Numerical analysis of snow avalanche mechanics and of its interaction
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SUMMARY. Two-dimensional models, in the plane parallel to the slope and in the downslope plane,
are introduced to describe the avalanche dynamics, and in particular its interaction with obstacles.
Their implementation in a FEM software supplies results, that compared with procedures derived
empirically, confirm that these models, adequately calibrated, could be used as a support in the
design of structures subjected to avalanche impact.

1 INTRODUCTION

The purpose of this paper is to describe a model for the analysis of snow avalanche dynamics
and snow-structure interaction. Introducing a procedure used in the design of structures located in
avalanche risk area, it is possible to note that the main parameters that a model should calculate are
the velocity, pressure, density, depth and volume of the flowing mass.

The Swiss procedure [6] supposes different situations of interference between the avalanche and
the structure depending on the position and size of the structure and on the characteristics of the
avalanche. For instance, a dense avalanche surrounding a rectangular structure, like a house, reaches
an heightHd given by the contribution of the snow covet (), the depth of the avalanché&/¢) and
the height of run up#,.), due to a loss of a part of the kinetic energy:
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As shown in Eqg. 1 the last term is characterized by the presence of the empirical dissipation coef-
ficient A (1.5 < A < 3 depending on the kind of the snow) and of the factbt (< f(H’—’f) <1)
depending on the ratio between the obstacle widtind the avalanche flow depth: smaller the ob-
stacle is higher the possibility to escape laterally is. Unfortunately, for small obstacles, the last term
shows some deficiencies. Let’'s note that it is supposed that the velo@tgonstant along the
avalanche depth.

At the heightsH,, H; and H,. a different load is associated: in the snow cover any forces are
transmitted, in theéd ; the pressure distribution is uniform, while in thg. it decreases linearly to 0.

The impact pressure is calculated through the hydraulic relation [10]:
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whereCy is a drag coefficient, depending on obstacle dimension and shape and on the kind of snow,
andp is its density. For instance, for the dense avalari¢hés 1 if the obstacle is narrow, and 2 if it



is large. Even other procedures, as the Norwegian one, apply Eq. 2 with a different rarngehatt
can reaches 6 for a mast. These empirical laws derive from experimental measures.

In the airborne avalanche, instedd; is 2 for big obstacles, and it ranges between 1 (circular
small obstacle), 1.5 (triangular small ones) and 2 (square small ones). This factor can reaches 6
for very small obstacles. Besides, the interaction between an aerosol and a structure, is compared
with the wind effects. The technical regulations concerning the wind actions on structures, in fact,
introduce an additional parameter, named the pressure coeffCjetud relate the values on the
different parts of the structure. For instance, [1] proposes for a square ofletigeing an area
larger than 10 rha factor +0.8 for the upwind side, -0.3 for the downwind one, and a factor varying
from -0.8 in the firstZ /5 reached by the flow, to -0.5 in the remaining lateral side. Let’s note that
these values are quite different in other regulations and take into account of some security factors.

In this paper the features described of these procedures are compared with the results obtained
by simulations.

2 THE MODEL

From the Eqs.1-2 it is clear that to design aim it is necessary to know the velocity, pressure,
density and depth of the flowing mass. These values are given by a model of avalanche dynamics.
In the literature several models have been developed, considering an avalanche only as its centre-of-
mass or as a deformable body like a granular material [11] or a fluid, with an hydraulic approach.

In this paper the avalanche is considered a fluid too, but without an integration on the depth. In
particular the system constituted by air and avalanche/snow (see Figure 1) is composed by two fluids
having different densities and viscosities, and can be modeled by the Navier-Stokes equations:
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wherev = (u,v) is the velocity,T = —pI + Z(Vv + (Vv)') is the stress tensoF, takes into
account the gravitational and friction forces (both a Coulomb force and a viscoup@are)Z are
respectively the density and the viscosity of the air and of the snow.

Let’s note that the avalanche itself is considered an incompressible fluid, as almost all the existent
models suppose, even if some experimental measures show some change in density.

The NS equations give therefore the values of the velocity and of the pressure in each point of
the avalanche.

2.1 The avalanche depth and volume

To deduce the value of the depth of the avalanche, that i#/the Eq.1, on the contrary of the
depth averaged models in which it appears directly in the momentum equation, a further equation
have to be introduced.

