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SUMMARY. One of the principal inelastic effects of rubber-like materials is a particular damage 
phenomenon called Mullins effect. This is visible when cyclic tension tests are performed with 
increasing values of deformation. Material is deformed up to a fixed strain value and then 
unloaded. When a second load is applied it is possible to observe a stress softening effect. In the 
present work uniaxial and equibiaxial cyclic tension test data will be presented. In both tests 
optical methods have been used for strain measurement. Experimental data have been successively 
introduced in a numerical procedure that permitted to extract the best material parameters for two 
of the most known pseudo-elastic models, accounting for both stress-softening behaviour and 
residual strain. 

1 INTRODUCTION 

The theory of isotropic elasticity of incompressible materials has been widely used to describe 
the mechanical behaviour of rubber-like materials. Their particular stress-strain response shows 
very large strains with strongly non-linear behaviour. This theory is the basis of several 
constitutive models, said hyperelastic, based on the definition of different strain energy 
functions[1-3]. A comparison between 5 different hyperelastic constitutive models (Mooney-
Rivlin, Ogden, Neo Hooke, Yeoh, Arruda-Boyce) was proposed by Sasso et al. [4]. In the same 
paper it is also given a procedure to extract material dependent parameters from uniaxial and 
equibiaxial tests data. 

Besides hyperelasticity, several elastomers exhibit some inelastic phenomena, e.g. hysteresis, 
permanent set and the Mullins effect. The last effect consists in a change of material properties 
between its original state (unstretched) and after the material has been subjected to a load. It was 
firstly observed and studied by Mullins and Tobin [5,6]. They idealized that rubber could exist in 
two phases: a “hard phase” and a “soft phase”. When the material is virgin it shows only the hard 
phase, but, when greater and greater deformation is applied, more and more rubber degrades in the 
soft phase. A typical cyclic loading path where Mullins effect is evident is represented in figure 1 
in terms of stress-strain curves.  On  the initial loading (OaA) the virgin material exhibits a 
relatively stiff response. When the material is subsequently unloaded (AdO), then reloaded (OdA), 
the stress-strain curve follows a significantly softer path until the point of max deformation 
previous applied (A) is reached for the second time. Continuing to increase further on the stretch, 
the stress-strain curve will return to follow the primary path (AbB) until next unload is performed 
(BeO), and so on. With “primary path” is indicated the curve OaAbBc that is the typical 
hyperelastic path without stress softening and viscous effects. 

Several micro-mechanics explanations have been proposed on this effect; anyway the model 
proposed by Ogden and Roxburgh [7] for Mullins effect and the extension of this model also to the 
inelastic behaviour of permanent set by Dorfmann and Ogden [8] are phenomenological 



approaches, where the physical structure of the material is not taken into account. It follows that 
these theories can be applied to all materials that show Mullins effect with possible permanent set. 
Since the material response is governed by different forms of strain energy function on primary 
loading and unloading, these models are referred as pseudo-elastic. 
 

 
Figure 1: Mullins effect 

 
Most of the works in this topic focalized on uniaxial tension and few information are available 

for multiaxial tensional states [9-14]. In this paper, an approach where both uniaxial and 
equibiaxial test data are used in a coupled way to calibrate pseudo-elastic models is proposed. To 
this purpose a series of tests of cyclic loading at increasing levels of stretch in uniaxial and 
equibiaxial tension have been carried out. Uniaxial tension tests were performed by means of a 
standard tensile machine, whereas for equibiaxial tension a rig developed by authors [15] was 
adopted to perform cyclic bulge tests. In both experimental set-up optical methods were applied to 
measure the strain field on the specimens. These techniques are not invasive and well suited to be 
used when large stretches are reached. 

Experimental data are then input into a Matlab® procedure where material parameters of the 
theoretical pseudo-elastic model are iteratively changed in order to minimize the error between test 
and numerical data. As both uniaxial and equibiaxial data are included in this minimization 
algorithm, the resulting calibrated model is able to describe the material response in a general 
tensional state. 

