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SUMMARY. One of the principal inelastic effects mifbber-like materials is a particular damage

phenomenon called Mullins effect. This is visibléem cyclic tension tests are performed with

increasing values of deformation. Material is defed up to a fixed strain value and then

unloaded. When a second load is applied it is ptes$d observe a stress softening effect. In the
present work uniaxial and equibiaxial cyclic temsiest data will be presented. In both tests
optical methods have been used for strain measute Eeperimental data have been successively
introduced in a numerical procedure that permittedxtract the best material parameters for two
of the most known pseudo-elastic models, accounfimgboth stress-softening behaviour and

residual strain.

1 INTRODUCTION

The theory of isotropic elasticity of incompressilphaterials has been widely used to describe
the mechanical behaviour of rubber-like materidiseir particular stress-strain response shows
very large strains with strongly non-linear behavioThis theory is the basis of several
constitutive models, said hyperelastic, based oa definition of different strain energy
functions[1-3]. A comparison between 5 differentpbgelastic constitutive models (Mooney-
Rivlin, Ogden, Neo Hooke, Yeoh, Arruda-Boyce) waspgmsed by Sasso et al. [4]. In the same
paper it is also given a procedure to extract natelependent parameters from uniaxial and
equibiaxial tests data.

Besides hyperelasticity, several elastomers exbitnibe inelastic phenomena, e.g. hysteresis,
permanent set and the Mullins effect. The lasteéft®nsists in a change of material properties
between its original state (unstretched) and dfftermaterial has been subjected to a load. It was
firstly observed and studied by Mullins and Tobing]. They idealized that rubber could exist in
two phases: a “hard phase” and a “soft phase”. Whematerial is virgin it shows only the hard
phase, but, when greater and greater deformatiapgked, more and more rubber degrades in the
soft phase. A typical cyclic loading path where Nhd effect is evident is represented in figure 1
in terms of stress-strain curves. On the iniki@ding (OaA) the virgin material exhibits a
relatively stiff response. When the material isssduently unloaded (AdO), then reloaded (OdA),
the stress-strain curve follows a significantly teofpath until the point of max deformation
previous applied (A) is reached for the second ti@entinuing to increase further on the stretch,
the stress-strain curve will return to follow thenpary path (AbB) until next unload is performed
(BeO), and so on. With “primary path” is indicatéde curve OaAbBc that is the typical
hyperelastic path without stress softening andoviseffects.

Several micro-mechanics explanations have beenopegpon this effect; anyway the model
proposed by Ogden and Roxburgh [7] for Mullins effend the extension of this model also to the
inelastic behaviour of permanent set by Dorfmanm &gden [8] are phenomenological



approaches, where the physical structure of themaais not taken into account. It follows that
these theories can be applied to all materialsshatv Mullins effect with possible permanent set.
Since the material response is governed by diffeiems of strain energy function on primary
loading and unloading, these models are referrgb@sdo-elastic.
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Figure 1: Mullins effect

Most of the works in this topic focalized on uniaxension and few information are available
for multiaxial tensional states [9-14]. In this pap an approach where both uniaxial and
equibiaxial test data are used in a coupled wagatibrate pseudo-elastic models is proposed. To
this purpose a series of tests of cyclic loadingnateasing levels of stretch in uniaxial and
equibiaxial tension have been carried out. Uniatéakion tests were performed by means of a
standard tensile machine, whereas for equibiagiasion a rig developed by authors [15] was
adopted to perform cyclic bulge tests. In both expental set-up optical methods were applied to
measure the strain field on the specimens. Thesmitgues are not invasive and well suited to be
used when large stretches are reached.

Experimental data are then input into a Matlab®cpdure where material parameters of the
theoretical pseudo-elastic model are iterativelgnged in order to minimize the error between test
and numerical data. As both uniaxial and equiblagi@a are included in this minimization

algorithm, the resulting calibrated model is aldedescribe the material response in a general
tensional state.

2 EXPERIMENTAL TESTS

In order to describe the material behaviour as gdiyeas possible, two different load
distributions are considered: uniaxial and equilalagxtensions. In fact it may happens that a
model calibrated from only one load distributioruktbgive inaccurate or instable representations
of different tensional states. The method propdseduthors in this paper involves in the inverse
procedure of material characterization data of xialeand equibiaxial tests in a coupled way. In
this section a quick description of the test rigd axperimental methodologies is given, for both
uniaxial and equibiaxial extension tests.

