Damage and healing effects in inflated rubber balloons
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SUMMARY. A recently developed constitutive model which delses damage and healing effects
in rubber materials is applied to the inflation problem ofia titially spherical balloon. The model
efficiently describes the overall, cyclic response of tHoba. The occurrence of asphericity during
inflation is then taken in consideration and some prelinyimasults in this direction are discussed
in the last section.

1 INTRODUCTION

Theoretical and experimental analysis of the inflation af thalloons constitute a traditional
subject of mechanics of materials. In particular, inflatexperiments represent a widely used tool
for the constitutive characterization of soft materialsorbver, this field of research is of interest
for several technological applications, ranging from attic balloons [12] and inflatable structures
[14], to pneumatic micro-actuators and sensors [15].

Inflation experiments on thin spherical rubber-like batleshow a complex, history-dependent
behavior, with a possible occurrence of asphericity. Theaeroscopic effects may be ascribed to
the complex phenomena of damage and recrosslinking phereoatgéhe micro-scale level. In par-
ticular, an accurate analysis of the experimental presstnaé and stress-strain responses highlights
that, for successive cyclic inflation experiments, the o@nce of healing for previously damaged
material may play a crucial role.

In the paper [3], the authors apply a recently proposed rsiauoture-based model for damage
and healing in rubbers to the inflation of a thin sphericalduals. More specifically, the constitutive
model (see [1],[2]) is based on the assumption that the mhieiconstituted by a fraction of elastic
material and a fraction of damageable material. The presehlinks with variable activation and
breaking lengths is accounted by the introduction of a bigtarobability density function. The
model, while keeping a computational efficiency, is in siigaint agreement with the experimental
behavior of rubber materials.

A preliminary analysis of the occurrence of non-homogesemnfigurations in thin inflated
balloons is presented in the last section. In order to iiyats the occurrence of non-homogeneity,
we introduce an additive decomposition of the left stretatsbrV into its spherical and deviatoric
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whereV p, is the deviatoric part of/. A purely kinematical analysis shows that this decompasiti
is useful for the study of non-homogeneous configurationthefthin balloon; more in detail, we
show that the insurgence of distortions on a finite portiothefballoon is a necessary condition for
the occurrence of non-homogeneities. Well known resultglatbal differential geometry and the
kinematical characterization in terms of the fie{dsd) address attention on the fact that the occur-
rence of non-homogeneities might be interpreted as a carseg of a damage induced softening
with respect tax and/oré.



The topic of shape transitions in cyclic inflations of thidlbans is documented in the exper-
imental as well in the theoretical literature (see, e.g], [80], [13]), but a theory relating such
phenomena to damage is still lacking. Within this point adwj the main goal of our approach
will be, in future development of this work, to relate the gadransition phenomena to damage and
healing effects in rubbers.

2 THE MODEL

In this section we briefly recall our constitutive model fabbers undergoing damage and heal-
ing; further details can be found in [1], [2] and [3].

Letf : X € By — x € £ be the deformation of a bod¥, with F := Vf the corresponding
deformation gradient anl := FF the left Cauchy-Green tensor. The key assumption of the mode
is that at each poinX € %, a fractiona € (0, 1) of the amorphous material is described by an
hyperelastic, isotropic and incompressible constituldwve (elastic matriy, whereas the remaining
fraction (1 — «) takes care of the activation, breaking and recross-linkfifects at the micro scale
level (damageable material

The constitutive response of the elastic matrix is assignéerms of an elastic energy density
ve = @e(I,II), wherel := trB and Il := trB~! are the first and second invariantsBf The
expression of the Cauchy stress in the elastic matrix isge

Te=—7l + 20, 1B — 2. sB™ ", (2.1)

whereyp, 1 andy,. > denote the derivatives with respect to the first and secoradiant, respectively,
andr is the reactive stress maintaining the incompressibibiystraint.

The constitutive response of the damageable material isdbas an activation and breaking
criterion, which is expressed in terms of an isotropic scalaction of the two invariants oB, so
that the damageable materiabistivatedwhens(I, II) = s, and itisbrokenwhens(I, IT) = s,. We
assume that the response of the damageable material @lgsdiepends on the deformation gradient
measured from the activation stdig up to the reaching of a breaking st&ig in correspondence
of which the stress falls to zero.

