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SUMMARY. This work discusses the kinetostatic and dynamic properties of a new reconfigurable
parallel-serial hybrid manipulator with redundant actuators carrying a serial wrist with 3 degrees of
freedom (dof). The parallel part can be easily reconfigured with a simple disassembly and reassem-
bly procedure to obtain different configurations. The paperfocuses on the kinematics of the parallel
structure solving the direct and the inverse kinematics of the 3 dof configuration and analyzing the
singularities. The evaluation of some kinetostatic performance indices of the 3 dof configuration and
some experimental result will be also presented.

1 INTRODUCTION
In the last decades many Parallel Kinematic Machines PKM have been designed and built to face

the new demanding requests of industries and service companies. The good kinematic properties of
these manipulators promote them as good candidates in many application fields. However, since their
working space and the rotation of the moving platform are generally small, the PKM are sometimes
improved adding a serial wrist, obtaining a parallel-serial hybrid manipulator [1], [2], [3], or using
actuation redundant schemes [4] or kinematic redundant schemes [5].

This paper discusses the kinetostatic properties of the parallel part of Cheope, a reconfigurable
hybrid manipulator. Cheope was initially designed as a robot manipulator for surgical applications
[6]. The parallel architecture assures the high stiffness [7], simple structure [8] but limited dexterity.

For this reason Cheope was designed with an hybrid structure: a parallel manipulator having
a serial wrist fixed on the mobile platform. The parallel partis reconfigurable to obtain special
performances in particular situations and the serial wristhas 2 rotations plus a redundant translation
to perform rapid and precise linear motion. The design of themanipulator has been optimized to
take advantage of both kinematic architectures, to avoid singularities and to have an approximate
isotropic behavior in the center of the workspace [9].
High performance components and the design of the Cheope parallel structure make it suitable for
other application fields such as fast pick and place, machining and assembly tasks. The aim of this
paper is to describe the kinematic characteristics of “Cheope” with special attention to its parallel
reconfigurable part. At first all the possible different configurations are brefely shown and then the
3 dof configuration is analyzed solving the forward and inverse kinematics and so the kinetostatic
performances are investigated by using performance ellipsoids. Experimental results of an hybrid
force-velocity controlled task are also briefly discussed.

2 THE RECONFIGURABLE ARCHITECTURE
Cheope has an hybrid kinematic structure composed by a Parallel Kinematic Machine (PKM)

carrying on the mobile platform a serial chainR R P (see fig.1). The symbolR indicates actuated
revolute joints andP prismatic ones while the symbolS denotes unactuated spherical joints used in
the parallel part. The parallel structure is composed by 4 actuated prismatic joints (linear motors)
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Figure 1: TheCheopemanipulator.
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Figure 2: Parallel kinematic structure.

that lie on the edges of a square pyramidal base. Each motor can be connected to the mobile base by
0, 1 or 2 identical rods with a spherical joint at each end (fig.2). The number and the disposition of
the rods can be quickly changed with simple reassembly operations. Each configuration is labelled
by a string indicating the joint sequence of each “leg” (PSS in our case) and by an index indicating
the number of connecting rods (1 or 2 in our case).

The 8 major configurations (figure 3) can be classified in four groups. Other configurations can
be generated by symmetry and are not reported in the figure. The relevant configurations are:

(I) 3 identicalP [SS]2 legs that let the mobile base have 3 degrees of freedom of puretranslation
(figure 3-(a)) [10];

(II) two P [SS]2 and twoP [SS] chains that let the mobile base have 4 dof [11]. The legs can be
assembled in 5 different geometrical configurations, see fig. 3-(b,c,d,e,f), each of them having
a different rotation axis plus three translations;

(III) 7 rods shared in threeP [SS]2 legs and onePSS leg that make the system overconstrained
but, if correctly controlled, the mobile platform has threetranslational dof (figure 3-(g));

(IV) 8 rods grouped in 4P [SS]2 legs; the mobile platform has 3 translational dof and a double
overconstrain generated by the fourth actuator (figure 3-(h)).

In this paper we focus only on the configuration (I) and we refer to them as “3 dof configuration”. In
this configuration only 3 prismatic joints are actuated, andeach of them is connected to the mobile
base by a couple of rods. Because of the chosen geometrical dimensions, each couple of rods are
always parallel to each other and the mobile base can only translate inside the whole workspace, (no
rotations are possible). If we limit our mobility study at first order kinematic [12], we can observe
that if the centers of the four spherical joints of eachP [SS]2 leg lie in a plane (planar parallelogram),
virtual rotations of the mobile base around any axes orthogonal to parallelogram plane are denied. As
a whole, we have three linear independent planar parallelograms and so three independent directions
of rotation are prevented. We conclude that the end effectorcan only translate. For a more detailed
description of the other configurations see [13].
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Figure 3: All the possible isostatic (I, II) and overconstrained configurations (III, IV).