Let the air-snow interface be described by the material inteface t) = y — g(«,t) = 0, and
the interface against the underlying motionless snow cover by the fungtignt) = y—I(x, t)
The avalanche depth will be

Hf(xvt) :g(xat) _l(xvt) (4)

It is necessary now to understand how the avalanche/air interface evolves. This interface is

assumed to be a material interface for the avalanche. Having naramal the initial shape, (x,t =
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Figure 1: Coordinate system of the 2D-xy model [4].

0) = 0, itis transported by the avalanche thanks to the advection equation:

% + V- VSQ =0 (5)
Numerically this equation is implemented through the level set method [5], [8], [9]. In fact, the
interfacess(x, t) can be considered as a level set function characterized to be equal to zero on the
the free surface, positive in the zone of the more dense and more viscous fluid (avalanche/ snow) and
negative where the less dense and less viscous one (air) is situated. The level set function appears
obviously even in the expressions of the density and of the viscosity defined in the whole domain,
since they move together with:

p=pPa+t H(SQ)(pav/s — Pa) (6)
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where p, (Z,) and p,,/s (Z../) are, respectively, the density (viscosity) of the air and of the
avalanche/ snow, anH (s2) is the Heaviside function.

The boundary conditions, on the interfaggx, t) = 0, are the continuity of the velocity, pro-
viding the non-penetrability between the ai) &nd the avalanche{) or the snow covers:

Vg Nl = Vgy/s 1 (8)
and the continuity of the normal stress:

=av/s ‘n=0 (9)
sinceZ’ is assumed to be negligible.

The depth of the flow is directly linked with the entrainment of the snow cover too, according to
Eq. 4. Entrainment is a phenomenon that significantly affects the avalanche behaviour since it makes
a medium/large avalanche increase its mass normally by a factor 2 or 3, where small ones even reach
a factor equal to 9 [12]. Recently, some models describing the entrainment have been developed [2],
based on different hypothesis, but they are not used practically, due to the lack of experimental data
necessary for the validation.



The proposed model [4] describes entrainment, considering the snow cover and the flowing mass,
non-Newtonian fluids.
In the case of a Bingham fluid (B) the avalanche is supposed to be in a fluid ghase):

-
Loy = 2B = <770 + |H(1J/2) (10)

while the non eroded snow cover results to be in the solid phase £2):

=GB (11)

whereB is the Cauchy-Green strain tensétjs the shear modulud is the second invariant of the
rate of deformation tensorl2, 7, is the viscosity of the flowing snow ang the yield stress.

In the shear thinning case (SH) the viscosity has only one expression, ndmely= Zsg, in
both the avalanche and in the snow at rest:

(12)
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wherem, n, anda are calibration parameters.
Therefore the interface snow cover/avalanche is defined by having the shear stress equal to the
threshold valuey, i.e.,
t/sl : Insl =170 (13)

wheret,, andn,, are respectively the tangential and normal vector at the interface. The interface
evolves in time since the zone in whigh|'/? = 7, is changed [4].

Hence, the condition of = 7 allows to describe which part of the snow cover is entrained by
the avalanche, and consequently permits to estimate the total involved volume.

In the simulations presented in this paper, the attention is focused on the interaction between
avalanche and structure, and not in the dynamic of the avalanche. For this reason, the interface
s1(x,t) is characterised b¥(«x,t) = 0, that is there is no entrainment. In fact, we suppose that the
entrainment of the snow in the area of the structure studied is negligible. Thereby, in this simplified
case,H; andg(z, t) coincide.

However the more appropriate rheology for the avalanche remains to be determinated. For this
goal a possible approach is to compare experimental data with the results of different simulations
carried out changing the law of the viscosity [3]. Appropriate laws, like those of the Non-Newtonian
fluids in which the viscosity depends on the strain rate, allow to describe correctly the velocity profile
along the avalanche depth. Since the velocity and the pressure are linked (see Eqg. 2), it is important,
for the purpose of correct structural design, to know the pressure profile of the impacting avalanche.
However this feature is not taken into account by the majority of the models in the literature, which
consider a depth-averaged velocity or give a constant law for the velocity dependence on the depth
and neither, as said before, by the Swiss procedure [6]. Since we will compare our results with this
procedure, a Newtonian fluid is used.