More precisely, lef := FF,! be the deformation gradient measured from the activatiate st
and leti, iT be the invariants oB := FF' andyy — wq(I, II') be the strain energy density which
describes the behavior of the damageable material; withetpesitions the stress in such fraction
attains the values

0 when  s(I,II) < s,
Tai=13 2p41B— 20428 when s, <s(I,1)<s,
0 when  s(I,1T) > s,

wherep, 1, pq.2 represent derivatives with respect to the first and secoradiant, respectively.

In order to take care of the microstructure disorder, theeslofs, ands; are considered to
be locally regulated by a general probability densfity= f(s,,,, sp), which can be determined by
simple cyclic uniaxial loading experiments (see [1] foralks). A possible simplified assumption
consists in assuming thag = 3, (s, ), with §, invertible. This allows us to reduce to a one parameter
distribution functionf(s,) := f(sa. 85(s4))-

The overall stress in a given point is the sum of the stresstigielastic matrix and in the dam-
ageable material, and it clearly depends on the past defamiastory. If breaking is considered as
an irreversible evenirfeversible damaggthen the stress is zero for all strain histories aster s;,.



The possibility of a partial recovery of the broken matetiatler cyclic deformations is also ad-
mitted ealing effect in this case reversible damagewe admit that during an unloading path, a
fixed fractionk < 1 of previously broken material can be healed when the lodakvaf s equals
the activation value,. Such fraction of material can be re-broken upon reachintp®freaking
thresholds,,.
Without entering details on the derivation of the stresshim inost general reversible case (a
detailed description of which can be found in [3]), the ollestiess during a strain histofy = F(t)
is given by the compact expression
s(t) R
T(t)=aTe(t) + (1—-a)H(s(t) —s¢(t) f(sa)Ta(B(t)) dsa +
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wheres;(t) are functions determined during the deformation path andrevK is the Heaviside
function.

3 EQUILIBRIUM IN THE HOMOGENEOUS CASE

Several interesting phenomena deserve attention whemvirtigéhe behavior of inflated rubber
balloons. As a first step, we here restrict attention to e@guiél deformations: it should be remarked
that by this assumption the possible occurrence of non-lgemities in initially spherical balloons
is neglected. We thus show the feasibility of the model ircdbg the main experimental effects
observed during the inflation of rubber balloons.

In Fig.1 we represent the results of numerical simulatianstlie pressure/engeneering stress
versus strain curves. The model shows a good qualitativeeaggnt with the experimental results
carried on, for example, in [6] and it gives a micromechanicterpretation of the macroscopic
mechanical response of the balloon under repeated inflatibmcreasing amplitude. It should be
remarked that our model neglects residual deformationshtasds the main reason for the difference
at the origin f = 1) of the experimental pressure/stress - strain curves peztby [6] and our
numerical results here reported. As described in [1], theehbere proposed is predictive, in the
sense that simple experimental analysis allow to deducerbigability density properties of the
material, which will hopefully lead to a quantitative daption of the experimental behaviors.

4 PERSPECTIVES: OCCURRENCE OF NON-HOMOGENEOUS CONFIGURNS

In this section we present some recent unpublished regljltgHich, in our point of view, give
insights on the stability for the inflation problem of a thiinitially spherical balloon.

The numerical analysis described in the previous sectif@ng¢o a one-variable problem, since
the kinematics of the spherical balloon was restricted todgeneous conformal deformations. With
an eye toward the more realistic non-homogeneous casssydlidocumented in the experimental
literature (e.g. [7], [9], [13]) that inflated spherical lmains often exhibit transitions to spherical
configurations, characterized by a non-homogeneous théskrand transitions to aspherical modes.
Interestingly enough, after appearing in the first loadiyde (primary loading path such phenom-
ena are eventually mitigated in successive loading pattsgme cases, during a monotonic increase
of pressure, after exhibiting transition to non-homogessetonfigurations the balloons reattains its
homogeneous, spherical configuratictoéed loop behavigr

On the other side, plane stress experiments carried onesquaber plane membranes subjected
to hydrostatic tractions at the boundary show a suddeniti@m$o non-conformal shapes (which



Figure 1: Pressure-strain and engineering stress-stuaies have been obtained by means of our
constitutive model under numerical simulation of cycliflation experiments. We here considered
an Ogden type constitutive law for the elastic matrix and a-Neokean damageable material. The
distribution of damageable material is assigned througtobgbility density of thebeta-type We
considered a percentage= 0.2 of elastic matrix and an elastic range = s, — s, linear ins,.

