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SUMMARY. Chemical reactions, supported by temperature variations, may produce growing dam-
age in existing concrete structures. With specific reference to the expanding gel produced by the
alkali-aggregate-reaction, occurring in many ageing concrete structures such as concrete dams and
reinforced concrete bridges, an anisotropic bi-phase coupled chemo-thermo-mechanical anisotropic
damage model is proposed, capable to account for the macroscopic strength and stiffness deteriora-
tion in the concrete skeleton due to the expanding gel. The model is validated against experimental
tests taken from the literature.

1 INTRODUCTION
Deterioration of the mechanical properties of concrete, such as strength and stiffness, can occur

in existing structures as the result of severe loading conditions and/or of chemo-physical processes
activated by particular environmental conditions. Examples of this type of damages are the defor-
mation and the fracture of porous solids from drying-induced internal crystallization of salt, due to
the deposition of saline solutions in the form of salt-spray, and their further penetration by capil-
lary action in the porous structure of the material [1], and the Alkali-Aggregate Reaction (AAR, or
alkali-silica reaction, ASR), i.e. the chemical reaction which occurs in concrete between the alkaline
cement paste and the non-crystalline silicon di-oxide, often present in aggregates. The main product
of the reaction between alkali and silica is a gel, expanding in the presence of water and thereby
producing extensive cracking within the concrete matrix. The latter phenomenon is particularly
frequent in existing concrete structures such as dams, reinforced concrete bridges, etc., built some
decades ago, where the alkali-aggregate reaction is producing swelling phenomena. Deterioration
of mechanical properties is observed under the combined action of the internal self-stresses due to
the gel expansion and the macroscopic self-stresses due to the structural redundancy which prevents
the free expansion of the structure.

Based on the work by Ulm et alii [2], [3], a two-phase isotropic damage model has been re-
cently proposed for the simulation of the swelling phenomena and of the consequent deterioration
of local stiffness and strength [4]. Concrete affected by AAR has been conceived, according to
Biot’s theory of saturated porous media, as a heterogeneous material at the meso-scale, constituted
by two elastic-damageable phases: the gel produced by the chemical reaction, and the homogenized
concrete matrix. The gel phase exhibits a volumetric expansion in time, promoted by the chemical
reaction and supported by increasing temperature, and self-equilibrated stresses at the meso-scale
are generated also in the absence of external loading. Under the hypothesis of full saturation, the
evolution in time of such expansion is described by a scalar variable, the so called “chemical reaction
extent”, and depends locally only on the temperature history [2]. The response of the homogenized
concrete matrix to the effective stresses has been described by a suitably adapted version of a “bi-
dissipative”damage model for concrete, with two isotropic damage variables, one in tension and the
other in compression [5].
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Within the same framework of two-phase Biot’s theory, in the present paper a model is devel-
oped for concrete, whereby the anisotropy induced by the evolving damage is explicitly taken into
account. Before the beginning of the gel expansion, the behavior of the uncracked concrete is as-
sumed to be isotropic. Initial anisotropy, frequently due to the particular casting procedure adopted,
can however be accounted for by assuming an initial directional damage. Under the application
of permanent external loads, the microscopic deformation due to the expanding gel in the skeleton
pores may become highly anisotropic, producing directional damage which destroys the initially
isotropic material microstructure. In the proposed model, damage is described by a single second
order symmetric tensor damage variable D, as in [6], leading to an orthotropic behavior at the macro-
scale, evolving with damage. A free energy potential is formulated in terms of macroscopic strains,
tensor damage and chemical reaction extent. Unlike in the isotropic case, the potential contains a
damage dependent volumetric-deviatoric coupled term which does not appear in the initial undam-
aged isotropic state. In the strain space, the elastic domain is assumed to be bounded by a damage
activation function evolving with a combination of the principal components of damage. In view of
the orthotropy of the damaged stress-strain relation, the resulting elastic domain in stress-space turns
out to be affected by the direction of damage growth.

The proposed model has been validated on the basis of experimental data provided by accelerated
laboratory tests documented in the literature [7], [8]. These tests, carried out at constant temperature
and humidity on cylinders of reactive concrete, under free expansion conditions or with confinement
provided by steel rings and different axial loads, allow to check the model prediction in different
stress state conditions, evidencing the macroscopic anisotropy of the swelling phenomenon.

