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SUMMARY. A recently developed constitutive model which describes damage and healing effects
in rubber materials is applied to the inflation problem of a thin, initially spherical balloon. The model
efficiently describes the overall, cyclic response of the balloon. The occurrence of asphericity during
inflation is then taken in consideration and some preliminary results in this direction are discussed
in the last section.

1 INTRODUCTION
Theoretical and experimental analysis of the inflation of thin balloons constitute a traditional

subject of mechanics of materials. In particular, inflationexperiments represent a widely used tool
for the constitutive characterization of soft materials. Moreover, this field of research is of interest
for several technological applications, ranging from aerostatic balloons [12] and inflatable structures
[14], to pneumatic micro-actuators and sensors [15].

Inflation experiments on thin spherical rubber-like balloons show a complex, history-dependent
behavior, with a possible occurrence of asphericity. Thesemacroscopic effects may be ascribed to
the complex phenomena of damage and recrosslinking phenomena at the micro-scale level. In par-
ticular, an accurate analysis of the experimental pressure-strain and stress-strain responses highlights
that, for successive cyclic inflation experiments, the occurrence of healing for previously damaged
material may play a crucial role.

In the paper [3], the authors apply a recently proposed microstructure-based model for damage
and healing in rubbers to the inflation of a thin spherical balloons. More specifically, the constitutive
model (see [1],[2]) is based on the assumption that the material is constituted by a fraction of elastic
material and a fraction of damageable material. The presence of links with variable activation and
breaking lengths is accounted by the introduction of a suitable probability density function. The
model, while keeping a computational efficiency, is in significant agreement with the experimental
behavior of rubber materials.

A preliminary analysis of the occurrence of non-homogeneous configurations in thin inflated
balloons is presented in the last section. In order to investigate the occurrence of non-homogeneity,
we introduce an additive decomposition of the left stretch tensorV into its spherical and deviatoric
parts

u :=

(

trV
2

)2

, δ :=
||VD||2

2
,

whereVD is the deviatoric part ofV. A purely kinematical analysis shows that this decomposition
is useful for the study of non-homogeneous configurations ofthe thin balloon; more in detail, we
show that the insurgence of distortions on a finite portion ofthe balloon is a necessary condition for
the occurrence of non-homogeneities. Well known results ofglobal differential geometry and the
kinematical characterization in terms of the fields(u, δ) address attention on the fact that the occur-
rence of non-homogeneities might be interpreted as a consequence of a damage induced softening
with respect tou and/orδ.
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The topic of shape transitions in cyclic inflations of thin balloons is documented in the exper-
imental as well in the theoretical literature (see, e.g., [8], [10], [13]), but a theory relating such
phenomena to damage is still lacking. Within this point of view, the main goal of our approach
will be, in future development of this work, to relate the shape transition phenomena to damage and
healing effects in rubbers.

2 THE MODEL
In this section we briefly recall our constitutive model for rubbers undergoing damage and heal-

ing; further details can be found in [1], [2] and [3].
Let f : X ∈ B0 7→ x ∈ B be the deformation of a bodyB0 with F := ∇f the corresponding

deformation gradient andB := FFT the left Cauchy-Green tensor. The key assumption of the model
is that at each pointX ∈ B0 a fractionα ∈ (0, 1) of the amorphous material is described by an
hyperelastic, isotropic and incompressible constitutivelaw (elastic matrix), whereas the remaining
fraction(1 − α) takes care of the activation, breaking and recross-linkingeffects at the micro scale
level (damageable material).

The constitutive response of the elastic matrix is assignedin terms of an elastic energy density
ϕe = ϕe(I, II), whereI := trB andII := trB−1 are the first and second invariants ofB. The
expression of the Cauchy stress in the elastic matrix is given by

Te = −πI + 2ϕe,1B − 2ϕe,2B−1, (2.1)

whereϕe,1 andϕe,2 denote the derivatives with respect to the first and second invariant, respectively,
andπ is the reactive stress maintaining the incompressibility constraint.

The constitutive response of the damageable material is based on an activation and breaking
criterion, which is expressed in terms of an isotropic scalar function of the two invariants ofB, so
that the damageable material isactivatedwhens(I, II) = sa and it isbrokenwhens(I, II) = sb. We
assume that the response of the damageable material elastically depends on the deformation gradient
measured from the activation stateFa up to the reaching of a breaking stateFb, in correspondence
of which the stress falls to zero.