In &) and b) we neglect healing (i.e. we assuime 0) while in c), d) we take healing effect into
consideration by assuming that a fraction= 0.35 of material broken during previous cycles may
reforms upon unloading.

is referred to as the classicaleloar effect. The question if Treloar effect might be related to the
spherical-aspherical transition in thin balloons was edsked in [5] and [8], but within the purely
elastic contexts where damage is ignored.

The idea behind our approach is that damage cannot be regjiec description of the possible
instabilities observed in cyclic inflation experiments @llbons. This idea is supported by the
experimental evidence that the aforementioned transittan be appreciated during primary loading
paths, but these eventually disappear along successili@tppaths: purely elastic model are clearly
unable to describe such phenomena. These evidences eirtiat on the fact that the activation of
links at the microscale-level might induce non-convesifie the energy density, such that during a
first inflation path the transition to distorted states migétnergetically preferred; the breakage of
the activated links during increasing inflations might Iéathe cancelling of such non-convexities,
so that during successive cycles the transition to dislastates becomes energetically unfavored,
and the conformal deformation is preserved.

It is easy to show that the occurrence of distortions at thallvel on the balloon represents a



necessary condition for the transition to aspherical condiions. This is shed in evidence by con-
sidering the balloon membrane as a two-dimensional bodlparjecting the equilibrium equation
of the current surface div+ b = 0 on the normal directiom; by decomposing the stre3sin its
spherical parffy = o(I — n ® n) and deviatoric parT p, the generalized_aplace’s equation of
equilibrium holds

20H+Tp-Lp+p=0,

whereL p, is the deviatoric part of the curvature tensoe= —gradn of the current balloon surface,
o the hydrostatic membranal stress dtid= trL /2 the current mean curvature. Tf, = 0 on the
whole membrane, the equilibrium equation of the balloomiced to the classical Laplace’s equation
20 H + p = 0 with 0 = const, whose unique solution for a regular, compact surface ieesgmted
by a sphere. Under physically reasonable constitutiveragsans (such as, for example, in elastic
isotropic membranes) the only possibility fof, to vanish is that the deviatoric part Bfvanishes;
this implies that the occurrence of distortions on a finite phthe membrane represents a necessary
condition for the occurrence of asphericities.

With these conclusions in mind, it is interesting to obsehad the occurrence of transitions to
non-homogenous states can be profitably afforded by theduagtion of the strain measures
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whereV = /B andV p, is the deviatoric part of, where it is easy to check that the areal strefch
is equal tou — 0. Bothw andé are greater or equal to zero and since 0, it results that, > §. Let

in particular the reference surface of the balloon be thespal surfaces of areaAd and letv be the
volume of the current configuration of the balloon. The ared the current surface of the balloon
is necessarily greater or equalaqf, namely the area of the sphere of volumeso that

a:/JdS:/ﬂkwywzav:&%mﬂ (4.3)
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Let nowu, to be the homogeneous, spherical dilatation corresportditige sphere with volume
v, so thata, = u, A. Denoting by thetilde the average over the reference surfateso that
¢ := ([4¢)A~", the condition (4.3) can be recast in terms of the averaglesa ands, as

U—06 > u,. (4.4)

With reference to Fig.2, we will say that a poiRt= (a, 5) is representativef the system, since its
knowledge allows to determine some important qualitatiepprties of a configuration correspond-
ing to a given volume. Such properties are collected in the following propositfhich is here
given without proof) and these do not deal with compatipitit equilibrium, but just with purely
geometrical considerations.
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Figure 2:The (u, §) plane.

e Proposition 1 Lettingv the volume of the current configuration, it results that:

(). P cannot belong to the half-space— § < u,;

(ii). if P belongs to the linee — 6 = u,, then the current configuration is spherical;
(iii). homogeneous configurations are only those surfadésw= u, andé = 0;

(iv). configurations withP = (u,,0) are spherical; these can be nonhomogeneous, but it has to
resultd = 0 everywhere;

(v). all configurations withi — § > u,, are necessarily aspherical.

In light of the above proposition, we believe that the chateariables(u, ¢), together with con-
siderations coming from the global theory of surfaces anith Wie requirements of kinematical
compatibility and equilibrium, will be useful in descrilgithe occurrence of non-homogeneities on
inflated spherical balloons, within the context of damage laealing effects in rubber materials.
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