2.2 A 2-dimensional model on the XZ-plane

A different approach is to study the avalanche from above, that is in the XZ-plane (Fig. 2). Even
in this situation the system composed by air and avalanche is considered as a fluid. For this reason
the same equations of the Navier-Stokes (Eg. 3) and the advection one for the interface air-avalanche
s3(x,t) = 0 (Eq. 5) are used. The notation becorses (z, z) andv = (u, w).



This model, simpler than an averaged one in which even the depth of the avalanche is taken
into account, allows to describe, although roughly, the pressure on an obstacle. The depth of
the avalanche, however, can be calculated with the model in 2D on the XY-plane. Finally, since
the velocity and the viscosity are considered constant along the depth, in accord with the Swiss
Procedure[6], a Newtonian fluid can be used for simplicity.
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Figure 2: Coordinate system of the 2D-xz model.

3 SIMULATIONS

Once the models for the snow avalanche dynamics has been described, it is possible to simulate
the interaction between a snow avalanche and various obstacles located along its path such as, for
instance, a concrete dam, an energy transmission pole or a typical masonry house. Simulations were
carried out by means of a multiphysics FEM software and, although still qualitative, yields some
interesting results.

3.1 Simulations in 2D on the XY-plane

A first set of simulations consists in the analysis of the interaction avalanche/obstacle seen
from its side. In particular, the simulation reported here analyses the interaction between a dense
avalanche and a dam. Fig. 3 shows the pressure along the dam at different time steps. At 1.1s,
when the avalanche reaches the dam (Fig. 4.a) there is a peak of pressure, than the upper part of
the avalanche reaches the obstacle (Fig. 4.b,c). This behaviour is due to the particular shape (an
ellipse) given as initial condition to the avalanche (the lower part arrives before the upper one). In
this part of the dam, corresponding to the flowing heiffhtthe pressure attains the maximal values,
in agreement with the Swiss Procedure [6].

In the run-up height{,., instead, the pressure decreases linearly, according to the Swiss Proce-
dure (see Fig. 3). On the obstacle the pressure doesn'’t go to 0, because a part of the snow is able to
overcome the dam (Fig. 5) carrying with itself part of the kinetic energy and, consequently, of the
pressure. Hence such simulations, adequately calibrated, could allow in a design phase, to consider
the right pressure and to estimate a more correct volume retained by the dam.

3.2 Simulations in 2D on the XZ-plane

A second set of simulations shows from above the interaction between an avalanche and an ob-
stacle having a square and a circular shape with different dimensions. In this situation two scenarios
are supposed: an open slope and a channeled one, thanks to appropriate boundary conditions (an
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Figure 3: The pressure profile along the obstacle thickness.
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Figure 4: Avalanche pressure on a dam at time 1.1s [a], 1.2s [b] and 1.3s [c] in the flowing height
H,. The range is adapted at each time step to evidence the area with the maximal pressure.

open boundary with normal stress, and a wall with a slip condition). In addition, two densities are
supposed to take into account both a dense avalanche (density of about 36D &gdnan aerosol
one (density of 10 kg/f).

Simulations show that obstacles having bigger dimensions, both in circular than in the square
situation (Fig. 6), split the flow. Qualitatively the fan generated in the impact of the flow is similar to
that observed experimentally by [7]. On the contrary, a circular shape of smaller dimension allows
to the airborne flow to meet after the obstacle (Fig. 7). A closer study about the dead zone created by
the obstacle, for instance, focusing on its size and shape, could be an instrument to conceive efficient
passive protection measures, like deflection dams. Besides, an analysis of the deviation of the flow
due to obstacles, could explain the formation of different branches created sometimes in the deposit
area experimentally observed.

The imposed boundary conditions play an important role when the obstacle has a size comparable
with the channel. In fact, an avalanche can expand itself if an open slope is present (Fig. 8.a) or can
remain confined if it slides in a channel (Fig. 8.b). Hereby, for practical design even the boundary
conditions have to be taken into account. If the obstacle is small, on the contrary, the effects of the



Figure 5: Avalanche pressure on a dam at time 1.8s [a], 2.2s [b] and 2.8s [c] in the run-upHeight
The range of the scale is that of the Fig. 4.a.
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Figure 6: Interaction between a dense avalanche (300%@ind a square obstacle in an open slope
condition at time 2.5 s. The arrows indicate the velocity, the contour line in red is the interface
avalanche-air, the surface plot indicates the pressure.

boundary conditions are less significant (Fig. 9).

