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SUMMARY. In this work we present 3 single loop kinematotropic mechanisms, i.e., mechanisms 

that can be assembled in different closures in which they present different numbers of degrees of 

freedom. The mechanisms can be located in their different closures by assembling their pairs in 

different ways consistent with the kinematic constraints.  The three chains have been synthesized 

using the theory of displacement groups and their mobility characteristics are analyzed. All the 

chains are 4-bar non planar linkages, i.,e., RRRR, RPRP, RFRF. 

1 INTRODUCTION 

Kinematotropy is a topic in mechanism kinematics that has been investigated for several years . 

Its interest is mainly theoretical, because it represents an exception to mobility rules and 

constitutes a challenge to any research for comprehensive mobility equations (or algorithms) [1]. 

In recent years, an interest is growing toward metamorphic mechanisms, specially for robotic 

applications, of which kinematotropic mechanisms are a subset [2, 3, 4]. In fact, the possibility of 

obtaining mechanisms that, like an anthropomorphic hand, change their number of degrees of 

freedom when performing different tasks - e. g., for grasping - is of notable interest. 

Kinematotropic mechanisms can be divided in two types according to the following 

definitions: 

A: chains in which variations in the position variables can result in changes in the 

permanent mobility of the chains. This definition, given by Wohlhart [5]) is the most known 

and useful for robotic applications. A kinematotropic mechanisms of this type can be driven in 

a continuous branch of positions with a certain number of drivers, applied in certain location of 

its kinematic chain; then, passing through a singular position, a different number of drivers, 

often applied in different locations are necessary to drive the mechanism. 

B: chains in which different closures present different numbers of degrees of freedom. 

According to this definition the mechanism has a certain number of degrees of freedom, but it 

can be disassembled and reassembled in such a way that its number of degrees of freedom is 

different. 

A more general definition of kinematotropy will contains two other types of chains: 

C and D: chains of type A or B in which the permanent mobility does not change, but  the 

displacement group of at least one link or its invariant properties are changed [6] in different 

branches. 

Single-loop and multiloop kinematotropic mechanisms according to definition A have been 



studied extensively, basic set of kinematic chains with this property have been found [7] and rules 

to form complex chains have been developed [8]. Minor attention has been devoted to 

kinematotropic mechanisms according to definitions B and C [9]. This paper deals with 

mechanisms of type B that will be called B-kinematotropic chain. 

It is to be noted that it is very easy to obtain B-kinematotropic chains if one allows one or more 

links of the chain to be stretched. Obviously this is not permissible in a consistent rigid body 

model, then, this possibility is banned in this work. The only permissible assembly operations are 

three (Fig. 1): 

- i) the links of a prismatic pair can be assembled by reversing their axes or giving them any 

rotation consistent with the pair shape; for our purposes only rotations multiple of 90° are 

considered;  

- ii) the links of a revolute pair can be assembled giving their axes an orientation equal to zero 

or to 180°; 

- iii) the links of a planar pair can be assembled giving their axes an orientation equal to zero or 

to 180°. 
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Figure 1: Permissible assembly of prismatic (i), revolute (ii) and planar pairs (iii). 

 

In this paper we present 3 single-loop kinematotropic mechanisms of type B that are 

synthesized by means of the displacement group theory, whose foundations are discussed in [10]. 

In Section 2 we outline a small subset of the group properties that are used for the synthesis, in 

Section 3 we discuss how to form the 3 B-kinematotropic chains and how to assemble them in two 

branches of positions in such a way that they exhibit different degrees of freedom. In Section 4 we 

draw our conclusions. 

2 DISPLACEMENT GROUPS 

Since 1978 [10] the theory of displacement groups has had interesting applications in various 

field of mechanism kinematics and dynamics: mobility analysis, setting up and solution of closure 



equations, manipulations of equations of motion, and so on. For the purpose of this work we need 

only a small amount of the results obtained in [11] regarding the mobility that arises when two 

groups are intersected. In particular only few conditions are utilized, concerning the groups: 

revolute, R, prismatic, P, cylindrical, C, and planar, F. They are reported in Table 1. 