2 ANISOTROPIC TWO-PHASE DAMAGE MODEL
2.1 Mathematical formulation

The free energy density for the proposed anisotropic model is assumed in the form

Ψ =
1
2

[
2µε : ε + λtr2ε + 2αtrε(ε : D)

+ 4βtr(ε ·D · ε) + Mb2(1− γ
trD
3

)
(
trε− ε∞

Bb
ξ
)2

]

+
1
2
A0(1− ξ)2 (1)

where ε is the strain tensor, λ and µ are the Lamé’s constants, M is the Biot’s modulus, b the Biot’s
coefficient, B the Skempton coefficient, ε∞ the asymptotic volumetric expansion for t → ∞ for
an unconstrained material (free expansion), ξ ∈ [0, 1] is the chemical reaction extent and A0 is
the initial reaction affinity. D is the symmetric anisotropic damage tensor defined in terms of its
eigenvalues Dk and eigenvectors νk as

D =
3∑

k=1

Dkνk ⊗ νk (2)

and α, β are elastic parameters defining the damage induced anisotropic behaviour of the skeleton
and γ is a non-dimensional parameter accounting for the gel damage. In the expression (1), the
terms depending on the temperature variations have been neglected, for notation simplicity, since the
validation tests considered in the present paper have been carried out under isothermal conditions.
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The isotropic form of the free energy can be recovered as a special case of (1) when the damage
tensor is assumed to be isotropic, D = D1, with the following choice of parameters: α = −λ

2 ,
β = −µ

2 and γ = 1.
The stress tensor and the reaction affinity are obtained through the state equations as

σ =
∂Ψ
∂ε

= λtrε1 + 2µε + α[(ε : D)1 + (trε)D] + 2β[ε ·D + D · ε]− bp1 (3)

A = −∂ Ψ
∂ ξ

= Mb(1− γ
trD
3

)
(

tr ε− ε∞
B b

ξ
) ε∞

B
+ A0 (1− ξ) (4)

where 1 denotes the identity tensor and p is the gel pressure defined as:

p = −
(

1− γ
trD
3

)
Mb

(
trε− ε∞

bB

)
(5)

In equation (5), only the trace of the damage tensor plays a role, assuming in this way that the
gel cannot sustain deviatoric stresses. Using this definition of pressure in the definition (4) of the
reaction affinity, the latter can be rewritten as

A = −ε∞
B

p + A0 ( 1− ξ ) (6)

For the range of pressures of interest in structural applications, the first term in (6) is negligible with
respect to the second [2], so that the reaction affinity can be taken as

A ' A0 (1− ξ) (7)

The activation of damage is governed by an inelastic effective stress σ′′ = σ + cp1 where c ≤ b
governs the damage level achievable in a concrete specimen under AAR induced free expansion.
As in [4], the inelastic effective stress σ′′ is used in the adopted damage activation criterion, which
is the one proposed in [5]. Since only tensile damage is activated in the tests used for the model
validation, only the expression of ft is of interest and reads:

ft = 4µ2 1
2
e : e

− 9at

[
(K + Mb(b− c)) trε− (b− c)M

ε∞
B

ξ
]2

+ 3bt

[
(K + Mb(b− c)) trε− (b− c)M

ε∞
B

ξ
]
h(D)

− kth(D)2 (8)

where at, bt and kt are parameters defining the initial shape of ft, K = (3λ + 2µ)/3 is the bulk
modulus and e is the deviatoric strain tensor. h(D) is a scalar hardening function governing the
evolution of the domain in the strain space and is defined as

h(D) =
[
(1−Dd

1)0.75(1−Dd
2)0.75(1−Dd

3)0.75

(1−D1)(1−D2)(1−D3)

] 1
3

(9)

where the exponent d is a material parameter and D1, D2 and D3 are the principal values of the
damage tensor. The damage evolution law is defined as
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Ḋ =
ε+

trε+
λ̇t (10)

where λ̇t is the rate of a dissipation multiplier to be determined from the Kuhn-Tucker loading-
unloading conditions

ft ≤ 0; ḟt ≤ 0; λ̇t ≥ 0; ḟtλ̇t = 0; ftλ̇t = 0 (11)

and where ε+ denotes the positive part of the strain tensor, obtained from the positive part of its
principal values by use of the projection tensor P+

ε+ = P+ : ε, P+
ijkl = Q+

ikQ+
jl (12)

The tensor Q+ in (12)b is defined as

Q+ =
3∑

n=1

H(εn)qn ⊗ qn (13)

qn being an eigenvector of ε, εn the corresponding eigenvalue and H() denoting the Heaviside
function, i.e. H(εn) = 1 if εn ≥ 0, H(εn) = 0 if εn < 0.