2 EXPERIMENTAL TESTS 

In order to describe the material behaviour as generally as possible, two different load 
distributions are considered: uniaxial and equibiaxial extensions. In fact it may happens that a 
model calibrated from only one load distribution could give inaccurate or instable representations 
of different tensional states. The method proposed by authors in this paper involves in the inverse 
procedure of material characterization data of uniaxial and equibiaxial tests in a coupled way. In 
this section a quick description of the test rigs and experimental methodologies is given, for both 
uniaxial and equibiaxial extension tests. 

Uniaxial stretching tests are performed on dumbbell specimens with a thickness of 1.7 mm. 
The gauge lenght of the specimen, that is the part whit maximum and uniform deformation,  is 
clearly delimited by two white markers. This zone has a length of 40 mm and a width of 9 mm. 
The test rig is composed by an electro-mechanical testing machine Zwick Z050 and a high 
resolution video-extensometer.  

Load is measured by a 5kN load cell, the displacement, that is the engineering strain, is 



measured by the crosshead LVDT, while the true strain in the “useful” part of the specimen is 
measured by the video extensometer comparing distances between markers along time. Two tests 
are performed with this rig: the first one is a quasi-static monotonic loading up to a stretch greater 
than 2 and at a strain rate in the order of 10-3 s-1. Data of this test are used to calibrate the 
hyperelastic model in order to know the primary path of the material in its virgin state. A second 
test is performed applying cyclic loading and unloading at the same strain rate of monotonic test 
up to increasing levels of deformation in order to investigate damage evolution and deviations 
from the primary path. 

The methodology adopted for equibiaxial testing is the bulge test. It consists of blocking 
between two clamping flanges a thin rubber disc, and inflating with liquid from one side of the 
specimen until it assumes a “balloon like” shape. The strain field is evaluated  by an optical device 
that measures the deformation of a grid of circular markers previously painted on the specimen 
surface.The optical setup is composed by two high resolution CMOS cameras Pixelink® B741F 
with a resolution of 1280×1024. Cameras are fixed on a moveable arm in order to maintain a good 
focal distance during the inflation of the specimen. During the test an hydraulic circuit inflates or 
deflates the specimen and cameras grab images of the top of the bulge. The software elaborates in 
real time the images giving 3D coordinates of markers. For this purpose a previous 3D calibration 
of cameras is required. From 3D coordinates of markers it is possible, applying a grid method 
algorithm, to calculate the strain field on the specimen and to estimate the radius on the top of the 
balloon. Knowing the pressure value at each step of acquisition from a transducer it is possible to 
calculate the stress [4, 15]. At the same way of uniaxial stretching, two tests are performed both in 
quasi-static conditions (strain rate in the order of 10-3 s-1), one with monotonic loading up to a 
circumferencial stretch of about 1.8, the other with cyclic loading and unloading up to increasing 
levels of deformation. 

3 HYPERELASTICITY AND PSEUDO-ELASTICITY: BASIC EQUATIONS 

Consider a rubberlike continuous body and let X  be the position vectors of its points in the 
unstressed configuration and x  the correspondent position vectors in the deformed configuration. 
X  and x  have coordinates iX  and jx  with { }3,2,1, ∈ji . The deformation gradient F  has 

components jiij XxF ∂∂= . In the theory of hyperelasticity  a strain energy function is defined as 

( )FWW =  and, for isotropic materials, it depends only on the principal stretches 321 ,, λλλ , so that 

( )321 ,, λλλWW = . Furthermore for incompressible materials like rubber it is 
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and  W can be expressed as a function on only 21 λλ ,  . The principal Cauchy stresses are 
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where p represents an arbitrary hydrostatic pressure. Avoiding p from equation (2) it is: 
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A very common form of strain energy is the one proposed by Ogden [16]: 
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where N is usually assumed to be 3, pα  and pµ  are real parameters, positive or negative. 

 
In the pseudo-elasticity theory an additional scalar variable is introduced in the strain energy 

function: 
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Because of the influence of this new variable we refer now to W as a pseudo-energy function. For 
isotropic and incompressible material in equilibrium it is: 
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and stress is given again by (2). During the deformation process η  may be either active or inactive 

and switches between these two states, remaining continuous all the time. When it is inactive the 
material behaves as an hyperelastic material with the strain energy function ( ) ( )1,, FF WWW == η , 

with η  held constant and equal to 1, without loss of generality. When it is active, η  can be 

determined from (6) and in this case it is possible to write )(Fχη = . The material will still behave 

as an hyperelastic material, but with a different strain energy function ( )( )FF χ,WW = . According 

to Ogden and Roxburgh [7], we define the function ( )21,
~ λλW  as 
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that is the energy function of the perfect hyperelastic material expressible as in equation (4). With 
this function the material will always follow the primary path, also during unloading. 

