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SUMMARY. In the present contribution, the mathematical analogy existing between the singular
stress field in elasticity due to antiplane loading and the singular electromagnetic fields in elec-
tromagnetism is derived with reference to the problem of isotropic multi-material wedges. These
configurations, where dissimilar sectors converge to the same vertex, are very commonly observed
in composite materials and may lead to stress-singularities. The proposed analogy permits to extend
several elastic solutions already available in the literature to the analogous electromagnetic problems,
without the need of performing new calculations.

1 INTRODUCTION
Interfaces between two materials are defined as bounding surfaces where a discontinuity of some

kind occurs. In general, the interface is a surface through which material characteristics, such as
concentration of an element, crystal structure, elastic properties, density, as well as dielectric per-
mittivity and magnetic permeability, change abruptly from one side to another. This mismatch in the
material properties is the reason for the occurrence of singularities.

Singular stress states can exist in several boundary value problems of linear elasticity where
different materials are present (see [1–4] for a wide overview). In this context, the problems of
multi-material wedges or junctions have received a great attention from the scientific community,
since they are very commonly observed in composite materials. From the terminology point of
view, multi-material wedges correspond to the situation where two or more different elastic wedges
are joined together with a total wedge angle less than 2π. On the contrary, multi-material junctions
imply that the total wedge angle formed by the material regions equals 2π, i.e. the whole plane is
occupied by the materials without any voids.

In linear elasticity, the problem of bi-material wedges subjected to in-plane loading was firstly
analyzed by Bogy [5] and by Hein and Erdogan [6] in 1971. Bi-material junctions were addressed
by Bogy and Wang [7] in the same year and the general mathematical treatment of multi-material
junctions was proposed by Theocaris [8] in 1974. Pageau et al. [9] and Carpinteri and Paggi [10]
analyzed several configurations involving tri-material junctions with perfectly bonded or debonded
interfaces, whereas Inoue and Koguchi [11] proposed a detailed study on tri-material wedges. In
these contributions, three different mathematical techniques were used for the characterization of
the singular stress field and a demonstration of their equivalence has been recently provided by
Paggi and Carpinteri [4].

Most of the efforts, including those previously mentioned, have been directed to the character-
ization of stress-singularities for in-plane loading, where the problem is governed by a biharmonic
equation. The out-of-plane loading, also referred to as antiplane shear problem, is governed by a
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simpler harmonic equation. In spite of that, it has received a minor attention as compared to the in-
plane problem. From the historical point of view, stress-singularities due to antiplane loading were
firstly addressed by Rao [12] in 1971. In his study, a general procedure for the identification of stress-
singularities at the intersection of two or more interfaces in domains governed by harmonic equations
was presented. Afterwards, Fenner [13] examined the Mode III loading problem of a crack meeting
a bi-material interface using the eigenfunction expansion method proposed by Williams [14]. More
recently, Ma and Hour [15, 16] analyzed bi-material wedges using the Mellin transform technique
and Pageau et al. [17] investigated the singular stress field of bonded and debonded tri-material
junctions according to the eigenfunction expansion method.

The mathematical problems characterized by biharmonic or harmonic type of equations where
the stress-field is singular present several analogies with other engineering problems. Regarding sin-
gular biharmonic problems, the analysis of the stress-singularities at the vertex of a multi-material
wedge or junction has its analogous counterpart in the analysis of the Stokes flow of dissimilar im-
miscible fluids, as recently pointed out by Paggi and Carpinteri [4]. As far as the harmonic problems
are concerned, the mathematical analogy between the steady-state heat transfer and the antiplane
loading of composite regions was firstly recognized by Sinclair [18] in 1980. Very recently, Paggi
and Carpinteri [4] put into evidence the analogy between antiplane loading and the St. Venant tor-
sion of composite bars. To the knowledge of the present authors, it seems that the analogy between
elasticity and electromagnetism has been overlooked. In the solution of diffraction problems, in
fact, Bouwkamp [19] and Meixner [20,21] found that the electromagnetic field vectors may become
infinite at the sharp edges of a diffracting obstacle. As for the problem of re-entrant corners in elas-
ticity, the order of the singularity is determined by the imposition of the boundary conditions (BCs)
near the singular point. As it will be shown in the sequel, this mathematical problem is governed
by the Helmholtz equation (see also [22] for a detailed overview). This partial differential equation
admits a separable variable form solution, as for the antiplane problem in elasticity governed by the
Laplace equation. Moreover, as far as the asymptotic analysis of the singular electromagnetic fields
is concerned, the eigenfunction expansion method can be used, in close analogy with the well-known
method proposed by Williams [14] in elasticity.

