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SUMMARY. This paper is devoted to the mechanical characterization of the elastic behavior of 

thin sheets of a commercial Poly Vinyl Butyral (PVB) at room temperature. Foils of PVB are often 

used as interlayer in the laminated glass. Their elastic properties were investigated by 

displacement controlled tensile tests performed both on slender and on stocky samples. The elastic 

behavior was schematized by some hyperelastic models whose constitutive parameters was 

identified fitting the experimental results. 

1 INTRODUCTION 

Poly Vinyl Butyral (PVB) is a thermoplastic amorphous polymer characterized by long, 

branched and geometrically random polymer chains. Even if its mechanical characteristics 

strongly depends on the additives used during the industrial manufacture, its glass transition 

temperature is generally about the room temperature. The high level of deformation that can be 

reached by the material until failure is enabled by its macromolecular network structure, which 

nature brings a stress-strain behaviour that is primarily governed by changes in configurational 

entropy as the randomly-oriented molecular network becomes preferentially-oriented with 

stretching. PVB is often used as interlayer in practical applications of the structural laminated 

glass as a secondary structure. Its thermo-visco-elastic behavior and the adhesion between the 

glass and the interlayer strongly influence the mechanical behavior of the laminated glass both in 

normal working and in post-crack conditions. In particular, in the post crack condition, once the 

glass is broken, the polymeric interlayer of the composite is able to produce a large variety of 

equilibrium configurations and of ductility resorts, so that the knowledge of its mechanical 

properties is crucial in the evaluation of safety of this kind of structures or of structural elements. 

In this paper only the macroscopic elastic behavior of foils of a commercial PVB at room 

temperature is investigated. Displacement driven tensile tests were performed else on slender and 

on stocky samples of thin sheets of PVB in order to induce in the material uniform uniaxial stress 

and not uniform biaxial stress states. The latest is due, in the stocky samples, to the confinement 

produced by the fish plates so that, in the experiments, a particular attention was paid to guarantee 

a good adhesion of the grasps to the plastic sheet. The experiments performed on the slender 

samples was already presented in [1] and are reported in the present paper for completeness.  

The elastic behavior of PVB is modeled by some selected well known constitutive models [2], 

[3], [4], [5] that seems able to describe the elastic behavior of the material. The mechanical 

parameters defining these models have been determined by an inverse analysis, fitting, in the least 

square sense, the experimental results. 



2 TENSILE TESTS 

2.1 Specimens 

The shape and dimensions of the specimens used in the tensile tests are reported in figure 1. 

All the specimens was made of a foil of PVB having a nominal thickness of 0.76 mm. In all the 

tests the displacements of the nodes of the grid drawn in the central part of the specimens was 

recorded for all the load steps. The shape and dimensions of the specimens was defined in order to 

obtain different shape ratios of the monitored zone. In particular we used two types of slender 

specimens, (a) and (b) in figure 1, and two types of stocky specimens, (c) and (d) in figure 1, 

having different aspect ratio. 

Shape and dimensions of the specimens of type (a) in figure 1 were defined observing, as far as 

possible, the prescriptions of EN ISO 527-2. Particularly, the length of the specimens was chosen 

as to permit the desired strain to fulfill in the workspace of the press and to be performed by the 

jack; the shape was such that the zone of the specimen assigned for the mapping of deformations 

was initially long twice the width. The bone-shaped specimen prevents the sliding of material 

within the grasps and the rupture in correspondence of the constraint. In the tests the specimen was 

doubled in the direction of the length so as to grasp only the doubled side. Sand paper was 

interposed between the iron plates and the polymer foils in order to increase friction. On the other 

side of the bone-shaped specimen, one cylinder with diameter of 10 mm was devoted to restrain 

the specimen. 
 

   
 

(a) (b) (c) (d) 

 Figure 1: Shape and dimensions of samples in tensile tests. Lengths in mm. 
 

In the tensile tests performed on specimens of type (a) we was not able to reach the rupture of 

the material elongating the specimen in the workspace of the press. In order to produce the break 

of one PVB, a specimen of type (b) was used. For this reason the enlargement at the bottom of the 

specimen was no more produced, relying on the small confinement produced by the contact with 

the cylinder. Consequently, the doubled specimen was half bone shaped. Moreover, the width of 

the strip was reduced to 10 mm, as to obtain a maximum load apt to the capability of the used load 

cell.  