The model also allows to calculate the variation in time of the the pressure in a point. For
instance, Fig. 10 shows the pressure of the central point upwind a square obstacle: in few seconds
(because the avalanche simulated is very small) the avalanche simulated goes beyond the obstacle:
the pressure increases quickly and decreases slowly in the avalanche tail. This pressure is compared
with the values obtained by the expression 2 in two different ways.

The first one is based on the velocity measured just before the obstacle (in fact, on the obstacle the
velocity vanishes for the boundary conditions). For this situation we fouig @sing the maximal
values of the velocity and pressure. It's important to underline that the avalanche, in our simulations,
has not yet attained a stationary value when it crashes on the obstacle. This aspect can influence
significantly the results obtained. In fact, normally in Eq. 2, the pressure is derived from the velocity
considering a stationary situation. In addition, for the nature of our simulation that lasts few seconds,
the initial phase of the crash plays an important role. On the contrary in the experiences in the wind
tunnel the initials steps of the interference are neglected, to consider only the stationary case.
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Figure 7: Interaction between an airborne avalanche (10Rgdmd a small circular obstacle in an
open slope condition at time 2 s.

A second approach consists in a comparison using the velocity measured in a condition without
the obstacle. Fig. 10 shows as the air moved by the avalanche arrives on the obstacle before the
avalanche itself and consequently a pressure is measured even before the avalanche without the
obstacle arrives in this point. In this situation, having a larger velocity leads to a (Gyver

Finally, simulations allow to describe the impact pressure of an aerosol avalanche against a build-
ing. Fig. 11 shows that on the windward side the pressure is positive, while in the other sides it is
negative, similarly to the wind effects.

In this case the”,, are now calculated using the extreme values derived by our simulation: the
maximal value is 861 Pa in Fig. 12a, the minimal values -595 Pa in Fig. 12b and -47 Pa in Fig. 12c
at the edge centre. Consequently the pressure of impact becomes 1076.7 Pa, considering a pressure
coefficient for the frontal edge of 0.8.

As concerns the lateral edge, Fig. 12.b shows as therd.j$aegion is which the pressure is
higher than in the remaining section. Quy obtained is -0.6. This lower value could be given by
the fact that there is only a little part of the avalanche impacting on the side, on the contrary of the
wind experiences in which the wind recovers the whole tunnel.

To interpret the results obtained in the downwind side, it is important to underline that in such
simulation the avalanche does not impact on this side. Hence the pressure is given by the blast: using
the air density, th€’, obtained is -0.3 on the obstacle rear.

4 CONCLUSIONS

In this paper two numerical models are described to analyse the interaction between snow avalanche
and structures. The results obtained are compared with the Swiss procedure for practical design in
avalanche risk areas. The models implemented in a FEM software give interesting results. In a 2-
dimensional downhill section, for instance, it reproduces the behaviour of the pressure: it is higher
in the zone impacted directly by the flow, and it decreases linearly in the run up area. In the plane of
the slope, the values of tlg, found for an airborne avalanche are consistent, as order of magnitude,
with the wind effects. Besides it shows the presence of a dead zone at the rear of the obstacle, that



[a] : 0 g 0 = = = EX e [b] : 0 : - = = B T meaman o

Figure 8: A dense avalanche in a open slope[a] and in a channel at time 2.5s
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Figure 9: A dense avalanche in a open slope[a] and in a channel at time 2.0s

is an important aspect for planning purposes. Finally the model allows to find the values of the co-
efficientCy in Eq. 2. Let's note that rigorously, to extends these simulations to the real scale of the
avalanche, an adimensional analysis must be done, with the introduction of numbers as the Froud’s
ones and the Reynolds’ one.
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Figure 10: Variation in time of the pressure measured (simulation with the obstacle measured in
the point (12,7.5)) and calculated, with the Eq. 2, of the central point upwind of a square hit by an
airborne avalanché’;; = 0.78 in the simulation with the obstacle in the point (10,7B); = 7.55

in the simulation without the obstacle in the point (12,7.5))

Figure 11: Interaction between an airborne avalanche (10Rgimd a square obstacle of big di-
mension in an open slope condition at time 2 s.
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Figure 12: Avalanche pressure in time up-wind [a], in the lateral edge [b] and down-wind [c].
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