The proposed form of the model is 
 

 ( ) ( ) ( )ηφλληηλλ +≡ 2121 ,
~

,, WW  (8) 

 
where ( )ηφ  is called damage function and it is subjected to ( ) 01 =φ . It is clear that, when η  is 

inactive, that is 1=η , this function reduces to (7) describing the primary path. From (8) and (3), 

stresses are calculated as 
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Substituting (8) into (6) we obtain 



 ( ) ( )21,
~ λληφ W=′−  (10) 

 
which implicitly defines the variable η . If mm 21 ,λλ  are the stretch values in the point on the 

primary load from which unload starts, being 1=η  in that point, it is 
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Then it is possible to see that η  depends on the specific forms of ( )ηφ  and ( )21,
~ λλW and also on 

the values of mm 21 ,λλ . According to the form of ( )ηφ  proposed by Ogden and Roxburgh it is 
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where m  and r  are positive dimensionless  material constants, µ  is the ground state shear 

modulus ( ∑= ppαµµ 21  for Ogden model) and -1erf  is the inverse of the error function. On 

substitution of (12) into (10) it arises that 
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and the damage parameter is so defined in an explicit way. 

 
Starting from the previous theory of pseudo-elasticity another variable is introduced to 

incorporate also the residual strain effect. Thus, the energy function results 
 

 ( )2121 ,,, ηηλλWW =  (14) 

 
where 1η  corresponds to the damage variable and 2η  is the residual strain variable. We define the 

energy function referred to the primary load path, where damage and residual strain variables are 
inactive, thus equal to 1: 
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When active, variables 1η  and 2η  are implicitly defined by 
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while stress is calculated from equations (2, 3) as before. In the work of Dorfmann and Ogden [8] 
the following pseudo-energy function is proposed: 
 

 ( ) ( ) ( ) ( ) ( ) ( )22112122112121 ,1,
~
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where N is the function introduced to characterize the residual strains and 1φ , 2φ  are the 

dissipation functions that are subjected to 0)1(1 =φ , 0)1(2 =φ . Note that for 12 =η  equation (17) 

becomes analogue to (8). From the same authors explicit expressions of 1η  and 2η , starting with 

the imposition of specific expressions for 1φ , 2φ  and substituting them into (16), are given in the 

form 
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where r, m are dimensionless material parameters, µ  is the ground state shear modulus, mW  is the 

potential on the point of the primary path from which unload starts, α  is a value that depends on 

mW . 

According with Dorfmann and Ogden [8] a linear dependence on mW  of the parameter α  

gives a good approximation. Also a second order law was analysed, but improvements resulted 
negligible and did not justify the introduction of an additional parameter. Therefore, the law 
adopted by the authors [17] in the numerical model is 
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where J and K are dimensionless material parameters. For the residual strain function N it has been 
chosen a model expressed as 
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This is the modified neo-Hookean  model as it was proposed by Dorfmann and Ogden [8] that 
assures negative stress at zero deformation and contemporary takes into account anisotropy by 
relating the coefficients iv  to the maximum principal stretch applied along the direction i. For 

these coefficients authors [17] propose the following expression 
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where mi  ,λ  is the maximum stretch applied along direction i, U, V and Z are three dimensionless 

material dependent parameters. 
Final expressions for stresses will be: 
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For those applications where flat specimens are used, the tensional state can be approximated to 



biaxial and, defining 3 the direction along the thickness, it is 03 ≈σ . Thus equations (3), (9) and 

(22) give directly values of 1σ  and 2σ . 

Further details and plots regarding the damage variables of the pseudo-elastic model and of its 
extension for the permanent set are given in [17]. 