In the tensile tests, a substantially uniaxial stress state was induced in the marked zone of the 

specimens of both type (a) and type (b). In order to produce, at least locally, a biaxial stress state, 

specimens of types (c) and (d) was used. Also in this case the maximum length of these specimens 

was chosen as to permit the desired deformation to fulfill in the workspace of the press. Moreover, 
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as the load cell of adequate precision could be used, these samples was not doubled in the 

direction of the length. Both the upper and the lower side of the specimens was grasped in order to 

confine the specimens and to induce a biaxial stress state at least in the areas close to the grasps. 

2.2 Displacement controlled tests 

The specimens were hung by means of the grasp to a load cell which was fixed to the screw 

jack that was in turn connected to the test frame. In view of the different expected maximum load, 

a load cell having 0.1 N of resolution and 500 N of measuring range was used for the slender 

specimens (types (a) and (b) in Figure 1), while a load cell having 2 N of resolution and 5000 N of 

measuring range was used for the stocky specimens (types (c) and (d) in Figure 1). While the 

bottom of the specimen was fixed, the displacement in correspondence of the top was measured 

with a wire displacement sensor. Both load and displacement data were recorded with a data 

logger. The relative displacements between the node of the grid drawn in the central area of the 

specimens (see Figure 1) was taken with a camera fixed on a tripod. 

The tests were performed imposing fixed displacement steps and allowing relaxation to occur 

in order to (conventionally) reach the elastic deformations. The relaxation phases between the 

displacements step, initially established in 5 min [6], were successively increased to 20 min 

because of the great amount of viscous deformations and of the long relaxation time exhibited by 

the material. The length of the relaxation phase is obviously conventional, as it is impossible, in 

laboratory time, to obtain the full relaxation of viscous phenomena and the pure elastic 

deformation. 

The following displacement controlled tests was performed (see Figure 1): 

- 3 tests on specimens of type (a) 

- 1 test on a specimen of type (b) 

- 2 tests on specimens of type (c) 

- 3 tests on specimens of type (d) 

The global data of the tests are reported in Table 1. The letter in the denomination refers to the 

kind of specimen described in Figure 1. 
 

Table 1: Displacement controlled tests. 

Specimen 

denomination 

Average 

temperature 

Average 

relative 

humidity 

Displacement step Number 

of total 

steps 

Relaxation 

time Displacement Rate 

[°C] [%] [mm] [mm/min]  [min] 

a01 23-24 / 10 10 27 5 

a02 26.0 / 10 10 28 20 

a03 23.0 / 10 10 29 20 

b01 24.3 / 10 10 25 20 

c01 19.1 49.5 20 10 5 20 

c02 19.1 49.5 20 10 8 20 

d01 19.0 50.0 10 10 6 20 

d02 18.2 58.0 10 10 6 20 

d03 18.2 58.0 10 10 6 20 
 

In Figure 2 the time-load diagram of specimen b01 is reported and time-load diagrams of some 

relaxation phases are superimposed. In Figure 3 it is reported the stretch vs. nominal stress 

diagram of the equilibrium points corresponding to the end of the relaxation phases. In order to 

compare all the tests, we reported the nominal stress, in the direction of the load, and the stretch 



(ratio between the current and the initial lengths) calculates for the middle point of the grid drawn 

in the specimens. It is apparent that small variation of room temperature produce large differences 

of deformability of the material. Moreover, as expected, the curves in Figure 3 that refers to the 

“confined” tests are more stiff than the ones that refers to slender specimens. 
 

  
 Figure 2: Time vs. Load diagram of the specimen b01. 

 

 
 Figure 3: Stretch vs. (conventional) elastic Nominal Stress 

 

3 HYPERELASTIC CONSTITUTIVE MODELS 

From the tests reported in the previous section it is apparent that PVB exhibits a non-linear 

visco-elastic behaviour. Although the viscous part of the material behaviour may be significant in 
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many practical utilizations, here we restrict ourselves only to the modelling of the elastic part of its 

mechanical behaviour that is in any case crucial in many practical application. 