 

Table 1: Intersections of groups 

 

  G1 G2 Geometric condition Intersection Connectivity 

1 G* R R coincident axes R 1 

2 G** R R non coincident axes - 0 

3 G* P P parallel axes P 1 

4 G** P P non parallel axes - 0 

5 G* F F parallel planes F 3 

6 G** F F non parallel planes P 2 

7 G* C C coincident axes C 2 

8 G** C C parallel non-coincident axes P 1 

 

In rows 1 and 2 of Table 1 we see that the intersection of two revolutes establishes a revolute 

with connectivity 1 if the axes of the revolutes are coincident (the intersection group is G*). 

Otherwise, the intersection is empty and the connectivity is 0 (case G**). Rows 3 and 4 show that 

a P intersection exists if two prismatic pairs are parallel (case G*), otherwise the intersection is 

empty. In rows 5 and 6 the case of two planar pairs F is reported: if the planes are parallel the 

intersection is the plane F and mobility is 3, otherwise the intersection is a prismatic group with 

connectivity 1, whose direction lies on both planes. Rows 7 and 8 show the intersections of two 

cylindrical groups: when the axes coincide the intersection is the same group with connectivity 2, 

if the axes are parallel but non-coincident the intersection is a prismatic group with connectivity 1. 

3 SYNTHESIS OF THE  CHAINS 

The single-loop chains can be synthesized using the results reported in Section 2, with the 

following procedure. 

S1) from Table 1, take into consideration two rows where the intersections of two groups G1 

and G2 can be G* or G** with different connectivities; 

S2) form an open kinematic chain c1 made up with a body 1, a pair A generating the group G1, 

a body 2; 

S3) form an open kinematic chain c2 made up with a body 3, a pair D generating the group G2, 

a body 4; 

S4) verify if it is possible to connect 2 and 3 with a pair C, and 4 and 1 with a pair B in such a 

way that by different permissible assemblies of pairs C and B the groups G1 and G2 have the 

intersection G* or G**. 

S5) If the result of S4 is true, the closed chain 1-A-2-C-3-D-4-B-1 is kinematotropic according 

to definition B. 

 



Following this procedure 3 B-kinematotropic chains are easily synthesized. 

3.1 RRRR chain 

Figure 2 reports a chain synthesized by considering the intersection cases stated by the first 

two rows of Table 1. All links have equal lengths. The chain assembled in the position in Fig. 2-a 

has mobility equal to zero (non-empty intersections do not exist between any couple of pairs, 

according to row 2 of Table 2, and no other intersections are possible). The pairs C and B are 

disassembled (Fig. 2-b) and the two open chains are displaced until the axes of pairs A and D 

coincide. The subchain 3-D-4 is rotated (180°) according to Fig. 2-c, in such a way that the axis of 

pair D is reversed (Fig. 1-d). In this position pair C can be assembled. Link 3 is rotated (90°), Fig. 

2-d, and a new position is achieved (Fig. 2-e) in which also pair B can be reassembled. In such 

position the chain is closed. but now pairs A and D have coincident axes. According to row 1 of 

Table 1, the chain has mobility equal to 1 and can rotate around the axis common to A and D. 

The connectivities of the chain in the mobile branch are reported in Table 2. 
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Figure 2: RRRR chain. 

 

Table 2: Connectivities of RRRR chain in the mobile branch. 

 

 1 2 3 4 

1 - R 0 R 

2 R - R 0 

3 0 R - R 

4 R 0 R - 



3.2 RPRP chain 

This chain is obtained by considering again the change of mobility between revolute groups 

according to rows 1 and 2 of Table 1, as in the previous case. Now, prismatic pairs C and B are 

used instead of revolutes (Fig. 3). The chain is assembled in the position shown in Fig. 3-a. The 

revolute A and prismatic pair C generate a cylindrical group, revolute D and prismatic pair B 

generate a second cylindrical group; the two groups have parallel non-coincident axes, and 

according to row 8 of Table 1, their intersection is a prismatic group. The mobility of the chain is 1. 

