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SUMMARY. The paper exploits the similarity in the numerical strategies used to evaluate limit or
shakedown load safety factors. While theoretically different, the interior point methods and strain
driven path–following algorithms, are similar from a computational point of view. In this work a
comparison of these methods is performed in order to show analogies and numerical performances.
The aim is to reuse the great amount of research carried out to develop efficient interior point algo-
rithms to improve the performance of the strain–driven based formulations and viceversa.

1 INTRODUCTION
The static and kinematic shakedown theorems, including the limit analysis as a special case,

furnish in a direct and elegant fashion, a reliable safety factor against plastic collapse, loss in func-
tionality due to excessive deformation (ratcheting) or collapse due to fatigue (plastic shakedown) [1].
Based on these theorems the so called direct methods evaluate the safety factor solving convex op-
timization problems, that for real structures discretized by means of finite elements, usually require
the solution of large dimension convex programming problems. In contrast the structure safety fac-
tor can be evaluated by means of the complete reconstruction of the equilibrium path, using standard
strain driven strategies (see [2] for extension to shakedown).

Alternatively hand the complete elasto–plastic path–following analysis, independently of its use
as a tool to evaluate the limit load, gives important additional mechanical information about the
structural behaviour. The extremal paths theory of Ponter and Martin for example gives a coherent
justification of the use of a return mapping algorithm based on the closest point projection and a
mechanical sense to the numerical evaluated equilibrium path, so making it possible to use all the
information obtained, regarding both the static and kinematic behaviour of the structure, even for
equilibrium configurations other than the collapse one. Although still not completely analyzed, also
in the case of shakedown analysis strain driven type methods furnish further information regarding
the mechanical behavior of the structure (see for example section 4.6 of [2]) that could be used in
the design process. However an extension of the interior point methods also for the evaluation of the
elasto-plastic equilibrium path is, possible and has been recently proposed by Krabbenhøft et al. [7].

A comparison of the convenience of a series of aspects, regarding efficiency, robustness and
accuracy between these two different strategies of analysis, will be investigated. In particular the
apparently large theoretical difference between these two strategies is not so great in the numerical
implementation, where the two methods closely resemble each other. The similarities between the
two approaches also show the convenience and disadvantages of the two formulations also making
it possible to improve the performance of each method using the experience from the other.

The comparison is performed with an improved version of the strain driven algorithm for shake-
down and limit analysis described in [2] that will be presented here for the first time. The algorithm
is reformulated expressing shakedown load domain in terms of a suitable reference load that directly
fulfills, from a theoretical point of view, the convergence requirements presented in [3]. The prob-

1



lems so reformulated directly reduce to the classic strain driven limit analysis case when a single
proportional load is present and, more than the original proposal in [2], appear to be easy to imple-
ment in an existing code that already performs limit analysis. Also the performance of the algorithm
can take advantage of this reformulation. Furthermore the use of nonlinear yield function gives a
better performance with respect to both effectiveness and accuracy. With a small modification in the
elastic modula used to evaluate the trial stress we obtain a simple expression for the closest point
correction that reduces to the classical radial return mapping when a single yield function is present,
as usually occurs for the limit analysis case.

The proposed modified method proves to be competitive with respect to interior point methods
as regards both efficiency and robustness. A series of results regarding accuracy, robustness and
efficiency will be presented.

2 THE DISCRETE FEM MODEL
In the following limit and shakedown problems are reformulated in terms of finite element alge-

braic equations to have immediately clarify how the problem at hand can be framed in the general
context of a convex nonlinear optimization problem.

Using a symbolic notation, we assume that the displacement u[x] and the stress σ[x] of a point
x of the body domain B are expressed, by means of a finite number of interpolation variables using a
mixed finite element format. In particular we assume the discrete FEM model be expressed in terms
of the values that stresses and displacements assume in a number of stress and displacement nodes
(or control points):

σg = σ[xg] , ui = u[xi] (1)

with g = 1 . . . Nσ and i = 1 . . . Nu so that the vector displacements and stress fields can be defined
as:

σ[x] = Nσ[x]t , u[x] = Nu[x]d (2)

where Nσ[x] and Nu[x] are the matrices collecting the interpolation functions and the global dis-
placements d ∈ RNd and stress t ∈ RNt vectors collects all the nσ stress nodes and the nu displace-
ment node vectors as:

t =




σ1

...
σNσ


 , d =




u1

...
unu




The discrete forms of the kinematical relationship between the strain ε[x] and displacements
u[x] written as:

ε[x] = N ε[x]d , N ε = D[x]Nu[x]

where D[x] is the kinematical operator while the discrete finite element representation of the equi-
librium equations becomes

QT t = λp , QT ≡
∫

B

N ε[x]T Nσ[x] dV (3)

where the external forces vector, when only mechanical actions are considered, is

p =
∫

B
NT

u b[x]dV +
∫

∂fB
NT

u f [x]dA
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where b[x] represent the external body forces and f [x] the surface force on the boundary ∂fB.
Finally we also have the discrete form of the compatibility condition as

% = Qd (4)

where %T = [ε1, · · · , εNσ
] collects the discrete strain conjugate, in the virtual work sense, to t.

When a linear elastic constitutive law defined by the compliance operator E is adopted

σ[x] = Eε[x] (5)

and a compatible interpolation is used we have:

Ked = λp , Ke ≡
∫

B

N ε[x]T EN ε[x] dV (6)

From now on the dependence of quantities on x will be omitted for an easier reading.

2.1 The elastic envelope of the stresses
We assume that the external actions p can be expressed as a combination of basic actions pi with

i = 1 . . . p belonging to the admissible closed and convex load domain

P :=

{
p ≡

p∑

i=1

aipi : amin
i ≤ ai ≤ amax

i

}
(7)

Denoting with tei the stress elastic solution for pi it is possible to define the elastic envelope Se of
the elastic stresses te:

Se :=

{
te ≡

p∑

i=1

αitei : amin
i ≤ ai ≤ amax

i

}
(8)

that define, the set of the elastic stresses produced by each load path contained in the load domain.
By construction Se and P are convex polytopes defined by Nv vertexes and each te ∈ Se can be

expressed as a convex combination of the elastic envelope vertexes tEα that can be usefully referred
to a reference stress tE0 so obtaining:

te = tE0 +
Nv∑

α=1

sαtEα sα ≥ 0
Nv∑

α=1

sα = 1 (9)

If elastic stresses (external loads) are amplified by a real number λ the amplified elastic envelope
λSe := {λte : te ∈ Se} is obtained from the original one Se by a translation defined by the trans-
lation of the reference stress (λ − 1)tE0 and by an expansion (contraction if λ < 1) defined by the
motion (λ− 1)tEα of the vertexes with respect to tE0.

Note also that Se is polar symmetric with respect to its center, that is the value of te ∈ Se defined
by the following combination

a0
α =

amax
α + amin

α

2
α = 1 . . . Np (10)
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2.2 The shakedown elastic domain
Assuming elastic perfectly plastic Drucker material the stress field will be plastically admissible

if
f [σ[x]] ≡ φ[σ[x]]− σgy ≤ 0 ∀x ∈ B (11)

where the convex yield function f is the sum of the homogeneous function φ and of the yield stress
σgy ∈ R. In a FEM context of analysis the previous condition could be expressed in a weighted sense
as proposed as an example in [8] or tested in a finite series of points. To simplify the notation, we
control plastic admissibility in the Nσ stress control nodes xg so that t will be plastically admissible
if each σg is contained in the elastic domain Eg:

Eg := {σg : f [σg] ≤ 0} , f [σg] ≡ φ[σg]− σgy (12)

Introducing the global yield function

f [t]T =
[
f [σ1] f [σ2] . . . f [σNσ

]
]

(13)

the plastically admissible condition for the global vector t becomes

t ∈ E with E := {t : f [t] ≤ 0}

where, from now on, vector inequality will be considered in a componentwise fashion that is:

f [t] ≤ 0 ⇐⇒ f [σg] ≤ 0 ∀g = 1 . . . Nσ
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Figure 1: Classic definition of the shakedown domains

Finally the plastically admissible condition for all the stresses contained in the amplified elas-
tic envelope λSe and translated by a fixed stress t̄, due to the convexity of E, require the plastic
admissibility of all vertex stresses tα = λ(tEα + tE0) + t̄

f [λte + t̄] ≤ 0, ∀te ∈ Se ⇐⇒ f [tα] ≤ 0 α = 1 . . . Nv (14)
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3 FORMULATION OF LIMIT ANALYSIS AND SHAKEDOWN PROBLEMS
The aim of this section is to give a general frame for the evaluation of the larger multiplier λa, we

call shakedown safety factor, used for amplifying the load domain P and allowing for the shakedown
of the structure using both direct methods based on shakedown theorems or strain driven pseudo–
elasto plastic analysis as proposed in [2]. Note that, even if in the following we always refers to
shakedown analysis and shakedown safety factor, the limit analysis case is trivially obtained as a
subcase of the shakedown ones when the elastic envelope collapse in a single point.