In the past decades a very large number of mechanical models for rubber-like materials have 

been developed on the basis of statistical mechanics treatments [7], [8], [9] and of a 

phenomenological approach [3], [10]. In particular, for the modelling of the constitutive behaviour 

of the examined PVB samples, we refer to hyperelastic constitutive models, so that we assume that 

a Helmoltz free energy  exists that rules the elastic part of the deformation process and that 

depends only on the local deformation. Thermal effects are not taken in account. Moreover we 

restrict to homogeneous materials and anisotropic behaviour, induced for example by Mullin’s 

effects [11] are neglected, so that we assume that the symmetry group of the material is the full set 

of orthogonal transformations. Under this hypothesis, and according to the objective requirement, 

it is well known that the free energy depends only on a combination of the invariants of the right 

Cauchy-Green deformation tensor [12] 
 

  (1) 

being 

  (2) 

  eigenvalues of the gradient of deformation tensor F (3) 

 F gradient of deformation tensor (4) 

  right Cauchy-Green deformation tensor (5) 
 

As it is apparent analyzing the results reported in [1] and according to literature, this kind of 

materials exhibit a weakly-compressible behaviour that is generally neglected. Thereby, many 

hyper-elastic constitutive models were originally developed with reference only to the first and the 

second invariants of the right Cauchy-Green deformation tensor (2), without explicit dependence 

on the Jacobian of the gradient of deformation that, as it is well known, measures the local volume 

change of the continuous. For near-incompressible materials the elastic free energy  is generally 

decomposed as follows 
 

  (6) 
 

where  is a volume-changing term that depends on the determinant of the deformation 

gradient tensor (see (2)) and  is a volume-preserving term that depends on the first and 

second invariant of the unimodular right Cauchy-Green deformation tensor defined as follows [13] 
 

  (7) 

  (8) 

 

From the Clausius-Plank inequality, enforcing explicitly the incompressibility constraint 

l1l2l3 = 1, standard arguments lead to the following well known expression for the components 

of the Cauchy stress tensor in a principal reference system 
 

  (9) 
 

being  the hydrostatic pressure that can be calculated from equilibrium consideration. In 

particular, let it be x3 the axes orthogonal to the plane of the specimens described in the previous 

section. For all the described tests we have 
 



  (10) 
 

so that the other components of principal true stress assumes the following expressions 
 

 

(11) 

 

 

while the components of the nominal stress with respect to a principal reference system can be 

expressed as follows 
 

 

(12) 

 

 

The conditions that ensures admissible solution to physical problems in finite elasticity 

represent a very debated question. With reference to hyperelastic models, constitutive inequalities 

translate to conditions on the free energy, so that, for example, polyconvexity and coerciveness of 

the free energy ensure the existence of a solution of the boundary value problem [4], [12]. This 

condition does not conflict with non-uniqueness of the solution since, roughly speaking, it 

guarantees the existence of at least one local minimum of the functional to be minimized. On the 

other hand the existence of a solution for every boundary condition and for a general body force 

distribution may be unrealistic in some conditions, so that a functional that does not satisfy 

polyconvexity should not be ruled out a-priori. However, in the case of pure elastic process, the 

polyconvexity, that of course does not guarantees that the problem is well posed, may be a good 

mathematical tool to ensure the existence of a minimum of the free energy. 

In order to model the elastic behaviour of PVB, in the present paper we consider the two 

classes of polynomial expressions for the free energy described in the following. 

3.1 Rivlin Saunders model 

The Rivlin Saunders model [2] represents a class of polynomial models and includes the 

Mooney-Rivlin and the neo-Hookean constitutive models. Its nearly-incompressible materials 

extension is 
 

 (13) 

 

Against its simplicity, the Rivlin Saunders model generally requires high order terms in the 

fitting of the typical S-shaped stress-strain relation of rubber-like materials. On the other hand, as 

it is well known, a large number of high order terms may lead to numerical stability problems. 

Moreover, the expression (13) is not poly-convex because of the terms  [4]. 



We considered expressions of the Rivlin-Saunders model (13) complete up to third order of the 

invariants, that contains the material constants explained in the first, second and third row of 

Tables 3 and 4, and containing fourth order of the eigenvalues of the unimodular deformation 

tensor (7) (fourth to seventh row of Tables 3 and 4). Furthermore, in order to analyze the influence 

of the terms depending only on the first invariant of  in the fitting data procedure, we considered 

two enriched Money-Rivlin type expressions, that contains the material constants indicated in the 

eighth and ninth row of Tables 3 and 4). 

The identification procedure of the material parameters of the polynomial elastic potential (13) 

leads to a linear least square problem. As far as the authors know, it does not exists any physical 

requirement that leads to a restriction on the sign of all the coefficients of the polynomial 

expression (13), except for the neo-Hookean and the Mooney-Rivlin expressions that need not 

negative coefficients. Anyway, a sufficient condition, but not of course necessary, for the Rivlin-

Saunders free energy to have not negative values for a general deformation process, is that the 

coefficients cij be not negative so that, in the identification procedure, we referred to a linear least 

square problem with not negative solutions. 