More precisely, let̂F := FF−1
a be the deformation gradient measured from the activation state

and letÎ , ÎI be the invariants of̂B := F̂F̂
T

andϕd = ϕd(Î , ÎI) be the strain energy density which
describes the behavior of the damageable material; with these positions the stress in such fraction
attains the values

Td :=







0 when s(I, II) < sa

2ϕd,1B̂ − 2ϕd,2B̂
−1

when sa ≤ s(I, II) ≤ sb

0 when s(I, II) > sb

,

whereϕd,1, ϕd,2 represent derivatives with respect to the first and second invariant, respectively.
In order to take care of the microstructure disorder, the values ofsa andsb are considered to

be locally regulated by a general probability densityf = f̂(sa, sb), which can be determined by
simple cyclic uniaxial loading experiments (see [1] for details). A possible simplified assumption
consists in assuming thatsb = ŝb(sa), with ŝb invertible. This allows us to reduce to a one parameter
distribution functionf(sa) := f̂(sa, ŝb(sa)).

The overall stress in a given point is the sum of the stresses in the elastic matrix and in the dam-
ageable material, and it clearly depends on the past deformation history. If breaking is considered as
an irreversible event (irreversible damage) then the stress is zero for all strain histories afters > sb.
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The possibility of a partial recovery of the broken materialunder cyclic deformations is also ad-
mitted (healing effect); in this case (reversible damage) we admit that during an unloading path, a
fixed fractionk < 1 of previously broken material can be healed when the local value of s equals
the activation valuesa. Such fraction of material can be re-broken upon reaching ofthe breaking
thresholdsb.

Without entering details on the derivation of the stress in the most general reversible case (a
detailed description of which can be found in [3]), the overall stress during a strain historyF = F(t)
is given by the compact expression

T(t) = αTe(t) + (1 − α)H(s(t) − sf (t)

∫ s(t)

sf (t)

f(sa)Td(B̂(t)) dsa +

+ k(1 − α)H(s(t) − sh(t))

∫ su(t)

sh(t)

f(sa)Td(B̂(t)) dsa. (2.2)

wheresi(t) are functions determined during the deformation path and whereH is the Heaviside
function.

3 EQUILIBRIUM IN THE HOMOGENEOUS CASE
Several interesting phenomena deserve attention when observing the behavior of inflated rubber

balloons. As a first step, we here restrict attention to equibiaxial deformations: it should be remarked
that by this assumption the possible occurrence of non-homogeneities in initially spherical balloons
is neglected. We thus show the feasibility of the model in describing the main experimental effects
observed during the inflation of rubber balloons.

In Fig.1 we represent the results of numerical simulations for the pressure/engeneering stress
versus strain curves. The model shows a good qualitative agreement with the experimental results
carried on, for example, in [6] and it gives a micromechanical interpretation of the macroscopic
mechanical response of the balloon under repeated inflations of increasing amplitude. It should be
remarked that our model neglects residual deformations andthis is the main reason for the difference
at the origin (λ = 1) of the experimental pressure/stress - strain curves produced by [6] and our
numerical results here reported. As described in [1], the model here proposed is predictive, in the
sense that simple experimental analysis allow to deduce theprobability density properties of the
material, which will hopefully lead to a quantitative description of the experimental behaviors.

4 PERSPECTIVES: OCCURRENCE OF NON-HOMOGENEOUS CONFIGURATIONS
In this section we present some recent unpublished results [4] which, in our point of view, give

insights on the stability for the inflation problem of a thin,initially spherical balloon.
The numerical analysis described in the previous section refers to a one-variable problem, since

the kinematics of the spherical balloon was restricted to homogeneous conformal deformations. With
an eye toward the more realistic non-homogeneous cases, it is well documented in the experimental
literature (e.g. [7], [9], [13]) that inflated spherical balloons often exhibit transitions to spherical
configurations, characterized by a non-homogeneous thickness, and transitions to aspherical modes.
Interestingly enough, after appearing in the first loading cycle (primary loading path) such phenom-
ena are eventually mitigated in successive loading paths; in some cases, during a monotonic increase
of pressure, after exhibiting transition to non-homogeneous configurations the balloons reattains its
homogeneous, spherical configuration (closed loop behavior).

On the other side, plane stress experiments carried on square, rubber plane membranes subjected
to hydrostatic tractions at the boundary show a sudden transition to non-conformal shapes (which
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Figure 1: Pressure-strain and engineering stress-strain curves have been obtained by means of our
constitutive model under numerical simulation of cyclic inflation experiments. We here considered
an Ogden type constitutive law for the elastic matrix and a Neo-Hookean damageable material. The
distribution of damageable material is assigned through a probability density of thebeta-type. We
considered a percentageα = 0.2 of elastic matrix and an elastic range∆ = sb − sa linear insa.
In a) and b) we neglect healing (i.e. we assumek = 0) while in c), d) we take healing effect into
consideration by assuming that a fractionk = 0.35 of material broken during previous cycles may
reforms upon unloading.

is referred to as the classicalTreloar effect). The question if Treloar effect might be related to the
spherical-aspherical transition in thin balloons was addressed in [5] and [8], but within the purely
elastic contexts where damage is ignored.