Uniaxial stretching tests are performed on dumbgedicimens with a thickness of 1.7 mm.
The gauge lenght of the specimen, that is the yhit maximum and uniform deformation, is
clearly delimited by two white markers. This zoresta length of 40 mm and a width of 9 mm.
The test rig is composed by an electro-mechaniesting machine Zwick Z050 and a high
resolution video-extensometer.

Load is measured by a 5kN load cell, the displacemihat is the engineering strain, is



measured by the crosshead LVDT, while the trudrsirathe “useful” part of the specimen is
measured by the video extensometer comparing dessalpetween markers along time. Two tests
are performed with this rig: the first one is a sjegtatic monotonic loading up to a stretch greater
than 2 and at a strain rate in the order of #3. Data of this test are used to calibrate the
hyperelastic model in order to know the primaryhpat the material in its virgin state. A second
test is performed applying cyclic loading and udiog at the same strain rate of monotonic test
up to increasing levels of deformation in orderineestigate damage evolution and deviations
from the primary path.

The methodology adopted for equibiaxial testinghie bulge test. It consists of blocking
between two clamping flanges a thin rubber disd aflating with liquid from one side of the
specimen until it assumes a “balloon like” shapee $train field is evaluated by an optical device
that measures the deformation of a grid of circatarkers previously painted on the specimen
surface.The optical setup is composed by two hagolution CMOS cameras Pixelink® B741F
with a resolution of 1280x1024. Cameras are fixed anoveable arm in order to maintain a good
focal distance during the inflation of the specimBnring the test an hydraulic circuit inflates or
deflates the specimen and cameras grab images ¢bphof the bulge. The software elaborates in
real time the images giving 3D coordinates of megkEor this purpose a previous 3D calibration
of cameras is required. From 3D coordinates of ewarkt is possible, applying a grid method
algorithm, to calculate the strain field on the@p®n and to estimate the radius on the top of the
balloon. Knowing the pressure value at each stegcqtiisition from a transducer it is possible to
calculate the stress [4, 15]. At the same way @dial stretching, two tests are performed both in
quasi-static conditions (strain rate in the orded®® s*), one with monotonic loading up to a
circumferencial stretch of about 1.8, the othethvayclic loading and unloading up to increasing
levels of deformation.

3 HYPERELASTICITY AND PSEUDO-ELASTICITY: BASIC EQUATDNS

Consider a rubberlike continuous body andXebe the position vectors of its points in the
unstressed configuration andthe correspondent position vectors in the deforow@diguration.

X and x have coordinatesX; and x, with i,jD{lZ,B}. The deformation gradienE has
componentsk; =0x /0X, . In the theory of hyperelasticity a strain enefgyction is defined as

W :W(F) and, for isotropic materials, it depends only loa principal stretched , A,, ., so that
w :W(/il,/iz,/g). Furthermore for incompressible materials likebrehit is

AAA, =1 1)

and W can be expressed as a function on ofjlyl, . The principal Cauchy stresses are

oW(A,,A,)
g = — 22— 2
AP @)
wherep represents an arbitrary hydrostatic pressure.dingip from equation (2) it is:

- =) aW(/]l'/]Z) -0 =A aW(/]l’/]Z) (3)
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A very common form of strain energy is the one psgE by Ogden [16]:
WL A) = 3, (4 + 0+ A% A7 ~3)la, (4)
p=1

whereN is usually assumed to be 8, and y, are real parameters, positive or negative.

In the pseudo-elasticity theory an additional scakxiable is introduced in the strain energy
function:

W =W(F,7)=W(A,A,.7) (5)

Because of the influence of this new variable wierraow toW as a pseudo-energy function. For
isotropic and incompressible material in equilibmiit is:

OW(F,7) _ OW(A, A1) _
on on

(6)

and stress is given again by (2). During the deédionm procesg; may be either active or inactive

and switches between these two states, remainingncous all the time. When it is inactive the
material behaves as an hyperelastic material Wwihstrain energy functiow :W(F,ﬂ) :W(F ,1),

with 7 held constant and equal to 1, without loss of gaitg. When it is activey; can be
determined from (6) and in this case it is possiblerite 7 = y(F) . The material will still behave
as an hyperelastic material, but with a differerdia energy functiow :W(F,)((F)). According

to Ogden and Roxburgh [7], we define the funcﬁEl(ﬂl,Az) as

W(A,A,)=W(A,1,) 7)

that is the energy function of the perfect hypestitamaterial expressible as in equation (4). With
this function the material will always follow theimary path, also during unloading.
The proposed form of the model is