3.2 Hartmann and Neff model [4] 

This constitutive model represents an extension of the previous polynomial model where the 

mixed terms are not included (  and the not polyconvex term  is 

substituted by  that is instead poly-convex. Its expression is the following 
 

 (14) 

 

This potential is also coercive if . Analogously to the Rivlin-Saunders model, and for the 

same motivations, the identification of the material parameters leads to a linear least square 

problem with non-negative solution (as explained, this final requirement ensures that the free 

energy is non-negative for all deformation processes) so that for the constitutive parameters we 

enforced the following constraints: 
 

  (15) 
 

In order to analyze the performance (in terms of fitting capability for the experimental data 

reported in this paper) of the different terms in the constitutive model, we have considered 

expressions of (14) up to m=3 and n=2 (see Tables 3 and 4). 

4 PARAMETERS IDENTIFICATION 

The parameters defining the constitutive models described in the previous section have been 

calibrated to best fit, in the least square sense, the experimental data reported in section 2. Two 

different procedures was implemented in fitting the data relative to the tests performed on the 

slender and on the stocky specimens. In the monitored region of the slender specimens, whose 

marked with a grid in figure 1, the stress state can be assumed homogeneous and uniaxial so that, 

in the identification procedure, we considered the longitudinal stretch and nominal stress 

calculated, for all the load steps, in the middle point of the marked area. Instead, in the stocky 

samples, the stress (and the strain) state is biaxial and not homogeneous because of the 

confinement of the grasps. For this reason, in the fitting procedure, we referred to the displacement 



of the node of the grid and to the total load measured for every displacement step. 

As it is well known, the goal of the least squares technique is to find the set of (material) 

parameters  that minimizes the objective function that, for both the 

implemented procedures, can be expressed as follows 

 (16) 

 

The objective function is therefore defined as the squared norm of the difference between a vector 

P that is a measure of the load or of the stress in the specimens, and a vector f(s,c)given by a 

function that evaluate the relevant measure of load (or stress) according to the chosen constitutive 

model (so that according to the vector of material constants c) and to a measure of the deformation 

s. The entries of equation (16) particularized for both kind of tests are described in Table 2. 
 

Table 2: Description of the variables of the best fit procedure 

 tests performed on the slender specimens 

(a) and (b) in figure 1 

 tests performed on the stocky specimens (c) 

and (d) in figure 1 

Pi nominal stress recorded in the i
th

 load 

step, calculated with reference to the 

central point of the monitored region of 

the specimen; 

 total load recorded by the load cell in the i
th

 

load step; 

si longitudinal stretch measured in the i
th

 

load step, calculated with reference to 

the central point of the monitored region 

of the specimen; 

 vector of displacements of the node of the 

grid drawn in the central area of the 

specimens, recorded in the i
th

 load step; 

f constitutive law (12) particularized 

according to the chosen model; 

 F.E. on purpose numerical code that take 

the nodal displacements and the constitutive 

parameters in input and returns, in output, 

the total load calculated according to the 

particular constitutive law 

c vector of constitutive parameters;  vector of constitutive parameters; 
 

The procedure used in fitting the data relative to the stocky specimens required the 

implementation of an on purpose Finite Element code. 

The polynomial models described in the previous section, lead to a linear least square problem 

with non-negative solutions. The optimum set of the material constants (expressed in MPa) and the 

residual of the objective functions for all the considered particularizations are reported in Tables 3 

and 4. It is apparent that higher order terms are not necessary to fit the experimental data with an 

acceptable care. Moreover, in many optimum sets summarized in Tables 3 and 4, a lot of terms 

depending on the second invariant of the unimodular deformation tensor are ineffective so that the 

terms depending on the first invariant appear predominant in the data fitting. 

In table 5 it is reported the residual of the objective function evaluated using the optimum sets 

determined as previously described and referring to both the uniaxial and the confined tests data. It 

is apparent that the optimum sets determined with reference to a kind of test don’t fit very well the 

data relative to the other kind of test. 
 

  



Table 3: Material constants (in MPa) determined fitting the “uniaxial” tests. 

  c10 c01 c20 c11 c02 c30 c21 c12 c03 c40 

Res. 