3.1 Shakedown theorems
Sufficient and necessary conditions for shakedown are given in the classic Bleich–Melan static

theorem and Koiter’s kinematic theorem that can be rewritten using the definition of elastic envelope.

3.1.1 Static theorem, safe multipliers and multiplier bounds

For a given λs ∈ R the classic form of static shakedown theorems demands the existence of a
time–independent self-equilibrated stress field t̄ so that the total stress will be plastically admissible
and equilibrated with the external load for each load in λsP. λa can be evaluated as the maximum
of the safe multipliers using the static theorems rewritten in terms of the reference stress tE0 using a
formulation usually adopted when using direct methods (see [9]) such as

maximize λs

subject to QT t = λsp0

tα = t0 + λstEα α = 1 . . . Nv

f [tα] ≤ 0, α = 1 . . . Nv

(15)

with
p0 ≡ QT tE0

The Nv new variables tα representing vertex stresses and tE0, without any loss in generality, could
be selected as a vertex stress tE0 = tE1 for example. Finally is tE0 = 0 we have the classic form of
the theorem in terms of the self–equilibred stress.

Note that when the external load domain collapsed in a single point (αmin
i = αmax

i ) problem
(15) directly transforms into the standard form of the static theorem of limit analysis if t ∈ S. We
also have that the λa will be the lesser of the minimum values of the limit load multiplier obtained
for a generic p0 ∈ P, and so also lesser than or equal to each limit load obtained for a single vertex
load.

3.1.2 The dual problem: kinematical theorem

Static theorem of shakedown has the form of a primal, convex nonlinear optimization problem.
Starting from eq. (15) we can evaluate the Lagrangian:

L[λ, t, tα, µα, u, %α] = λ + uT (QT t− λp0) +
Nv∑

α=1

%T
α(tα − t− λtEα)−

Nv∑
α=1

µT
αf [tα] (16)

where each µα and σy are vectors of dimension Nσ collecting the Lagrange multipliers

µT
α =

[
µα,1 µα,2 . . . µα,Nσ

]
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and the yield stresses
σy =

[
σy1 σy2 . . . σyNσ

]

In the optimal values the Lagrangian has a saddle point [10, 11], that is the optimal value for the
solution of the following condition

λa = min
(µα,u)

max
(λ,t)

L[λ, t, µ, u]

that is, evaluating the max respect to primal variable and after substitution we have the following
dual problems coincident with the Koiter kinematical theorem of shakedown:

minimize λc ≡ σT
y

∑
α

µα

subject to µα ≥ 0

uT p0 +
Nv∑

α=1

%T
α tEα = 1

Qu =
Nv∑

α=1

%α , %α = A[tα]µα

(17)

where

Aσα :=
∂f

∂t

∣∣∣∣
T

t≡tα

In previous equation the Euler theorem for the homogeneous functions φ[tα] has been used. Note
as, the first equality constraint in (17) represent the normalization conditions of the power spent by
he stress te ∈ Se for the kinematical mechanism, and in the limit analysis case simply becomes

uT p0 = 1

The saddle point properties of the Lagrangian show, that the maximum problem is concave
and the minimum problem in convex such that both problem have the same optimal value λa =
maxλs = minλc when the primal problem has an admissible solution, that is when λe 6= 0. Be-
cause of the convexity of the problem the obtained optimum is global such that the shakedown (limit)
load factor is unique.

