity assuring uniqueness in sharp function classes.

The purpose of this note is to prove that under hypothesis (1) the contact problem
and its dual in domains exterior to convex bounded and regular regions admit sharp
uniqueness theorems.

2 THE MODEL
Let B be a homogeneous and isotropic linearly elastic body identified with the

exterior domain
Ω = R3 \ Ω′ (4)

which it occupies in a reference configuration. In (4) Ω′ is a bounded domain, we as-
sume for simplicity of class C∞ and with connected boundary. The elastic properties
of B are expressed by the elasticity tensor1

C[E] = 2µ symE + λ(trE)1, ∀E ∈ Lin,

with λ and µ constant Lamé moduli.
As is well–known [6],

C is positive definite ⇔ µ > 0, 3λ+ 2µ > 0

and
C is strongly elliptic ⇔ µ > 0, λ+ 2µ > 0.

Let
s, a ∈ C∞(∂Ω)

1We use a standard vector notation as, e.g., in [6]. Moreover, x and ξ denote generic points of Ω and of
∂Ω, respectively; r = |x−o|, where o ∈ R3\Ω is the origin of the reference frame in R3; er = (x−o)/r;
SR(x0) is the ball of radius R centered at x0; ΩR(x0) = Ω ∩ SR(x0); SR = SR(x0); ΩR = ΩR(o).
We denote by n the exterior (with respect to Ω) unit normal to ∂Ω. If w is a vector field on ∂Ω, we set
wτ = w − (w · n)n. The symbol c stands for a positive constant whose numerical value is not essential
to our purposes.
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be assigned fields on ∂Ω and let u0 be a constant vector. The contact problem of linear
elastostatics2 is to find a solution of the equations (see [6] p. 129)

div C[∇u] = 0 in Ω,

u · n = a on ∂Ω,

[C[∇u]n]τ = s on ∂Ω,

lim
r→+∞

u = u0.

(5)

It is well–known that, if C is positive definite, then system (5) has a unique solution
u ∈ C∞(Ω) [7]. As far as we are aware, if C is strongly elliptic not too much is known
about existence and uniqueness of solutions of problem (5).

Set
S[E] = (λ+ 2µ)(trE)1 + 2µ skwE, ∀E ∈ Lin

and
$[∇u] = (λ+ 2µ)(divu)2 + µ|curlu|2,

γ[∇u] = λ(divu)2 + 2µ|sym∇u|2.

Of course,
C[E] = S[E] + 2µ

[
ET − (trE)1

]
. (6)

Observe that u is a solution of (5)1 if and only if

div S[∇u] = 0 in Ω (7)

and the following vector identity holds

∆u = ∇divu− curl curlu. (8)

Let K be the Weingarten tensor defined by (3). We say that K is positive definite
if

w ·K[w] > 0

for all nonzero vectors w and positive semi–definite if

w ·K[w] ≥ 0

for all vectors w.
Starting from (6) and recalling that K is defined by (3), one can prove the following

three lemmas.
2Also known as the third problem of elastostatics [7].
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Lemma 1. [4] If u is a solution of equations (5)1, then

σ[u] =
∫
∂Ω

C[∇u]n =
∫
∂Ω

S[∇u]n. (9)

Lemma 2. [5] If ϕ and u are fields on ∂Ω such that u · n = ϕ · n = 0, then∫
∂Ω

ϕ · S[∇u]n =
∫
∂Ω

ϕτ ·
{

(C[∇u]n)τ − 2µK[uτ ]
}
.

Lemma 3. [5] If ϕ and u are fields on ∂Ω such that ϕτ = uτ = 0, then∫
∂Ω

ϕ · S[∇u]n =
∫
∂Ω

(ϕ · n)
{
n · C[∇u]n− 2µtr K(u · n)

}
.

The following two lemmas are well–known (see, e.g., [1], [10]).

Lemma 4. [1] Let ϕ be a harmonic function in Ω. If 3

∇ϕ = o(1),

then there is a constant ϕ0 and a regular function ψ such that for all x ∈ Ω

ϕ(x) = ϕ0 +
1

4πr

∫
∂Ω

∂nϕ+ ψ(x),

with
∇kψ(x) = O(r−2−k)

for every nonnegative integer k.