(Sq. 

norm) 

[MPa2] 
  0.3709 0.0         4.5e+1 

  0.0 0.1648 0.0014 0.0608 0.0      2.7e+1 

  0.0 0.1911 0.0 0.0500 0.0 0.0 0.0 0.0 0.0068  2.7e+1 

  0.3709          4.5e+1 

  0.1603 0.0 0.0174        2.7e+1 

  0.0 0.1648 0.0014 0.0608  0.0     2.7e+1 

  0.0 0.1648 0.0014 0.0608 0.0 0.0 0.0   0.0 2.7e+1 

  0.1603 0.0 0.0174   0.0     2.7e+1 

  0.1603 0.0 0.0174   0.0    0.0 2.7e+1 

 0.0006 0.2006          2.8e+1 

 0.0006 0.2006 0.0         2.8e+1 

 5.0e-5 0.1627  0.0161        2.7e+1 

 5.0e-5 0.1840 0.0 0.0044        2.7e+1 

 5.0e-5 0.1572 0.0 0.0  0.0036      2.7e+1 

 5.0e-5 0.1840  0.0044   0.0     2.7e+1 

 5.0e-5 0.1840 0.0 0.0044   0.0     2.7e+1 

 5.0e-5 0.1572 0.0 0.0  0.0036 0.0     2.7e+1 

 

Table 4: Material constants determined fitting the “confined” tests 

  c10 c01 c20 c11 c02 c30 c21 c12 c03 c40 

Square

d norm  

[MPa2] 

  0.4615 0.0         1.6e+1 

  0.1141 0.0 0.0450 0.0 0.0      5.7e+0 

  0.1698 0.0 0.0243 0.0 0.0 0.0020 0.0 0.0 0.0  5.6e+0 

  0.4615          1.6e+1 

  0.1141 0.0 0.0450        5.7e+0 

  0.1698 0.0 0.0243 0.0  0.0020     5.6e+0 

  0.1698 0.0 0.0243 0.0 0.0 0.0020 0.0   0.0 5.6e+0 

  0.1698 0.0 0.0243   0.0020     5.6e+0 

  0.1698 0.0 0.0243   0.0020    0.0 5.6e+0 

 0.0023 0.1183          5.6e+0 

 0.0023 0.1183 0.0         5.6e+0 

 0.0020 0.1170  0.0067        5.6e+0 

 0.0020 0.1170 0.0 0.0067        5.6e+0 

 0.0020 0.1170 0.0 0.0067  0.0      5.6e+0 

 0.0005 0.1563  0.0198   0.0015     5.6e+0 

 0.0005 0.1563 0.0 0.0198   0.0015     5.6e+0 

 0.0020 0.1170 0.0 0.0067  0.0 0.0     5.6e+0 

 

 

Table 5: Residuals of the objective function. 

 

Constitutive parameters determined for the 

uniaxial tests 

Constitutive parameters determined for the 

confined tests 

Uniaxial tests data Confined tests data Uniaxial tests data Confined tests data 
 4.5e+1 2.1e+1 6.2e+1 1.6e+1 

 2.7e+1 1.5e+1 2.5e+2 5.7e+0 

 2.7e+1 1.4e+1 3.9e+2 5.6e+0 

 4.5e+1 2.0e+1 6.2e+1 1.6e+1 

 2.7e+1 2.3e+1 2.5e+2 5.7e+0 

 2.7e+1 1.5e+1 3.9e+2 5.6e+0 

 2.7e+1 1.5e+1 3.9e+2 5.6e+0 

 2.7e+1 2.3e+1 3.9e+2 5.6e+0 

 2.7e+1 2.3e+1 3.9e+2 5.6e+0 

 2.8e+1 2.4e+1 4.1e+2 5.6e+0 

 2.8e+1 2.4e+1 4.1e+2 5.6e+0 

 2.7e+1 2.3e+1 3.9e+2 5.6e+0 

 2.7e+1 2.3e+1 3.9e+2 5.6e+0 

 2.7e+1 1.3e+1 3.9e+2 5.6e+0 

 2.7e+1 2.3e+1 3.9e+2 5.6e+0 

 2.7e+1 2.3e+1 3.9e+2 5.6e+0 

 2.7e+1 1.3e+1 3.9e+2 5.6e+0 



5 CONCLUSIONS 

In this paper an experimental and numerical analysis of the elastic behaviour of Poly Vinyl 

Butyral (PVB) was performed, with reference to some particular stress states. This polymeric 

material, often used as interlayer in the laminated glass, plays a crucial role in the normal working 

and in the post crack behaviour of composite glass plates.  

In this paper we reported some uniaxial and confined experimental tests, performed at room 

temperature, that highlighted the thermo-visco-elastic characteristics of the material. In this paper 

only the (conventional) elastic behaviour was taken in account. A best fitting procedure was 

implemented in order to determine the constitutive parameters relative to some well known 

polynomial hyperelastic potentials. It was apparent that low order terms are sufficient to fit the 

experimental data with an acceptable precision. 
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