3.2 Finite step in pseudo-elastoplastic analysis
Limit and shakedown multipliers can also be obtained by evaluating the equilibrium path in the

case of limit analysis or performing a pseudo elasto–plastic analysis as proposed in [2, 4] for the
shakedown. As presented in [7] the single finite step of elasto-plasticity can be expressed as an
optimization problem, which when extended for the shakedown becomes

maximize λ(k) − 1
2

Nv∑

i=0

(∆t(k)
i )T F∆t(k)

i

subject to: QT t(k) = λ(k)p0

t(k)
α = t(k) + λ(k)tEα α = 1 . . . Nv

f [t(k)
α ] ≤ 0, α = 1 . . . Nv

(18)
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obtained from the static theorems (15) by adding the elastic definite positive quantities

1
2

Nv∑

i=0

(∆t(k)
i )T F∆t(k)

i being ∆t(k)
i = t(k)

i − t(k−1)
i

where a(k) denotes the quantities a in the kth step of the elasoplasic analysis and

∆(·) = (·)(k+1) −∆(·)(k)

The first order (Khun-Tucker) condition for eq.(20) gives in fact the same equation obtained
using standard strain–driven elastoplastic analysis with a closest–point projection (a backward Euler
integration scheme for the strain driven scheme):

Normalization: ∆uT p0 +
Nv∑

α=1

∆%T
α tEα = 1

Kinematical compatibility: Q∆u = F∆t +
Nv∑

α=1

∆%α

Strain definition: ∆%α = Fα∆tα + A[t(k+1)
α ]µ(k+1)

α

Equilibrium: QT t(k+1) = λ(k+1)p0

Stress definition: t(k+1)
α = t(k+1) + λ(k+1)tEα

Yielding: f [t(k+1)
α ] ≤ 0

Consistency: µ(k+1)T
α f [t(k+1)

α ] = 0
Dual feasibility µα ≥ 0

(19)

that is the finite step of elasto-plastic or shakedown analysis.
Note that when F → 0 we obtain the first order condition for the static and kinematic theorems.

This also suggests that for increasing values of F−1 with a single step of eq. (19) we have a suitable
estimate of the shakedown safety factor.

3.3 INTERIOR POINT AND STRAIN DRIVEN METHODS IN ELASTO-PLASTICITY
In the sequel we describe the two approaches to the evaluation of the equilibrium path of struc-

tures subjected to a single proportional load, that is in the standard elasto-plastic case. In this way
we focus the discussion on the difference between the two solution approaches avoiding useless
complications in the writing. The evaluation of the limit load directly from eq.(15) could be seen as
a single step of the interior point solution when the elastic modula in F are set to zero (or to small
quantities).

3.4 Path–following Interior point methods
The elasto-plastic analysis, as formulated in (19), can be easily treated using the standard primal

dual interior point formulation, introducing the logarithmic barrier and the positive slack variables
for each inequality constraint. Assuming as reference stress t ≡ t0 the unique vertex of the elastic
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domain now being Nv = 1 we have:

maximize λ− 1
2
∆tT F∆t + ωj

Nσ∑
g=1

log(sg)

subject to: QT t = λp

f [t] + s = 0

s ≥ 0

(20)

where the dependence on the kth step has been omitted for an easy reading and ωj is a positive real
quantity.

The Lagrangian associated with this problem will be:

L[z] = λ + ωj

Nσ∑
g=1

log(sg) + ∆uT (QT t− λp)− 1
2
∆tT F∆t− µT (f [t] + s) (21)

where z = (λ, t, ∆u, µ, s) is the vector collecting all the unknowns of the problem.
There are a series of refinements of the strategies used to solve convex programming problems

using Interior Point methods but the basic idea is to solve a sequence of linearized Newton problems
derived as the first order condition of the nonlinear eq.(21) for ω1 > ω2 > · · · > ωj > 0 with the
positive constraints on the Lagrange multiplier µ and s imposed by the logarithmic barrier. Starting
from a primal dual feasible point zj and given values of ωj+1 < ωj , each subproblem, furnishes
a search direction żj suitable to give a new primal dual feasible point zj+1 following the so called
central path:

Tj żj = −rj , zj+1 = zj + θj żj (22)

where

rj =
∂L
∂z

∣∣∣∣
z=zj

and Tj =
∂2L
∂z2

∣∣∣∣
z=zj

The quantities θj usually unitary in the case of a full Newton step, are selected in order to maintain
positivity of the slack variables sj+1 and µj+1. The sequence so generated, for ωj −→ 0 gives
the first order condition of the original problem exactly (19). In this fashion it can be seen that, the
optimal solution is reached faster than by following the other paths. Actually the implementation
needs some other manipulation to stay in the neighborhood of the central path while the efficiency of
the method is heavily conditioned by the nature of the inequality constraints equations. In particular
the better efficiency is obtained with linear or conic constraints.