Lemma 5. [1] Let u be a solution of equations (5)1. If

u = o(r), (10)

then there is a constant vector κ and a regular function ψ such that for all x ∈ Ω

u(x) = κ+U(x)σ[u] +ψ(x), (11)

where σ[u] is defined by (9),

U(x) =
1

16πµ(1− ν)r
[
(3− 4ν)1 + er ⊗ er

]
,

ν = λ/2(λ+ µ) and
∇kψ(x) = O(r−2−k)

for every nonnegative integer k.
3If f is a scalar, vector or tensor field on Ω f = o(g) and f = O(g) mean respectively that

limr→+∞ |f(x)|/g(r) = 0 and |f(x)| ≤ cg(r) for some positive c. Moreover, we set ∇kf =
∇ . . .∇| {z }
k times

f .
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The dual of the contact problem of elastostatics4 is to find a solution of the equa-
tions

div C[∇u] = 0 in Ω,

uτ = a on ∂Ω,

n · [C[∇u]n] = s on ∂Ω,

lim
r→+∞

u = u0,

(12)

where a and s are assigned fields on ∂Ω.
Let u = o(1) be a solution to system (5)1 such that u ·n = 0 on ∂Ω. Multiplying

(5)1 scalarly by u and integrating on ΩR, we get∫
ΩR

$[∇u] + 2µ
∫
∂Ω

uτ ·K[uτ ]−
∫
∂SR

[
(λ+ 2µ)(div u)u+ µu× curlu] · eR

=
∫

ΩR

γ[∇u]−
∫
∂SR

u ·
[
2µ sym∇u+ λ(divu)1]eR =

∫
∂Ω

u · C[∇u]n.

Hence, letting R→ +∞ and taking into account Lemma 5, it follows∫
Ω

γ[∇u] =
∫

Ω

$[∇u] + 2µ
∫
∂Ω

uτ ·K[uτ ] =
∫
∂Ω

u · C[∇u]n. (13)

Likewise, if u = o(1) is a solution to (5)1 such that uτ = 0, it holds∫
Ω

γ[∇u] =
∫

Ω

$[∇u] + 2µ
∫
∂Ω

(u · n)2tr K =
∫
∂Ω

u · C[∇u]n (14)

Relations (13), (14) are the starting point for our analysis on the uniqueness of a
solution to problems (5) and (12). Also, as it will be clear from the argument we use
in Section 3, if Ω is simply connected and K is positive semi–definite5, then strong
ellipticity implies that the strain energy U[u], corresponding to a deformation of B

such that u · n = 0 on ∂Ω, is positive. Moreover, if Ω is simply connected, tr K ≥ 0
and uτ = 0, then U[u] > 0.

We shall need the following existence theorems that are proved in [9], by making
use of (13), (14) and well–known techniques of functional analysis.

Theorem 1. If C is strongly elliptic and K is positive definite, then system (5) has a
solution u ∈ C∞(Ω).

Theorem 2. If C is strongly elliptic and tr K is positive, then system (12) has a solu-
tion u ∈ C∞(Ω).

4Also known as the fourth problem of elastostatics [7].
5This occurs for instance if Ω′ is convex.
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3 UNIQUENESS THEOREMS
Denote by C the linear space of all solutions of the system

div C[∇u] = 0 in Ω,

u · n = 0 on ∂Ω,

[C[∇u]n]τ = 0 on ∂Ω,

u(x) = o(r).

(15)

Lemma 6. If C is strongly elliptic and K is positive definite, then

dim C = 3. (16)

PROOF – If u (6= 0) ∈ C, then σ[u] 6= 0. Otherwise, an integration by parts yields∫
ΩR

$[∇u] =
∫
∂Ω

(u− κ) · S[∇u]n+
∫
∂SR

(u− κ) · S[∇u]eR,

for large R. Hence, letting R→ +∞ and taking into account that by Lemma 5

(u− κ) · S[∇u]eR = O(R−3),

it follows ∫
Ω

$[∇u] =
∫
∂Ω

u · S[∇u]n. (17)

Using Lemma 2 in (17) we have

curlu = 0 in Ω,

divu = 0 in Ω,

uτ = 0 on ∂Ω.

(18)

Therefore, by (8) u is a solution of the system

∆u = 0 in Ω,

u = 0 on ∂Ω,

u(x) = o(r).

(19)

Since by (18)1,2

0 = σ[u] =
∫
∂Ω

[2µ∂nu+ µn× curlu+ λ(divu)n
]

= 2µ
∫
∂Ω

∂nu,
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an integration by parts gives∫
ΩR

|∇u|2 =
∫
∂Ω

(u− κ) · ∂nu+
∫
∂SR

(u− κ) · ∂ru =
∫
∂SR

(u− κ) · ∂ru.

Hence, letting R → +∞, it follows that ∇u = 0. Therefore, since Ω is connected
and u vanishes on ∂Ω we have the absurd u = 0.