In the present paper, the mathematical analogy existing between the singular stress field in elas-
ticity due to antiplane loading and the singular electromagnetic fields in electromagnetism is derived
with reference to the problem of isotropic multi-material wedges. As a main outcome, the order
of the stress-singularities of various geometrical and mechanical configurations already determined
in the literature can be adopted for the analogous electromagnetic problems, without the need of
performing new calculations.

2 STRESS-SINGULARITIES IN ELASTICITY DUE TO ANTIPLANE LOADING
The geometry of a plane elastostatic problem consisting of n − 1 dissimilar isotropic, homo-

geneous sectors of arbitrary angles perfectly bonded along their interfaces converging to the same
vertex O is shown in Fig. 1. Each of the material regions is denoted by Ωi with i = 1, . . . , n − 1,
and it is comprised between the interfaces Γi and Γi+1.

Out-of-plane loading due to antiplane shear (Mode III) on composite wedges can lead to stresses
that can be unbounded at the junction vertex O. When out-of-plane deformations only exist, the
following displacements in cylindrical coordinates can be considered with the origin at the vertex O:
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Figure 1: Scheme of a multi-material wedge.

ur = 0, (1a)
uθ = 0, (1b)
uz = uz(r, θ), (1c)

where uz is the out-of-plane displacement, which depends on r and θ. For such a system of dis-
placements, the strain field components become

εr = εθ = εz = γrθ = 0, (2a)

γrz =
∂uz

∂r
, (2b)

γθz =
1
r

∂uz

∂θ
. (2c)

From the application of the Hooke’s law, the stress field components are given by:

σr = σθ = σz = τrθ = 0, (3a)

τrz = Giγrz = Gi
∂uz

∂r
, (3b)

τθz = Giγθz =
Gi

r

∂uz

∂θ
, (3c)

where Gi is the shear modulus of the i-th material region. The equilibrium equations in absence of
body forces reduce to a single relationship between the tangential stresses:

∂τrz

∂r
+

1
r

∂τθz

∂θ
+

1
r
τrz = 0, ∀(r, θ) ∈ Ωi. (4)

Introducing Eqs. (3) into Eq. (4), the harmonic condition upon uz is derived:

∂2uz

∂r2
+

1
r

∂uz

∂r
+

1
r2

∂2uz

∂θ2
= ∇2uz = 0, ∀(r, θ) ∈ Ωi. (5)
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In the framework of the eigenfunction expansion method [14], the following separable variable
form for the longitudinal displacement uz can be adopted (∀(r, θ) ∈ Ωi):

uz(r, θ) =
∑

j

rλj fi,j (θ, λj) + rλj+1hi,j (θ, λj) + rλj+2li,j (θ, λj) + . . . , (6)

where λj are the eigenvalues of the problem, whereas fi,j , hi,j and li,j are the eigenfunctions. The
summation with respect to the subscript j is introduced in Eq. (6), since it is possible to have more
than one eigenvalue and the Superposition Principle can be applied.

Introducing Eq. (6) into Eq. (5), we find the following relationship holding for each eigenvalue
λj :

rλj−2

(
d2fi,j

dθ2
+ λ2

jfi,j

)
+ rλj−1

(
d2hi,j

dθ2
+ (λj + 1)2hi,j

)
+

+ rλj

(
d2li,j
dθ2

+ (λj + 2)2li,j

)
+ · · · = 0.

(7)

Hence, the coefficients of the term in rλj−2 must vanish, implying that the eigenfunctions fi,j are a
linear combination of trigonometric functions:

fi,j(θ, λj) = Ai,j sin(λjθ) + Bi,j cos(λjθ). (8)

The eigenfunctions fi,j are particularly important, since they enter the first term of the series expan-
sion (6), which is responsible for the singular behaviour of the stress field components for r → 0.
In fact, if we truncate the series expansion (6) to this first term and we introduce it into Eq. (3), the
longitudinal displacement and the tangential stresses can be expressed in terms of the eigenfunction
and its first derivative:

uz = rλj fi,j = rλj [Ai,j sin(λjθ) + Bi,j cos(λjθ)] (9a)

τrz = Giλjr
λj−1fi,j = Giλjr

λj−1 [Ai,j sin(λjθ) + Bi,j cos(λjθ)] (9b)

τθz = Gir
λj−1f ′i,j = Giλjr

λj−1 [Ai,j cos(λjθ)−Bi,j sin(λjθ)] . (9c)