In the present case eq.(22) can be written as:

rj =




rλj

rσj

reqj

rµj

rsj




=




1−∆uT
j p

Q∆uj − F∆tj −Aσjµj

QT tj − λjp
−f [tj ]− sj

Sjµj − ωje




= 0

where the last equation, to avoid numerical singularities, has been multiplied for the diagonal matrix
S

S = diag
[
s1 · · · sNσ

]
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while e denotes a vector of 1 of the appropriate dimension and:

∆uj = uj − u0 , ∆tj = tj − t0

The j Newton iteration then becomes



· · −pT · ·
· −(F + Hj) Q −Aσj ·
−p QT · · ·
· −AT

σj · · −I
· · · Sj Υj







λ̇
ṫ
u̇
µ̇
ṡ




= −




rλj

rσj

reqj

rµj

rsj




(23)

where · stands for a zero vector or matrix of the appropriate dimension and

Υ = diag
[
µ1 µ2 . . . µNσ

]
, H =

∑
g

µg
∂2f

∂σ2

The last two equations can be solved at the stress node level:

ṡ = rµj −AT
σj ṫ

µ̇ = −S−1
j

(
rsj + Υjrµj −ΥjA

T
σj ṫ

)

and substituted in the stress equation to give the following condensed system:


· · −pT

· −Ftj Q

−p QT ·







λ̇
ṫ
u̇


 = −




rλ

gj

reqj




where
Ftj ≡ (F + Hj + AσjΩjA

T
σj) , Ωj = S−1

j Υj

and
gj ≡ rσj + AσjS

−1
j (rsj + Υjrµj)

Also when Ft is not singular it is possible to perform the further stress condensation

ṫ = EjQu̇− qj , qj = −Ejgj

where, using the Sherman-Morrison equation, we have:

Ej ≡ F−1
j = Cj −CjAσjDjA

T
σjCj , Dj = Υj(Sj + AT

σjCjAσjΥj)−1

Note that F−1
j , Ej and Dj are block–diagonal matrices that can be assembled and inverted at the

stress point level. That is at the global level, in terms of displacement variables and of the multiplier
parameters λ, we obtain the following condensed system of equations

[ · −pT

−p Kj

] [
λ̇
u̇

]
= −

[
rλj

recj

]
with





recj = reqj + QT Ejgj

= QT (tj − qj)− λjp

Kj = QT EjQ
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that is the search direction is:




u̇ = λ̇û + ũ

λ̇ =
rλj − pT ũ

pT û

being

{
û = K−1

j p

ũ = −K−1
j rec

Having evaluated u̇ from back–substitution to the single Gauss point


−(F + Hj) −Aσj 0
−AT

σj 0 −I
0 Sj Υj







ṫ
µ̇
ṡ


 = −




rσj + Qu̇
rµj

rsj




we obtain ṫ, ṡ, µ̇. In particular note that

tj+1 = tj + EjQu̇− qj

3.5 Strain driven analysis
The strain–driven algorithm pursues the limit load (or the shakedown multiplier λa [2, 4]) by

a step-by-step sequence of safe states z(k) := {λ(k), t(k), u(k)} in the sense of static theorem by
using a Riks scheme that with a non decreasing multiplier converges to the desired solution. A new
point on the equilibrium path is obtained from that previously evaluated by means of the following
(statically admissible) scheme

{
uj+1 := uj + u̇

λj+1 := λj + λ̇
where





u̇ = λ̇ûj + ũj

λ̇ =
rλ,j − pT ũj

pT ûj

and

{
ûj = K−1

j p

ũj = −K−1
j reqj

(24)

with reqj := λjp −QT tj being the equilibrium equations with plastically admissible stresses ob-
tained by a return mapping procedure rλ,j which has the same meaning as in the previous section,
while Kj is the algorithmic tangent matrix which are the derivatives with respect to the residual
providing the initial tangent on (uj , λj). In order to improve the performance and reduce the com-
putational effort, it is possible to use as iteration matrix the elastic one Ke following a modified
Newton scheme.

