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SUMMARY. Fractional calculus (FC) considers derivatives and integrals of a non-integer order. 
In this paper the application of fractional calculus to robot control is considered, in particular with 
reference to the PDD1/2 scheme, which is characterized by the proportional, derivative and 
half-derivative terms. The PD and PDD1/2 schemes are compared with reference to position control 
of a 4-degree-of-freedom SCARA robot. The results show that the adoption of the PDD1/2 control 
is an interesting option to minimize the tracking error in serial robots and other mechatronic 
devices. 

1 INTRODUCTION 

Fractional calculus (FC) is a possible extension of classical mathematics; it considers 
derivatives and integrals of a non-integer order (real or even complex) [1-3]. This mathematical 
problem was investigated in the eighteenth and nineteenth centuries by many mathematicians, 
such as Euler and Liouville; nevertheless, the first practical applications are recent; for instance, 
application fields are physics, biology, electronics, control system design [4-6]. In this paper, 
attention is focused on fractional-order control of robots. 

The application of FC to control system design is usually based on the PI D

 

scheme, in which 
the derivative and the integral terms are generalized to a non-integer order; with this scheme, there 
are five parameters (three gains and two orders) to tune the system behaviour, and this may lead to 
benefits [7]. 

The proposed approach is different: the derivative term is maintained and the half-derivative 
term (derivative of order 1/2) is added, giving rise to the PIDD1/2 scheme [8, 9, 10]. The main 
justification of this approach is practical: the well-known and trustworthy PID scheme is unlikely 
to be abandoned by industrial robot designers; on the other hand, the addition of the 
half-derivative term is more easy to be accepted by designers and end-users if its benefits are 
verified. 

In the paper, the influence of the integral term on the steady state error is not considered, and 
the attention is focused on the comparison between the PD and the PDD1/2 schemes in transient 
state. These two schemes are compared with reference to position control of a 4-degree-of-
freedom SCARA robot; in particular, three possible position control schemes are considered [11]: 

- the joint-based control 

- the inverse Jacobian control 

- the transpose Jacobian control 



2 THEORETICAL DEFINITION OF HALF-DERIVATIVE AND IMPLEMENTATION OF 
THE PDD1/2 DISCRETE-TIME CONTROL SCHEME  

There are different possible definitions of fractional order derivatives; for control system 
design, the Letnikov definition has some theoretical advantages that lead to a compact 
discrete-time implementation, expressed in the z-domain by the following transfer function [12]:   
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In (1) T is the sampling period and 

 

is the gamma function, which generalizes the factorial 
function to real and complex numbers. Equation (1) is characterized by an infinite number of 
terms, but it can be truncated to the sixth order with negligible error. The sixth order truncation of 
the half-derivative (

 

= 1/2) is expressed in the z-domain by the following expression:   
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Using equation (2), it is possible to implement the discrete-time PDD1/2 control system. 
Figure 1 shows the scheme of the application of this control to a purely inertial SISO system.  

 

Figure 1: PDD1/2 control with saturation of a second-order linear system.  

The error e = r - 

  

is processed by a zero-order hold with sampling time T; besides the usual 
proportional and derivative terms (Kp and Kd gains), the half-derivative term is added (Khd gain); 
the D1/2 discrete-time transform is calculated by means of equation (2), while the D1 discrete-time 
transform is the following well-known equation:  
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The maximum absolute value of the control output is limited by a saturation function. 
The purely inertial second order linear system is in continuous time; it is characterized by the 

mass moment of inertia J; its dynamic behaviour is represented by the Laplace transfer function:  
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Figure 2 shows the comparison of the discrete-time PD and PDD1/2 schemes in the control of 
such system. The proportional gain Kp of both the PD and the PDD1/2 controls is defined as 
function of the desired natural angular frequency n:  
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(5)  

The output saturation value ( max) of both the PD and PDD1/2 controls is defined starting from 
the maximum angular acceleration max:  

max maxJ

 

(6)  

Once selected the value of Khd (null for the PD control) the derivative gain Kd is determined 
choosing its minimum value that provides a stabilization without overshoot in presence of a step of 

r [10]. 
The entity of the gains Kd and Khd can be expressed by two nondimensional coefficients 

 

and 
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2
d

p

K

JK

 

(7) 

3/ 4 1/ 4
hd

p

K

K J

 

(8)  

In Figure 2 five cases are considered, characterized by five different values of 

 

and 

 

according to Table I; the two nondimensional coefficient are reciprocally constrained by the 
hypothesis of stabilization without overshoot in presence of step. 

As discussed in [10], the influence of the half-derivative term (which increases in the gain sets 
from 0 to 4) allows to reduce the settling time under the same limitations of null overshoot and 
maximum control output. This is due to the fact that if the half-derivative term increases the 
control output tends to the one of a bang-bang control (Figure 2, right), which minimizes the 
settling time of a second-order linear system. The adoption of the PDD1/2 control algorithm allows 
to lower remarkably the settling time to within 2%, up to about 40%, using the same maximum 
torque.  

Table I: values of the nondimensional coefficients 

 

and 

 

for the gain sets 0 to 4. 