The types of connectivities among links are reported in Table 3.  
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Figure 3: RPRP chain. 

 

Table 3: Connectivities of RPRP chain in the branch with mobility 1  

 

 1 2 3 4 

1 - 0 P P 

2 0 - P P 

3 R P - 0 

4 P P 0 - 

 

 The pairs C and B are disassembled (Fig. 3-b) and the two open chains are displaced until the 

axes of pairs A and D coincide. Both links of the subchain 3-D-4 are rotated (90°) according to Fig. 

3-c. In this position pairs C and B can be assembled, Fig. 3-d. In such position the chain is closed. 

but now pairs A and D have coincident axes. Now the chain is formed by two cylindrical groups 



with coincident axes, and according to row 7 of Table 1, the chain has mobility equal to 2. It can  

rotate around the axis common to A and D in the plane of the figure and can translate in direction 

perpendicular to it, achieving a cylindrical motion. Figure 3-f shows a lateral view of the chain to 

make the chain displacements easier to understand. The connectivities of the chain in the branch 

with mobility 2 are reported in Table 4. 

 

Table 4: Connectivities of RPRP chain in the branch with mobility 2  

 

 1 2 3 4 

1 - C R P 

2 C - P R 

3 R P - C 

4 P R C - 

3.3 RFRF chain 

This chain is obtained by considering the change of mobility between two planar groups F 

according to rows 5 and 6 of Table 1. Two revolute A and D are used to assemble the sub-chains 

made of two planar pairs B and C. In position shown in Fig. 4-a the planes of the pairs B and C are 

not parallel and, according to row 6 of Table 1, their intersection allows only a translation in one 

direction (perpendicular to the plane π of the figure) of links 3 and 4. A further mobility arises 

because 2 rotations and 2 translations are possible in the plane π. Therefore, the chain performs 

also as a four bar linkage in the plane π, and the mobility of the chain is 2. The connectivities of 

the chain are reported in Table 5. 
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Figure 4: RFRF chain. 



The displacements between links 1 and 3, and links 2 and 4, are composition of a rotational 

motion in π with mobile axis and with mobility 1 and a translational motion perpendicular to π. 

Therefore, the resulting displacements are a subset, with connectivity 2, of a Schonflies group, 

reported as X,2 in Table 5.  

 

Table 5: Connectivities of RFRF chain in the branch with mobility 2  

 

 1 2 3 4 

1 - R X,2 P2 

2 R - P2 X,2 

3 X,2 P2 - R 

4 P2 X,2 R - 

 

The planar pairs C and B are disassembled (Fig. 4-b) and one of the two open chains is rotated 

(180°) along the dashed line in Fig. 4-b, obtaining the position in Fig. 4-c, in which the planar 

pairs are reassembled. Now pairs A and D have coincident axes, Fig. 4-d, and a rotation (90°) is 

given to links in order to make parallel the planes of the pairs B and C. According to row 5 of 

Table 1, the chain has mobility equal to 3 and can perform a full planar motion parallel to the 

common plane of the pairs. Figure 4-f shows a displacement of the chain. 

The connectivities of the chain in this branch of positions are reported in Table 6. 

 

Table 6: Connectivities of RFRF chain in the branch with mobility 3  

 

 1 2 3 4 

1 - 0 F F 

2 0 - F F 

3 F F - 0 

4 F F 0 - 

4 CONCLUSIONS 

Using results obtained with the theory of the displacement groups we synthesized 3 B-

kinematotropic four-bar mechanisms. All chains are non-planar. In the first mechanism, an RRRR 

chain, the mobility changes from 0 to 1; in the second one, a RPRP chain, the mobility changes 

from 1 to 2; in the third one, a RFRF chain, the mobility changes from 2 to 3. 

All these chains embody exceptions to the rules for computing the number of degrees of 

freedom by equations or by algorithms. 
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