W(A,A,.7) =W (A, A,)+ ) 8)

where ¢(/7) is called damage function and it is subjectectz(t‘m):o. It is clear that, whem is
inactive, that isp =1, this function reduces to (7) describing the priympath. From (8) and (3),
stresses are calculated as

OW(A, 1)
21

oW(A, A,)

0-1_0-3=,7/11 oA

0,-0; :/7/12

9)

1 2

Substituting (8) into (6) we obtain



~gn)=W(A,,) (10)

which implicitly defines the variablg . If A, ,A, are the stretch values in the point on the
primary load from which unload starts, being=1 in that point, it is

-g(0)=W(A,,A,,) =W, (11)

Then it is possible to see thatdepends on the specific forms @(f]) andVT/(/ll,/lz)and also on

the values ofd,, 4, . According to the form oiz(/y) proposed by Ogden and Roxburgh it is

im?

~¢n)= utmtert(r(7 - 1) +w, (12)

where m and r are positive dimensionless material constaptsis the ground state shear

modulus (,L{:]/Zz,upap for Ogden model) anérf™ is the inverse of the error function. On
substitution of (12) into (10) it arises that

Cyo Lo W [ W(AA)
n=1 rerf{#m[l W H (13)

m

and the damage parameter is so defined in an é@xphgy.

Starting from the previous theory of pseudo-el@sti@another variable is introduced to
incorporate also the residual strain effect. Thivs,energy function results

W =W(A,A,.7,.7,) (14)

where), corresponds to the damage variable gnds the residual strain variable. We define the
energy function referred to the primary load pathere damage and residual strain variables are

inactive, thus equal to 1:
W(A,,4,) = W(A, A, 1) (15)

When active, variableg, ands, are implicitly defined by

OW(A, A, m172) _ OW (A, A,.77,,17,)

=0 16
on, on, (o)

while stress is calculated from equations (2, 3petsre. In the work of Dorfmann and Ogden [8]
the following pseudo-energy function is proposed:

WA, A, m.m,) = WAL A )+ A=, )N(, A, )+ @, )+ () (17)



where N is the function introduced to characterize theidwes strains andg , ¢ are the
dissipation functions that are subjectedg@) =0, ¢ () =0. Note that forr7, =1 equation (17)
becomes analogue to (8). From the same authorgigxlpressions ofy, ands,, starting with
the imposition of specific expressions f@r, ¢, and substituting them into (16), are given in the

form
1. Iw 1(. W w Y
=1--t - l-— =t — | |/t 1 18
n r an}{ m ,u( WmH 7 an{(wmj } ant) 4o

wherer, m are dimensionless material parametersis the ground state shear modul$, is the

potential on the point of the primary path from @hiunload startsg is a value that depends on
W, .
According with Dorfmann and Ogden [8] a linear degence oW, of the parameterr
gives a good approximation. Also a second orderwas analysed, but improvements resulted
negligible and did not justify the introduction ah additional parameter. Therefore, the law
adopted by the authors [17] in the numerical méslel

a=J+ K(ﬂ) (19)
u

whereJ andK are dimensionless material parameters. For th@uasstrain functiorN it has been
chosen a model expressed as

N (/]1’ /]2) = %[Vl(/]f _1)+ Vv, ()@ _1)+ V3(/];2/1;2 _1)] (20)

This is the modified neo-Hookean model as it wesppsed by Dorfmann and Ogden [8] that
assures negative stress at zero deformation anroporary takes into account anisotropy by
relating the coefficients, to the maximum principal stretch applied along theectioni. For

these coefficients authors [17] propose the follapéxpression

v, = y{u —Vtanr{%_lﬂ i=123 (21)

where 4  is the maximum stretch applied along directipbl, V andZ are three dimensionless

material dependent parameters.
Final expressions for stresses will be:

oW N oW N
0,0, :,71/1107+(1_,72)/]107 0,-0, :,71/1207+(1_,72)A207 (22)

1 1 2 2

For those applications where flat specimens are usedetis@nal state can be approximated to



biaxial and, defining 3 the direction along theckmess, it iso, = 0. Thus equations (3), (9) and

(22) give directly values of, and g, .

Further details and plots regarding the damage Jagaif the pseudo-elastic model and of its
extension for the permanent set are given in [17].