The determination of the power of the stress-singularity, λj − 1, can be performed by imposing
the boundary conditions (BCs) along the edges Γ1 and Γn and at the bi-material interfaces Γi, with
i = 2, . . . , n − 1. Along the edges Γ1 and Γn, defined by the angles γ1 and γn, we consider two
possibilities: one corresponding to unrestrained stress-free edges

τθz(r, γ1) = 0, (10a)
τθz(r, γn) = 0, (10b)

and the other for fully restrained (clamped) edges

ui
z(r, γ1) = 0, (11a)

ui
z(r, γn) = 0. (11b)

At the interfaces, the following continuity conditions of displacements and stresses have to be
imposed (i = 1, . . . , n− 2):

ui
z(r, γi+1) = ui+1

z (r, γi+1), (12a)

τ i
θz(r, γi+1) = τ i+1

θz (r, γi+1). (12b)
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In this way, a set of 2n homogeneous equations in the 2n + 1 unknowns Ai,j , Bi,j , and λj can
be symbolically written as:

Λ v = 0, (13)

where Λ denotes the coefficient matrix which depends on the eigenvalue, and v represents the vector
that collects the unknowns Ai,j and Bi,j . More specifically, the coefficient matrix entering Eq. (13)
is characterized by a sparse structure:

Λ =




N1
γ1

M1
γ2

−M2
γ2

M2
γ3

−M3
γ3

... ...
Mi−1

γi
−Mi

γi

... ...
Mn−2

γn−1
−Mn−1

γn−1

Nn−1
γn




(14)

where the non null elementary matrix Mi
θ related to the interface BCs is given by:

Mi
θ =


 sin(λjθ) cos(λjθ)

Gi cos(λjθ) −Gi sin(λjθ)


 (15)

and the components of the vector v are:

v = {v1,v2, . . . ,vi, . . . ,vn−2,vn−1}T , (16)

with vi = {Ai,j , Bi,j}T . The term Ni
θ depends on the BCs along the edges Γ1 and Γn. For stress-

free edges we have:
Ni

θ = {Gi cos(λjθ),−Gi sin(λjθ)}, (17)

whereas for clamped edges it is given by

Ni
θ = {sin(λjθ), cos(λjθ)}. (18)

A nontrivial solution of the equation system (13) exists if and only if the determinant of the co-
efficient matrix vanishes. This condition yields an eigenequation which has to be solved for the
eigenvalues λj that, in the most general case, do depend on the elastic properties of the materials.

3 SINGULARITIES IN THE ELECTRO-MAGNETIC FIELDS
Let us consider the multi-material wedge shown in Fig. 2. Each material is isotropic and has a

dielectric permittivity εi and a magnetic permeability µi. We also admit the presence of a perfect
electric conductor (PEC) in the region 1 defined by the interfaces Γ1 and Γn. For periodic fields with
circular frequency ω, the Maxwell’s equations for each homogeneous angular domain read [21]:

iωεiE = ∇×H, (19a)
−iωµiH = ∇×E, (19b)

where the symbol i stands for the imaginary unit.

5



Γn

Γ1

Γ2

Γ3

Γ4

Γn -1

O

Ω1

Ω2

Ω3

Ω4
Ω5

Ωn -1

γ1

θ

Γ5

r

PEC

Figure 2: Scheme of a multi-material wedge with a PEC material.

In cylindrical coordinates r, θ, z, with the z axis perpendicular to the plane of the wedge, and
considering electromagnetic fields independent of z, the Maxwell’s equations reduce to the following
conditions upon the components of the electric and magnetic fields:

iωεiEr =
1
r

∂Hz

∂θ
, (20a)

iωεiEθ = −∂Hz

∂r
, (20b)

iωεiEz =
1
r

∂

∂r
(rHθ)− 1

r

∂Hr

∂θ
, (20c)

−iωµiHr =
1
r

∂Ez

∂θ
, (20d)

−iωµiHθ = −∂Ez

∂r
, (20e)

−iωµiHz =
1
r

∂

∂r
(rEθ)− 1

r

∂Er

∂θ
. (20f)

It is easy to verify that the Ez and Hz components satisfy the Helmholtz equation:

∂2Ez

∂r2
+

1
r

∂Ez

∂r
+

1
r2

∂2Ez

∂θ2
+ k2

i Ez = ∇2Ez + k2
i Ez = 0, (21a)