2.2 Physical motivations
In the model formulated above, developed in the framework of Biot’s theory [1], concrete af-

fected by the AAR is conceived as a two-phase material, consisting of the concrete skeleton, ob-
tained from the homogenization of the solid matrix and the interstitial pores, and of the expanding
gel. A conceptual representation of the two-phase model is shown in Figure 1 where Eg and Es

denote the elastic moduli of gel and skeleton, respectively. The main assumptions for the model,
motivated by physical evidences [9], [7], are: (a) for the typical range of stress states expected in
concrete structures, the chemical reaction is independent of the local stress state; (b) the kinetics of
the reaction is assumed to depend linearly on the chemical affinity, and nonlinearly on the tempera-
ture, according to Arrhenius law (see [9]); (c) the temperature field can be computed a priori since
it is not affected by the evolution of the chemical reaction. Moreover, the temperature excursion is
limited, so that the mechanical material properties are not affected by temperature changes; (d) the
kinetics of the reaction has been shown to depend on the moisture content in the concrete body which
is in general not uniform [9]. However, in certain cases, as for instance for massive concrete dams, it
can be assumed to be uniform and higher than 90% (with the exception of the concrete outer layers)
so that the AAR kinetics does not depend on the local level of saturation. The unsaturated case is
not considered in the present model; (e) micro-cracking in the concrete matrix can be modelled as a
progressive degradation of the elastic moduli and of the peak strength, without significant permanent
strains. This is reasonable since the AAR generally produces tensile damage in the skeleton with
negligible permanent strains.

Under these assumptions, the development of the chemical reaction can be described through a
single scalar variable, the reaction extent ξ ∈ [0, 1]. Its evolution is expressed as

t̃
d ξ

d t
= 1− ξ (14)

where t̃ is an intrinsic time of the reaction. Larive [9] identified t̃ as a function of the reaction extent
ξ and of two time parameters, the latency time τlat and the characteristic time τch, depending on the

4



macro skeleton gelbpσ σ= −

gp µσ

skeleton

ε

κξ
gel

( ) gED−1 ( ) sED−1

macroσ

Figure 1: Two phase model

current temperature T [oK] and on the temperature T at which the iso-thermal laboratory tests have
been conducted, in the form:

t̃ = τch
1 + exp [− τlat/ τch]
ξ + exp [ − τlat/ τch]

(15)

with

τlat(T ) = τlat(T ) exp
[

Ulat

(
1/T − 1/T

) ]
τch(T ) = τch(T ) exp

[
Uch

(
1/T − 1/T

) ] (16)

Symbols Uch and Ulat [oK] denote the Arrhenius activation energies. Typical values of Uch and Ulat

for the AAR are Uch = 5,400 ±500 oK and Ulat = 9,400 ±500 oK [2].

3 EXPERIMENTAL VALIDATION AND CALIBRATION
The proposed model has been calibrated and validated on the basis of the experimental tests

carried out by Multon, and documented in [7] and [8]. Multon carried out four types of accelerated
tests on cylindrical specimens: 1) free expansion tests on unconstrained specimens; 2) expansion
tests on unconstrained specimens, subjected to axial compression; 3) expansion tests on specimens
confined by steel rings of different thickness; 4) expansion tests on specimens confined as in 3), and
subjected to axial compression. The expected expansion due uniquely to the chemical reaction was
estimated by subtracting the creep and shrinkage strains (and also the instantaneous elastic effect of
loading, if any) from the overall deformation. Multon’s tests were carried out on concrete cylinders
of 130 mm diameter and 240 mm height, for a duration of 450 days, at a temperature T = 38 oC,
in order to accelerate the chemical kinetics. A concrete mixture of 0.5 water/cement ratio and a 410
kg/m3 cement content was used for the preparation of the specimens. The specimens were sealed
under a watertight cover, to guarantee a uniform distribution of the moisture content throughout the
experiment. The confinement was provided by means of superimposed steel rings, each 10 mm
high, with a thickness of 3 and 5 mm. The rings were not connected to each other, so as to leave the
specimens free to deform in the axial direction. The steel used had a Young’s modulus of 193,000
MPa, and a yield stress of 206 MPa.