3 NOTATION
With reference to fig. 4 the following conventions have been adopted for the 3 dof configuration:
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Figure 4: The adopted notation.

− Rod and linear axis indices: i = 1 . . . 6 identifies
the rod (top view, counter-clockwise),j = 1 . . . 3
identifies joint prismatic axis.

− {0} is the absolute frame. The origin is at the
intersection of the axes of the prismatic joints,Z0

vertical axis (coincident with chassis symmetry
axis) andX0 horizontal axis in the direction of
prismatic joint 1;

− l: length of rods.

− wj : unit vector of the rod (or of the couple of
rods) connected toj−th prismatic joint.

− nj : unit vector of thej−th prismatic joint.

− qj : joint coordinates ofj−th prismatic joint.

− q = [ q1, ... , q3 ]T joint coordinates vector.

− s3 = [ x, y, z ]T : Tool Center Point (TCP)
coordinate vector, for 3 dof configuration.

− aj , bj anddj : vectors that lie on the platform, see figure 4 - (c,d)

− Ai = Aj−l, Ai+1 = Aj−r andBi = Bj−l, Bi+1 = Bj−r with i = 1, 3, 5, 7: coordinates of the
two end points of thei− th (or (i+1)− th) rod. The subscriptj− l andj− r mean respectively
the right hand and left hand rod for thej − th linear axis (see figure 4-(c,d))

− Aj = 1

2
(Aj−l + Aj−r) andBj = 1

2
(Bj−l + Bj−r): mean point between the ends of a couple

of adjacent rods (see figure 4-(c,d))

− fxyz = [ fx, fy, fz ]T : external forces applied at the center of the platform (mobile base).

− txyz = [ cx, cy, cz ]T : external torques applied to the platform.
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4 KINEMATIC ANALYSIS
The kinematic analysis has been developed writing 3 closureloop equations for each couple of

adjacent rods. The loop-closure equation for thej−th limb can be written along a virtual central
rod which connects the pointsAj andBj (fig. 4) and it results:

s3 + aj − lwj − qjnj = 0 j = 1 . . . 3 , (1)

definingcj(qj) = qjnj − aj , from eq. (1) we have:

|s3|
2 − 2cj(qj)

T s3 + |cj(qj)|
2 = l2 j = 1 . . . 3 . (2)

The set of the three eqs.1 represents the intersection of 3 spheres;l is the radius of the spheres and
cj(qj) are their centers.

4.1 Direct kinematics
cj(qj) (motors positions) are known ands3 (mobile base position) must be determined. To

simplify the quadratic system we define the auxiliary frame{a} in which the equations of the spheres
are simpler. The frame{a} has originOa coincident withc1, Xa passing troughc2 and the plane
XaYa containsc3. In this frame the centers of the spheres arec1 = [0, 0, 0]T , c2 = [xc2, 0, 0]T ,
c3 = [xc3, yc3, 0]T . We indicate withsa = [ xa, ya, za ]T the intersection point of the three
spheres expressed in the frame{a}. The base positions3 can be estimated from the product between
the rototranslation matrixM0a (from frame{0} to {a}) andsa:


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
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=M0a
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(3)

Solving the system we obtain two solutions, but only one is feasible because of the mechanical
constraints of the robot.sa results:







xa = xc2/2
ya = (x2

c3 + y2
c3 − xc2xc3)/(2yc3)

za =
√

l2 − x2
a − y2

a

. (4)

The second solution is not acceptable because it correspondto a TCP (Tool Center Point) position
inside the manipulator base.

4.2 Inverse kinematics
The TCP positions3 is known and the motor positionqj has to be determined. The solution of

this problem is simple because the three relations of eq.(1)are uncoupled. Definingrj = s3 + aj

we have:
qj = nT

j rj ±
√

(nT
j rj)2 − rT

j rj + l2 j = 1 . . . 3 (5)

Due to the mechanical limits only the solution with the positive sign before the radical can be ac-
cepted. Velocity and kinetostatic analysis require the knowledge of the Jacobian matrix. Deriving
eq.(1) with respect to the time we get:

ṡ3 − q̇jnj = lωj × wj j = 1 . . . 3 with
d

dt
wj = ωj × wj
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whereωj is the angular velocity of thej−th rod. Projecting each equation on the rod directionwj ,
we have the relation that describes the inextensibility of the connection rods:

wT
j (ṡ3 − q̇jnj) = 0 j = 1 . . . 3 .