∂2Hz

∂r2
+

1
r

∂Hz

∂r
+

1
r2

∂2Hz

∂θ2
+ k2

i Hz = ∇2Hz + k2
i Hz = 0, (21b)

where ki = ω2εiµi.
In close analogy with the antiplane problem in linear elasticity, the following separable form for

Ez and Hz can be postulated (∀ (r, θ) ∈ Ωi):

Ez(r, θ) =
∑

j

rλj fi,j (θ, λj) + rλj+1hi,j (θ, λj) + rλj+2li,j (θ, λj) + . . . (22a)

Hz(r, θ) =
∑

j

rλj Fi,j (θ, λj) + rλj+1Hi,j (θ, λj) + rλj+2Li,j (θ, λj) + . . . (22b)
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where λj are the eigenvalues, whereas fi,j , hi,j , li,j , Fi,j , Hi,j and Li,j are the eigenfunctions.
We can introduce Eq. (22) into Eq. (21), obtaining the following equalities:

rλj−2

(
d2fi,j

dθ2
+ λ2

jfi,j

)
+ rλj−1

(
d2hi,j

dθ2
+ (λj + 1)2hi,j

)
+

+ rλj

(
d2li,j
dθ2

+ (λj + 2)2li,j + k2
i fi,j

)
+ · · · = 0

(23a)

rλj−2

(
d2Fi,j

dθ2
+ λ2

jFi,j

)
+ rλj−1

(
d2Hi,j

dθ2
+ (λj + 1)2Hi,j

)
+

+ rλj

(
d2Li,j

dθ2
+ (λj + 2)2Li,j + k2

i Fi,j

)
+ · · · = 0

(23b)

The coefficients of the term in rλj−2 must vanish, implying that the eigenfunctions fi,j and Fi,j

are a linear combination of trigonometric functions, in perfect analogy with the eigenfunction fi,j in
antiplane elasticity (see Eq. (8)):

fi,j(θ, λj) = Ai sin(λjθ) + Bi cos(λjθ), (24a)
Fi,j(θ, λj) = Ci sin(λjθ) + Di cos(λjθ). (24b)

These eigenfunctions are particularly important, since they enter the first terms of the series expan-
sions (22a) and (22b) and are responsible for the singular behaviour of the components Er, Eθ, Hr

and Hθ of the electric and magnetic fields near the wedge apex. In particular, from Eq. (20), we
observe that:

Er =
1

riωεi

∂Hz

∂θ
=

1
iωεi

∑

j

λjr
λj−1F ′i,j + · · · ∼ O(rλj−1), (25a)

Eθ = − 1
iωεi

∂Hz

∂r
= − 1

iωεi

∑

j

λjr
λj−1Fi,j + · · · ∼ O(rλj−1), (25b)

Hr = − 1
riωµi

∂Ez

∂θ
= − 1

iωµi

∑

j

λjr
λj−1f ′i,j + · · · ∼ O(rλj−1), (25c)

Hθ =
1

iωµi

∂Ez

∂r
=

1
iωµi

∑

j

λjr
λj−1f ′i,j + · · · ∼ O(rλj−1). (25d)

Hence, Ez ∼ O(rλj ) and Hz ∼ O(rλj ) are the analogous counterparts of uz and remain finite for
r → 0. On the contrary, the radial components of the electric and magnetic fields, Er and Hr, are
analogous to τθz and the circumferential components, Eθ and Hθ, are analogous to τrz . All of these
components diverge when r → 0 with a power-law singularity of order −1 < (λj − 1) < 0.

The following BCs hold along the edges Γ1 and Γn of the PEC:

E1
z (r, γ1) = 0, (26a)

En−1
z (r, γn) = 0, (26b)

E1
r (r, γ1) = 0, (26c)

En−1
r (r, γn) = 0, (26d)
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whereas continuity BCs have to be imposed along the bi-material interfaces (i = 1, . . . , n− 2):

Ei
z(r, γi+1) = Ei+1

z (r, γi+1), (27a)

Ei
r(r, γi+1) = Ei+1

r (r, γi+1), (27b)

Hi
z(r, γi+1) = Hi+1

z (r, γi+1), (27c)

Hi
r(r, γi+1) = Hi+1

r (r, γi+1). (27d)

Using Eqs. (25), the BCs (26) become:

E1
z (r, γ1) = 0, (28a)

En−1
z (r, γn) = 0, (28b)

∂H1
z

∂θ
(r, γ1) = 0, (28c)

∂Hn−1
z

∂θ
(r, γn) = 0, (28d)

whereas those defined by Eq. (27) become (i = 1, . . . , n− 2):