The model parameters have been calibrated on the unloaded free expansion test and are sum-
marized in Table 1. The simulation of the free expansion test, shown in Figure 2a, shows a good
agreement with both the radial and axial expansions. Since the elastic behaviour (3) is isotropic
for the undamaged material, the anisotropic response has been obtained assuming an initial axial
damage Da = 0.07.
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Figure 2: Free expansion tests: experimental time evolution of axial and radial strains, and computed
response with anisotropic model. a) unloaded specimen; b) 20 MPa axially loaded specimen.

Table 1: Material Parameters

µ = 15287. MPa c = 0.088
λ = 12011. MPa ε∞ = 0.0037(

E = 37300. MPa
ν = 0.22

)
at = 0.16

b = 0.4 bt = 12.13 MPa
M = 6000. MPa kt = 51.307 (MPa)2

α = −300. MPa τlat = 126 days
β = −µ

2 = −7643. MPa τch = 74 days
γ = 1. d = 10

With the same parameters calibrated on the free expansions test, see Table 1, the anisotropic
model has been validated on some of the other tests carried out in [7]. Figure 2b shows the results
of the simulation of the expansion test under an axial compressive load of 20 MPa. While the radial
curve fits very accurately the experimental data, the axial strain overestimates the experimental one,
even though the general trend is caught correctly by the model.

The time evolution of the axial and radial damages Da and Dr is shown in Figure 3 for the free
expansion test and for the 20 MPa axially loaded test. It can be appreciated that the axial damage
starts from a value different from zero and that the final asymptotic state in free expansion is reached
for a relatively low final value of damage, accounting for the residual material strength which can
be observed experimentally. For the case of an applied compressive axial load of 20 MPa, damage
develops only in the radial direction, correctly reproducing the stress induced damage anisotropy.

In his experimental campaign, Multon [7] also carried out expansion tests on specimens confined
by steel rings 3 and 5 mm thick. Figure 4 shows the results of the simulations of these tests. The axial
strain is shown in Figure 4a, while the radial strain in Figure 4b. In both cases the physical trend is
correctly reproduced by the model: the axial strain increases with increasing confinement stiffness
while the radial strain decreases. Under this respect, it should be noted that the experimental result in
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Figure 3: Free expansion tests: time evolution of axial (thick curves) and radial (thin curves) dam-
ages for unloaded and axially loaded specimens.

Figure 4b is counterintuitive: the radial expansion is higher with the thicker 5 mm confinement. The
authors of the experiments in [7, 8] attribute this counterintuitive experimental result to an improper
levelling of the rings which prevented from accurate measurements. This is not the case of the
simulation, where the expected trend is obtained. Under the quantitative point of view, the axial
strain is reproduced more accurately, also in view of unexpected experimental radial response.

The anisotropic damage growth during the different tests induces a reduction of the Young mod-
ulus in the different directions. For the considered tests, Figure 5 shows the polar diagrams of E(m),
m being a unit vector inclined of an angle θ with respect to the axial direction, at the assigned time
instants t = 0, 100, 200, 300, 400, 500 days. A certain level of damage corresponds to each assigned
time and is therefore constant for each polar curve. The dashed circular line corresponds to the
undamaged isotropic case and it is shown as a reference in all plots. Due to the assumed initial
axial damage, the anisotropic effect is present since the beginning. The polar diagrams effectively
show the anisotropic damage evolution and the effects of the vertical load and radial confinement. In
particular, from Figure 5b, one can observe that the vertical load on the unconfined specimen, while
reducing the Young modulus degradation in the axial directions, severely contributes to a more pro-
nounced degradation of the corresponding modulus in the radial direction. A similar, though less
pronounced, effect can be noted from Figure 5e, where the strong lateral confinement in the absence
of a vertical load, promotes the degradation of the axial modulus.

4 CONCLUSIONS AND FUTURE WORK
In the present paper an anisotropic chemo-damage model, based on the isotropic version devel-

oped in [4], has been proposed for the simulation of the mechanical consequences of the AAR in
concrete. The present model has the capability to deal with a possible initial material anisotropy
and with the subsequent AAR damage induced anisotropy. The anisotropic model has been used to
simulate some of the experimental tests carried out by Multon [7] obtaining good physical corre-
spondence with the experimental evidences. In particular, it has been shown that the initial material
anisotropy can be well reproduced by assuming an initial damage in the specimen axial direction.
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Figure 4: Confined tests: axial (a) and radial (b) strains due to AAR. Experimental (symbols) vs.
simulation (curves) results.

Polar diagrams have been used to synthesise the anisotropic evolution of Young’s modulus in the
different directions.
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