Defining the matricesW3 andK3 as

W3 = [w1 w2 w3] K3 = diag(wT
1 n1, wT

2 n2, wT
3 n3) (6)

the Jacobian matrixJ results:

WT
3 ṡ3 = K3q̇ Jṡ3 = q̇ → J = K−1

3 WT
3 (7)

5 THE WORKSPACE
5.1 Singularities
When the manipulator is near to a singular position, its performance indexes decrease very

quickly (low stiffness, oscillations, difficult control optimization etc.) and so an accurate analy-
sis of the singularities is needed. Following the singularities analysis for parallel robots presented in

(a) (b) (c) (d)

Figure 5: Singular configurations: direct kinematic (a e b), inverse kinematic (c) and structural (d).

[14] and more extensively in Zlatanov [15] and applying it tothe Cheope equations (as described in
detail in [13]) we can classify the singular configurations as follows:

− direct kinematic singularities: if all the connection rods are coplanar (the mobile base canhave
an infinitesimal translation inZ direction, fig.5(a)).

− inverse kinematic singularities: if a connection rod is orthogonal to its prismatic joint axis
(fig.5(c)), the velocity of the mobile base in the rod direction is null.

− structural kinematic singularities: the previous cases may occur simultaneously or two of them
are parallel to each other (fig.5(b) and 5(d)).

Otherwise the kinematic structure of the “Cheope” robot hasbeen performed to take all the
possible singular configurations outside the workspace allowed by the prismatic joints limits.

5.2 Workspace
The usable workspace of the robot is limited by the closenessto singular configurations and by

the endstops of the joints. The analysis of the limits imposed by the endstops of the prismatic joints
of the actuators is quite simple (workspace obtained as intersection of 3 spheres), while the study
of the restrictions caused by the limitations of the spherical joints is more complex. The adopted
spherical joints permits a limited rotation of about±22 deg. This constrain results in a reduction of
the reachable working space.
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Figure 6: Workspace limits.

Figures 5.2 represents the sections of the working space
of the robot for the 3 dof configuration numerically computed
considering all joint limits. The working area is represented in
theY Z plane for different values of theX coordinate.

6 KINETOSTATIC PROPERTIES
6.1 Kinetostatic and dynamic properties
Several indices [16] have been proposed to measure the

kinetostatic and the dynamic performances of the manipulator,
its degree of isotropy and the distance from singularities.

Most of the adopted criteria are based on the Jacobian ma-
trix. Other parameters to be considered are the performances of
the actuators (maximum velocity and torque/force), the masses
of the links and the compliance of some components. The analysis requires the evaluation of the
eigenvalues and eigenvectors of a matrix which depends on the Jacobian and other dynamic param-
eters (masses, stiffness, actuators performances, ...).

The kinetostatic properties can be graphically represented by some performance ellipsoids intro-
duced by Yoshikawa [17] for serial manipulators and then applied to PKMs by Gosselin et al. [18],
Bhattacharya et al. [19], Merlet [20], and others. As betterdescribed in the sequel, it is possible
to define force ellipsoid, velocity ellipsoid, compliance ellipsoid and mass ellipsoid each of which
represents a different kinetostatic or dynamic property ofthe manipulator in one particular config-
uration. Since in our manipulator all the actuators are identical to each other, velocity and force
ellipsoids can be defined by a symplified method that doesn’t consider the actual value of maximum
velocity and force that can be generated by each actuator.

− Velocity ellipsoidis defined as

ṡT
(

J−T J−1
)

ṡ = 1 with ṡ = [ ẋ ẏ ż ]T (8)

whereṡ indicates the maximun possible velocity of the end effectorin the various directions of
the workspace given a maximum value of motors’ velocity assumed equal to one. The Jacobian
matrix correlates joints and end effector velocity and joint and end effector infinitesimal move-
ments. This is why the velocity ellipsoid indicates also theeffects on repeatibility of the end
effector motion due to uncertainty of joint motion.

− Similarly force ellipsoidis defined as

Fs

T
(

JJT
)

Fs = 1 with Ḟs = [ fx fy fz ]T (9)

and it describes the maximum forces (Fs) that can be exerted by the end effector in the various
directions of the workspace.

− Stiffness ellipsoidindicates the stiffness of the robot in the work space assuming the compliance
concetrated at the actuators. Indicating withk the actuator stiffness it is defined as

Fs =
1

k

(

JJT
)

−1
ds with ds = [ dx dy dz ]T (10)

and it describes the relation between intensity and direction of forces (Fs) exerted at the end
effector and the consequent displacement (ds) of it. Generally we can gather that the robot is
more stiff in the direction in which it can exert greater forces.
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Figure 7: Manipulability force, velocity, stiffness and mass ellipsoides. The sections are referred to
XY plane at different workspacez quote.

− Mass ellipsoidgives informations on the acceleration of the end effector in the workspace when
external forces are applied to it. It is defined as

Fs ≃
(

Je

−TMJe

−1
)

s̈ (11)

whereJe is an extended Jacobian andM is a suitable matrix of the masses. It indicates the
forcesFs necessary to produce an accelerations̈. Mass ellipsoid together with the stiffness
ellipsoid could be related to vibration phenomena when the robot interacts with the environment
in machining applications.