Ei
z(r, γi+1) = Ei+1

z (r, γi+1), (29a)

1
εi

∂Hi
z

∂θ
(r, γi+1) =

1
εi+1

∂Hi+1
z

∂θ
(r, γi+1) (29b)

Hi
z(r, γi+1) = Hi+1

z (r, γi+1), (29c)

1
µi

∂Ei
z

∂θ
(r, γi+1) =

1
µi+1

∂Ei+1
z

∂θ
(r, γi+1). (29d)

It is interesting to note that Eqs. (21), (28) and (29) can be separated into two sets of equations,
one involving only Hz and another involving only Ez . They correspond to the so-called Transverse
Electric (TE) and Transverse Magnetic (TM) fields, respectively.

Considering the series expansion for Ez and Hz truncated at the first term, along with the ex-
pressions for the eigenfunctions fi,j and Fi,j , the boundary value problem consists of two sets of 2n
equations in 2n + 1 unknowns, one for Ez and another for Hz . The former equation set (TM case)
involves the coefficients Ai,j , Bi,j and λj and can be symbolically written as:

Λ v = 0, (30)

where Λ denotes the coefficient matrix which depends on the eigenvalue and v represents the
vector which collects the unknowns Ai,j and Bi,j . The coefficient matrix in Eq. (30) has ex-
actly the same structure as that for the elasticity problem in Eq. (13), provided that we consider
Ni

θ = {sin(λjθ), cos(λjθ)} and we set Gi = 1/µi.
The latter equation set (TE case) involves the coefficients Ci,j , Di,j and λj and can be symboli-

cally written as:
Λ w = 0, (31)

where Λ is the coefficient matrix which depends on the eigenvalue and w represents the vector
which collects the unknowns Ci,j and Di,j . Again, the coefficient matrix in Eq. (31) has exactly
the same structure as that for the elasticity problem in Eq. (13), provided that we consider Ni

θ =
{cos(λjθ),− sin(λjθ)} and we set Gi = 1/εi.
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For the existence of nontrivial solutions, the determinants of the coefficient matrices must vanish,
yielding two eigenequations that, for given values of εi and µi, determine the eigenvalues λTE

j

and λTM
j . Hence, this proves that the analysis of the singularities of the electro-magnetic field is

mathematically analogous to that for the elastic field due to antiplane loading. For a given multi-
material wedge problem, in elasticity we can distinguish between singularities due to either stress-
free or clamped edges, depending on the BCs specified along the edges defined by the interfaces Γ1

and Γn. In electromagnetism, these BCs are both present when a multi-material wedge includes a
PEC material. In this instance, the singularities related to the homogeneous equation system (30)
correspond to those obtained from the analogous elastic problem with Gi = 1/µi and with clamped
edges Γ1 and Γn. On the other hand, the singularities related to the homogeneous equation system
(31) correspond to those obtained from the analogous elastic problem with Gi = 1/εi and with
stress-free edges Γ1 and Γn.

A notable limit case is represented by a PEC embedded into a single homogeneous material, say
Ω1 (see Fig. 1). In this case, both Ez and Hz have the same singularity, whose power is independent
of the material properties of Ω1:

λTE = λTH = m
π

2π − γ1
, (32)

where m is a natural number. The minimum eigenvalue is equal to 1/2 for γ1 = 0. In elasticity,
this situation corresponds to a crack (when stress-free BCs are imposed) or to a rigid line inclusion
or anti-crack (when clamped BCs are imposed). For higher values of γ1, (1 − λ) diminishes and
vanishes for a half-plane (γ1 = π). For γ1 > π, the electromagnetic fields are no longer singular.

4 CONCLUSIONS
In the present paper, we have demonstrated that the asymptotic analysis of the stress-singularities

at the vertex of multi-material wedges and junctions in antiplane elasticity is analogous to the cor-
responding problem in electromagnetism. In particular, when an isotropic multi-material wedge
with PEC boundaries is considered, we have shown that two independent problems can be defined,
one for TE fields, associated to an eigenequation for Hz , and one for TM fields, associated to an
eigenequation for Ez . The eigenequation for Ez corresponds exactly to that obtained for the same
geometrical configuration in antiplane elasticity by setting Gi = 1/µi and replacing the PEC region
with an infinitely stiff material leading to clamped edge BCs along Γ1 and Γn. Similarly, the other
eigenequation for Hz can be obtained in antiplane elasticity for the same geometrical configura-
tion by setting Gi = 1/εi and replacing the PEC region with an infinitely soft material leading to
stress-free BCs along Γ1 and Γn.
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