Let {ui}ı=1,...,4 ⊂ C. Of course, the system {σ[ui]}ı=1,...,4 is linearly dependent.
Therefore, there are nonzero scalars αi such that

σ[αiui] = αiσ[ui] = 0.

Then, repeating the steps in the above argument we see that

αiui = 0

so that {ui}ı=1,...,4 is linearly dependent. Hence dim C ≤ 3. On the other hand, if
{ei}i=1,2,3 is the canonical basis of R3, Theorem 1 assures that the problem

div C[∇u] = 0 in Ω,

u · n = 0 on ∂Ω,

[C[∇u]n]τ = 0 on ∂Ω,

u(x)− ei = o(1),

(20)

has a unique variational solution ui. Hence the desired result follows, taking into
account that the system {ui}i=1,2,3 is linearly independent. �

We are in a position to prove the following uniqueness theorems.

Theorem 3. Let Ω be an exterior domain of R3, let C be strongly elliptic and let K

be positive definite. If u1 and u2 are two solutions of (5)1,2,3 such that

u1(x)− u2(x) = o(r),

then u1 = u2 modulo a field in C. Moreover, if

u1(x)− u2(x) = o(1), (21)

then u1 = u2.

PROOF – The field u = u1 − u2 satisfies equations (15). Then the first part of the
theorem follows from Lemma 6. If u satisfies (21), then in virtue of (17) and the
positive definiteness of K, u is a solution of the system

∆u = 0 in Ω,

u = 0 on ∂Ω,

u = o(1).

(22)
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Hence it follows that u = 0. �

Theorem 4. Let Ω be a simply connected exterior domain of R3, let C be strongly
elliptic and let K be positive semi–definite. If u1 and u2 are two solutions of (5)1,2,3

such that
u1(x)− u2(x) = o(1),

then u1 = u2.

PROOF – Setting u = u1 − u2, from (18)1 it follows that there is a regular function
ϕ such that u = ∇ϕ in Ω. Moreover, (18)2, (15)2 and (21) imply that ϕ is a solution
of the Neumann problem

∆ϕ = 0 in Ω,

∂nϕ = 0 on ∂Ω,

∇ϕ = o(1).

(23)

Integrating by parts, we get∫
ΩR

|∇ϕ|2 =
∫
∂SR

(ϕ− ϕ0)∂rϕ.

Hence, letting R→ +∞ and taking into account Lemma 4, it follows that u = 0. �

Let us pass to consider the uniqueness of a solution of problem (12). Denote by
M the linear space of all solutions of the system

div C[∇u] = 0 in Ω,

uτ = 0 on ∂Ω,

n · C[∇u]n = 0 on ∂Ω,

u(x) = o(r).

It is not difficult to see that the reasoning we used to prove Lemma 6 works as well to
show that

dim M = 3.

Therefore, we can state

Theorem 5. Let Ω be an exterior domain of R3, let C be strongly elliptic and let tr K

be positive. If u1 and u2 are two solutions of system (12)1,2,3 such that

u1(x)− u2(x) = o(r),

then u1 = u2 modulo a field in M. Moreover, if

u1(x)− u2(x) = o(1), (24)

then u1 = u2.
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Moreover, we have

Theorem 6. Let Ω be a simply connected exterior domain of R3, let C be strongly
elliptic and let tr K be nonnegative. If u1 and u2 are two solutions of (12)1,2,3 such
that

u1(x)− u2(x) = o(1),

then u1 = u2.

PROOF – Setting u = u1 − u2 and using Lemma 3 in (17) we have

curlu = 0 in Ω,

divu = 0 in Ω.

Hence, taking into account that Ω is simply connected, it follows that there are a
function ϕ and a vector field h such that

u = ∇ϕ = curlh. (25)

The function ϕ is a solution of the system

∆ϕ = 0 in Ω,

ϕ = const. on ∂Ω,

∇ϕ = o(1).

(26)

Moreover by Stokes’ theorem (25) implies∫
∂SR

∂rϕ =
∫
∂SR

er · curlh = 0. (27)

Integrating by parts, taking into account (27) and that ϕ is constant on ∂Ω, we have∫
ΩR

|∇ϕ|2 =
∫
∂Ω

(ϕ− ϕ0)∂nϕ+
∫
∂SR

(ϕ− ϕ0)∂rϕ =
∫
∂SR

(ϕ− ϕ0)∂rϕ.

Hence, letting R→ +∞ and using Lemma 4, it follows that ϕ is constant in Ω so that
u = 0. �

We aim at concluding by observing that in virtue of Theorem 1, 2, our results are
sharp in the sense that small o cannot be replaced by capital O.
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