The idea behind our approach is that damage cannot be neglected in a description of the possible
instabilities observed in cyclic inflation experiments of balloons. This idea is supported by the
experimental evidence that the aforementioned transitions can be appreciated during primary loading
paths, but these eventually disappear along successive loading paths: purely elastic model are clearly
unable to describe such phenomena. These evidences point attention on the fact that the activation of
links at the microscale-level might induce non-convexities in the energy density, such that during a
first inflation path the transition to distorted states mightbe energetically preferred; the breakage of
the activated links during increasing inflations might leadto the cancelling of such non-convexities,
so that during successive cycles the transition to distorted states becomes energetically unfavored,
and the conformal deformation is preserved.

It is easy to show that the occurrence of distortions at the local level on the balloon represents a
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necessary condition for the transition to aspherical configurations. This is shed in evidence by con-
sidering the balloon membrane as a two-dimensional body, and projecting the equilibrium equation
of the current surface divT + b = 0 on the normal directionn; by decomposing the stressT in its
spherical partT0 = σ(I − n ⊗ n) and deviatoric partTD, the generalizedLaplace’s equation of
equilibrium holds

2σH + TD · LD + p = 0,

whereLD is the deviatoric part of the curvature tensorL = −gradn of the current balloon surface,
σ the hydrostatic membranal stress andH = trL/2 the current mean curvature. IfTD = 0 on the
whole membrane, the equilibrium equation of the balloon reduces to the classical Laplace’s equation
2σH + p = 0 with σ = const, whose unique solution for a regular, compact surface is represented
by a sphere. Under physically reasonable constitutive assumptions (such as, for example, in elastic
isotropic membranes) the only possibility forTD to vanish is that the deviatoric part ofB vanishes;
this implies that the occurrence of distortions on a finite part of the membrane represents a necessary
condition for the occurrence of asphericities.

With these conclusions in mind, it is interesting to observethat the occurrence of transitions to
non-homogenous states can be profitably afforded by the introduction of the strain measures

u :=

(

trV
2

)2

, δ :=
||VD||2

2
,

whereV =
√

B andVD is the deviatoric part ofV, where it is easy to check that the areal stretchJ
is equal tou− δ. Bothu andδ are greater or equal to zero and sinceJ > 0, it results thatu > δ. Let
in particular the reference surface of the balloon be the spherical surfaceS of areaA and letv be the
volume of the current configuration of the balloon. The areaa of the current surface of the balloon
is necessarily greater or equal ofav, namely the area of the sphere of volumev, so that

a =

∫

S

J dS =

∫

S

(u − δ) dS ≥ av =
3
√

36πv2. (4.3)

Let now uv to be the homogeneous, spherical dilatation correspondingto the sphere with volume
v, so thatav = uv A. Denoting by thetilde the average over the reference surfaceS, so that
φ̃ := (

∫

S
φ)A−1, the condition (4.3) can be recast in terms of the averaged valuesũ andδ̃, as

ũ − δ̃ ≥ uv. (4.4)

With reference to Fig.2, we will say that a pointP̃ = (ũ, δ̃) is representativeof the system, since its
knowledge allows to determine some important qualitative properties of a configuration correspond-
ing to a given volumev. Such properties are collected in the following proposition (which is here
given without proof) and these do not deal with compatibility or equilibrium, but just with purely
geometrical considerations.
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Figure 2:The(u, δ) plane.

• Proposition 1 Lettingv the volume of the current configuration, it results that:

(i). P̃ cannot belong to the half-spaceu − δ < uv;

(ii). if P̃ belongs to the lineu − δ = uv, then the current configuration is spherical;

(iii). homogeneous configurations are only those surfaces with u = uv andδ = 0;

(iv). configurations withP̃ = (uv, 0) are spherical; these can be nonhomogeneous, but it has to
resultδ = 0 everywhere;

(v). all configurations with̃u − δ̃ > uv are necessarily aspherical.

In light of the above proposition, we believe that the choiceof variables(u, δ), together with con-
siderations coming from the global theory of surfaces and with the requirements of kinematical
compatibility and equilibrium, will be useful in describing the occurrence of non-homogeneities on
inflated spherical balloons, within the context of damage and healing effects in rubber materials.
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