It is worth noting that if the admissibility condition is fulfilled exactly rµ = rs = 0 from eq.(23)
we obtain the strain–driven scheme.

The plastically admissible stress vector tj is obtained starting from an elastic predictor ttrj =
t0 + F−1Q∆uj solving the return mapping nonlinear convex problem

tj :





minimize
1
2
(tj − ttrj )T F(tj − ttrj )

f [tj ] + sj = 0

sj ≥ 0

(25)

that due to the block diagonal properties of F can be solved at the single stress control point level.
Although generally simple, the solution of eq. (25) can became expensive when applied to

large structures with hundreds of thousands of Gauss points especially for multisurface plasticity
or shakedown. The use of ad hoc tools (highly specialized) to perform this optimization task can
improve the efficiency and robustness of the strain driven strategy.
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3.6 Strain driven versus Interior Point strategies
When applied to the single finite step of elasto-plastic analysis the Newton systems solved by the

two methods are similar. The differences are only related to the exact solution, at each iteration (23),
of the plastic admissibility and slackness conditions performed by the return mapping process. In
fact if in the interior point equations (23) we assume fulfilling exactly, at each iteration, the following
residual equations with ωj = 0 we obtain:




rσj

rµj

rsj


 ≡




F∆tj + Aσjµj −Q∆uj

f [tj ] + sj

Sjµj


 = 0

that are the first order condition of the convex minimization problem (25).
The difference in the two strategies is then that the IP method follows a central path (characterized

by ωj 6= 0) and attempts to solve eq. (19) without exactly fulfilling any of them if not in the final step,
while strain driven methods solve exactly at each iteration, plastic–admissibility and consistency and
so delete the corresponding residual equations from the global system (19). This last aspect appears
to be dictated more by the simplicity of solving return mapping in a single step, at least for standard
elasto-plastic problems, than from real numerical convenience. Finally the nonlinearity of the path
obtained following the central path or the complementary slackness can be easily tested by adding,
in the (25) the barrier term:

tj :





minimize
1
2
(tj − ttrj )T F(tj − ttrj ) + ωj

Nσ∑
g=1

log(sg)

f [tj ] + sj = 0

(26)

From the point of view of the direct evaluation of the safety factor, that is starting directly from
limit and shakedown static and kinematic theorems, the strain driven methods represent a primal
optimization method that keeps improving a primal feasible solution, maintains the zero-duality gap
(complementarity slackness condition) and moves toward dual feasibility. Note that the first pri-
mal solution, that is the elastic limit, is known or easily evaluated. On the contrary, when applied
to evaluate the load multiplier, primal dual IP methods use the logarithmic barrier to move in the
neighborhood of the primal dual central path (the sets of feasible solutions for which the comple-
mentary condition is set equal to ωj), always maintain primal and dual feasibility and move to the
optimal solution characterized by zero complementary slackness (ω = 0). Also note that using a
single iteration for each new point, that is evaluating only a search direction, the new point in general
will not be on the central path and may also not be feasible at all. For this reason the method works
well even when the constraints are linear, in this case the only nonlinearity being in the consistency
equation. Furthermore note as for conic constraints, including practically all the technical relevant
yield conditions, the performance of the methods are practically the same as for linear constraints.

4 NUMERICAL RESULTS
Numerical results where obtined with both the proposed strain-driven implementation and using

the conic optimization program MOSEK a useful tool in limit and shakedown analysis used also for
comparing the efficiency with a widely used and carefully tuned optimization software.

We refer to a square plate with a circular hole. The analysis was carried out using the standard
strain-driven algorithm based on a modified Newton iteration scheme (MN) and the interior point
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algorithm (IP) in different fashions. In particular a direct formulation of the static theorem, imple-
menting the problem (15) and using a MN version of it have been used. Similarly the elastoplastic
formulation of the shakedown problem is also made by using a full Newton scheme and its MN
version.
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αα [t] [t] 11
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λc =0.894
Algorithm N. Steps N. loops
Strain-driven. 18 224
Direct Interior Point(IP) 21 -
MN Direct IP x -
Elastic Plastic IP 22 107
MN Elastic Plastic IP 17 79
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