4 NUMERICAL RESULTS 

Numerical results and their comparison with test data are presented in this section. All tests 
have been performed at low strain rate (≈10-3 s-1) in order to reduce as much as possible any 
viscoelastic effect. At first, from monotonic loading tests in uniaxial and equibiaxial tension, the 
Ogden hyperelastic model with N=3 is calibrated in order to fit the points of the primary loading 
paths. Best-fit parameters are summarized in table 1.  
 

Table 1: Ogden model, N=3. Values of µi are in [MPa], αi are dimensionless. 

1µ  1α  2µ  2α  3µ  3α  

1.9167 1.6907 -6.7077 -0.9530 9.2209 -0.8103 
 
This set of parameters is obtained by a recursive procedure that minimizes the RMS between 
numerical and experimental data. The RMS is evaluated considering both uniaxial and equibiaxial 
tests data. The same approach will be used to fit cyclic loading tests with pseudo-elastic models, in 
order to obtain a material model as general as possible, stable and accurate for any heterogeneous 
tensional state. 

Cyclic test data consist on a succession of three full cycles of load-unload up to increasing 
levels of stretch, and a final load. Figures 2a and 2b show the best fit of cyclic data for uniaxial 
and equibiaxial tests respectively without considering the residual strain effect (Ogden-Roxburgh 
model). Curves are obtained with parameter values r = 2.006, m = 0.670 and give a RMS = 0.1317 
MPa. It is possible to note how this model is not able to fit the quite evident residual strains of the 
tested rubber. Residual strains can be fitted using the pseudo-elastic model with permanent set and 
results are given in figures 3a and 3b. In this case more parameters have to be included into the 
RMS minimization procedure. In particular, beside hyperelastic model constants and r and m, there 
are other five dimensionless parameters to be determined (J, K, U, V and Z). The best fit values of 
all these material parameters are summarized in Table 2. 
 

Table 2: Material parameters for the pseudo-elastic model with permanent set. 
All parameters are dimensionless. 

r m J K U V Z 

2.559 0.308 0.050 0.054 0.512 1.270 1.693 
 

Fittings of figure 3 show a good correspondence with experimental data and a good capability 
to fit residual strains. Anyway a small deviation between numerical and experimental data is 
appreciable in the primary load path at small stretches. This is due to the effort to obtain a general 
material model, that requires to involve simultaneously in the inverse characterization procedure 
data coming from different load distributions. 
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Figure 2: Best-fit curves of Ogden-Roxburgh model, a) uniaxial b) equibiaxial. 
Parameters values: µ = 1.081 MPa, r = 2.006 , m = 0.670. RMS = 0.1317 MPa. 

 
A higher accuracy is achievable if one uses only data from uniaxial tests or equibiaxial tests 
alternatively, as shown in [17].  However this kind of solution may be unstable for other 
deformational states and the obtained model will be able to work well only in situations that are 
similar to the one encountered in the calibration tests. From a transferability and generality point 
of view, an inverse characterization method based on multi-axial deformation data is preferable, 
and the inaccuracies described above are accepted. Other inaccuracies are due to the hysteresis 
effect of rubber that makes loading and unloading paths to be different. Models presented in this 
paper are not able to reproduce this phenomenon, however they give curves that collocate between 
load and unload. Consequently the approximation results good. 
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Figure 3: Best-fit curves of pseudo-elastic model with permanent set, a) uniaxial b) equibiaxial. 
Parameters values are summarized in Table 2. RMS = 0.0968 MPa. 

5 CONCLUSIONS 

Starting from experimental tests of uniaxial and equibiaxial tension on flat rubber specimens, 
performed by means of test rigs based on optical techniques for strain measurement, a procedure 
of hyperlelastic and pseudo-elastic models calibration has been developed in order to describe 
inelastic effects of rubbers, like Mullins effect and residual strain, in a general load distribution. 

 For the sake of generality and reproducibility, the Ogden-Roxbugrh and the Dorfmann-Ogden 
methods has been extended with a global multi-axial approach, involving simultaneously uniaxial 
and equibiaxial test data into the procedure of inverse characterization of the material; moreover, 
three load-unload cycles have been performed instead of only one.  This approach leads to a stable 
analytical representation of the material behavior for a general state of deformation.  Results show 



a good agreement with experimental data except for small inaccuracies due to the hysteresis of the 
material, not contemplated in the models. 
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