4 NUMERICAL RESULTS

Numerical results and their comparison with test datapaesented in this section. All tests
have been performed at low strain ratd@* s?) in order to reduce as much as possible any
viscoelastic effect. At first, from monotonic loaditests in uniaxial and equibiaxial tension, the
Ogden hyperelastic model with N=3 is calibrated ineori fit the points of the primary loading
paths. Best-fit parameters are summarized in table 1.

Table 1: Ogden model, N=3. Valuesipfare in [MPa]; are dimensionless.
Iul al Iu2 az /‘13 a3
1.9167 1.6907 -6.7077 -0.9530 9.2209 -0.8103

This set of parameters is obtained by a recursive pupeetthat minimizes th&&MS between
numerical and experimental data. TRBISis evaluated considering both uniaxial and equibiaxi
tests data. The same approach will be used to fitacladiding tests with pseudo-elastic models, in
order to obtain a material model as general as possitalele and accurate for any heterogeneous
tensional state.

Cyclic test data consist on a succession of three fallesyof load-unload up to increasing
levels of stretch, and a final load. Figures 2a andl&iw the best fit of cyclic data for uniaxial
and equibiaxial tests respectively without considethegresidual strain effect (Ogden-Roxburgh
model). Curves are obtained with parameter vatue2.006,m= 0.670 and give RMS= 0.1317
MPa. It is possible to note how this model is not ablBttthe quite evident residual strains of the
tested rubber. Residual strains can be fitted usiegs$eudo-elastic model with permanent set and
results are given in figures 3a and 3b. In this cases rparameters have to be included into the
RMSminimization procedure. In particular, beside hypestt model constants anc&ndm, there
are other five dimensionless parameters to be deterniin&d U, V andZ). The best fit values of
all these material parameters are summarized in Table 2.

Table 2: Material parameters for the pseudo-elastidainwith permanent set.
All parameters are dimensionless.
r m J K U \% VA
2.559 0.308 0.050 0.054 0.512 1.270 1.693

Fittings of figure 3 show a good correspondence witheeimental data and a good capability
to fit residual strains. Anyway a small deviation betswenumerical and experimental data is
appreciable in the primary load path at small stetcihis is due to the effort to obtain a general
material model, that requires to involve simultaneouslthe inverse characterization procedure
data coming from different load distributions.



a) uniaxial

3'5 L - L L L L
—— Numerical model
3{ ——— Experimental .
2.5 =
2, |

Nominal Stress [MPa]

Stretch
b) equibiaxial
p — Nut‘nerical‘ model‘ |
351 ——— Experimental "
2 a
2.57 r

Nominal Stress [MPa]

2.2 2.4 2.6 2.8

Stretch

Figure 2: Best-fit curves of Ogden-Roxburgh modelj@axial b) equibiaxial.
Parameters valueg:= 1.081 MPar = 2.006 m= 0.670.RMS= 0.1317 MPa.

A higher accuracy is achievable if one uses only diaen uniaxial tests or equibiaxial tests
alternatively, as shown in [17]. However this kinfl splution may be unstable for other
deformational states and the obtained model will ide g0 work well only in situations that are
similar to the one encountered in the calibrationstéstom a transferability and generality point
of view, an inverse characterization method based dlti-exial deformation data is preferable,
and the inaccuracies described above are accepthdr Daccuracies are due to the hysteresis
effect of rubber that makes loading and unloading& be different. Models presented in this
paper are not able to reproduce this phenomenon,Jesleey give curves that collocate between
load and unload. Consequently the approximation tegolod.
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Figure 3: Best-fit curves of pseudo-elastic model withmanent set, a) uniaxial b) equibiaxial.
Parameters values are summarized in TabiRVES= 0.0968 MPa.

5 CONCLUSIONS

Starting from experimental tests of uniaxial and eauxiail tension on flat rubber specimens,
performed by means of test rigs based on optical teghrifpr strain measurement, a procedure
of hyperlelastic and pseudo-elastic models calibratiag been developed in order to describe
inelastic effects of rubbers, like Mullins effect aregidual strain, in a general load distribution.

For the sake of generality and reproducibility, @gden-Roxbugrh and the Dorfmann-Ogden
methods has been extended with a global multi-axialogmb, involving simultaneously uniaxial
and equibiaxial test data into the procedure ofiswecharacterization of the material; moreover,
three load-unload cycles have been performed ingttadly one. This approach leads to a stable
analytical representation of the material behaworaf general state of deformation. Results show



a good agreement with experimental data exceptnfiatl Shaccuracies due to the hysteresis of the
material, not contemplated in the models.
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