Synthetic performances indexes are also the determinant, the condition number or the singular
values ofJ [21]. The condition number is defined asc = cond(J) = ||J||||J−1||. If the norm
is defined as the maximum singular value (“spectral norm”), the condition number equals the ratio
cond(J) = σmax(J)/σmin(J). The singular valueσi represents the size of the principal axis of the
ellipsoid, whiledet(J) = σ1 ·σ2 ·σ3 is related to the volume of the ellipsoid. By virtue of the duality
between kinematics and statics,σmin andσmax are also measures of the stiffness of the mechanism.
The bigger the volume, the more rigid the manipulator is. Themapping of the condition numberc
of σmin and ofdet(J) can be used for a rough evaluation of the usable workspace.

Figure 7 display the performance ellipsoids of “Cheope” in some locations of the workspace. Due
to mechanical simmetry with respect toY axis (figure 7(d) and 7(h)), the kinetostatic performances
of the manipulator are also symmetrical with respect to the same axis.
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The meaning of the ellipsoids is briefly expalined as follows. In figure 7 the axes of the force
ellipses are nearly parallel to the reference axesX andY and the length of the force ellipses in the
X direction is bigger than the one in theY direction. This means that the force that the manipulator
can exert in theX direction is bigger than the one it can exert inY direction. This behaviour does
not change with the quoteZ. Similarly the velocity that the manipulator can reach inY direction is
bigger than the one the manipulator can reach inX .

Figure 7 also shows the mass and the stiffness ellipses. Fromthat figure it is quite evident that the
equivalent mass inX direction is bigger than the one inY direction, but the differences are not so
big. On the contrary the stiffness inX andY are pretty different and inY direction the manipulator
has a lower stiffness (greater compliance). Since equivalent mass and stiffness vary significantly
with the direction we can predict that, when the manipulatoris in contact with the environment, its
dynamic behauviour depends on the direction of the contact.A simmetry whith respect to theY
direction is also present. Observing the figures at different z position it’s easy to note that going
toward a singular position (rod parallel to each other at maximum z quote, see fig. 5(b)) mass and
stiffness decrease with consequent deterioration of the performances.

7 A PRACTICAL APPLICATION: ANALYSIS OF THE CONTOUR TRACKING
An application has been developed to verify the considerations about the kinematic and the dy-

namic properties of the manipulator. The developed application is the contour tracking using a force
sensor mounted at the robot’s end effector. For these applications a force controller or an hybrid
force/position/velocity controller is needed [22].

Figure 8: Contour tracking test: shape of the ob-
ject, force error and performances ellipses (stiff-
ness and mass).

In this application it is necessary to main-
tain the contact of the TCP (Tool Center Point)
with the surface of an object of unknown shape
while the manipulator is moving along the piece
contour. It is similar to a blind man which is
able to move in a room because with his hands
he touches the environment to sense the wall
and the obstacles to identify their position and
shape. During the contour tracking task the
robot controls the tangential velocity and the
normal force with respect to the surface of the
object. The manipulator detects the correct nor-
mal and tangential direction using the data col-
lected by the force sensor. For this kind of ap-
plications it is useful to use thetask framefor-
malism as suggested firstly by De Schutter [23].
In our specific application we have contourned
a round steel disk of14cm diameter of placed
in the center of theXY plain at50cm along the
Z direction. Observing figure 8 and 9 it’s possible to correlate the performance ellipsoides with the
dynamic behavior of the manipulator. The force error is worse when the normal of the object is
parallel to the minor axis of the stiffness and mass ellipsoides.
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Figure 9: Force and velocity response versus time during contour tracking (sampling time400Hz).
The first three laps are executed with increasing speed whichstays constant in laps IV and V.

8 CONCLUSIONS
The paper presents the main kinetostatic characteristics of “Cheope”, a reconfigurable parallel-

serial hybrid manipulator. Particular attention is paid tothe 3 dof translation configuration: forward
and inverse kinematic problems have been solved and performances have been deeply analized with
the help of the performance ellipsoids. The manipulator is nearly isotropic from a kinematic point
of view for a great part of its workspace. However from a dynamic point of view the manipula-
tor presents an anisotropic behaviour. The effect of dynamics and anisotropy can be observed in
applications interacting with the environment as the contour tracking task that has been success-
fully attempted. The choice of high performance mechanicalcomponents (mainly the linear motors)
allowed to achieve good dynamical performances. The robot Cheope, initially designed as a proto-
type for medical application, can be conveniently applied also in different fields (machining, surface
finishing, assembly tasks, etc.).
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