Gain Set 
0 (PD) 0.96 0 

1 (PDD1/2) 1.02 0.24 
2 (PDD1/2) 1.10 0.59 
3 (PDD1/2) 1.20 1.18 
4 (PDD1/2) 1.49 2.36 



       

 

Figure 2: Influence of the half-derivative term on the system behaviour: angular position 

 

(left) 
and control output 

 

(right) in presence of a commanded step from 0 to max.   

3 PDD1/2 CONTROL OF A SCARA ROBOT 

Figure 3 shows the kinematic scheme and the geometric parameters of a SCARA robotic 
architecture; the robot kinematics is fully defined by the four parameters l0, l1, l2, l3; lG1 and lG2 

represent the positions of the centres of gravity G1 and G2 of the links 1 and 2.  

       

 

Figure 3: Kinematic scheme and the geometric parameters of the SCARA robot.  

The dynamic model of a SCARA robot without friction is expressed by the following 
equation [11]:  

TH q q C q,q G q J q F

 

(9)  



In equation (9): 

- q = q1 q2 q3 q4

 
is the vector of the internal coordinates, composed of three angles, 

q1 q2 and q4, and one displacement, q3 (see Figure 3); 

- = 1 2 3 4

 
is the vector of the actuator generalized forces, composed of three torques, 

1 2, and 4, and one force, 3; 

- H q

 

is the inertia matrix; 

- ,C q q

 

is the vector of the centrifugal and Coriolis terms; 

- G q

 

is the vector of the gravity terms; 

- J q

 

is the Jacobian matrix; 

- F = Fx Fy Fz Mz

 

is vector of the generalized forces that the environment applies to the 
end-effector, which correspond to the external coordinates x. 

The external degrees of freedom are represented by the vector of the external coordinates 
x x, y, z, composed of the coordinates of the point E in the fixed reference frame and of the 
end-effector angle 

  

= q1 q2 q4 (Figure 3). 
The position control of a generic serial robot can be performed according to different schemes 

[11]. The simplest approach is the joint-based control, which requires the inverse kinematics 
transform because trajectory planning is generally available in terms of external coordinates. 

An alternative approach is the Cartesian-based control, in the external coordinates; the 
Cartesian-based control can be realized in two ways: the inverse Jacobian control and the 
transpose Jacobian control. In the following these three approaches will be compared with 
reference to the SCARA architecture. 

Figures 4 to 6 show respectively the joint-based PDD1/2 position control scheme, the inverse 
Jacobian PDD1/2 position control scheme and the transpose Jacobian PDD1/2 position control 
scheme of the SCARA.   

 

Figure 4: Joint-based PDD1/2 position control of the SCARA robot.  



 

Figure 5: Inverse Jacobian PDD1/2 position control of the SCARA robot.  

 

Figure 6: Transpose Jacobian PDD1/2 position control of the SCARA robot.  

It is possible to demonstrate that the joint-based and the inverse Jacobian control laws are 
theoretically equivalent out of singularities, if the gains are tuned according to the same criteria 
[9]; the only differences between the two control systems are due to the implementation in the real 
hardware; therefore in the following only the simulation results of the inverse Jacobian control and 
of the transpose Jacobian control will be reported, because the simulation results of the joint-based 
control are equal to the ones of the inverse Jacobian control. 

4 SIMULATION RESULTS 

In the simulations the trajectory has been defined following the ISO standards for the test 
trajectories of industrial robots: the maximum cube inscribed in the robot workspace (considering 
the inner workspace radius equal to l1/2) is represented in Figure 7; one of its diagonal planes 
passes through the vertices A, B, C, D; the simulation trajectory A C B D

 

connects the vertices of 
the square with the same diagonals of ABCD and side A B = 0.8·AB. The trajectory is followed 
with constant end-effector orientation ; the reference end-effector speed v is constant to 
emphasize the influence of the control loops on the tracking error; even if this motion planning is 
not profitable from a practical point of view (a classical trapezoidal speed law for each line 
segment reduces remarkably the tracking error peaks in the vertices), it is used to highlight the 
effects of the half-derivative term on the trajectory tracking capability. The robot geometrical and 
inertial parameters and the trajectory coordinates are summarized in Table II.  



 

Figure 7: Simulation trajectory.   

Table II: Geometrical and inertial parameters and trajectory points. 

Geometrical Parameters 
Length of link 0 (l0) 1 m 
Length of link 1 (l1) 0.5 m 
Length of link 2 (l2) 0.5 m 
Length of link 4 (l3) 0.1 m 
Distance of the c.o.m G1 from the first joint (lG1) 0.25 m 
Distance of the c.o.m G2 from the second joint (lG2) 0.25 m 

Inertial Parameters 
Mass of link 1 (m1) 20 kg 
Mass of link 2 (m2) 10 kg 
Mass of link 3 (m3) 3.5 kg 
Mass of link 4 (m4) 1.5 kg 
Moment of inertia of link 1 around its barycentric vertical axis (IG1)  0.467 kg·m2 

Moment of inertia of link 2 around its barycentric vertical axis(IG2) 0.230 kg·m2 

Moment of inertia of link 3 around its barycentric vertical axis(IG3) 0.010 kg·m2 

Moment of inertia of link 4 around its barycentric vertical axis(IG4) 0.005 kg·m2 

Trajectory points x coordinate y coordinate z coordinate 
A

 

0.319 m 0.276 m 0.752 m 
C

 

0.871 m -0.276 m 0.200 m 
B

 

0.871 m 0.276 m 0.200 m 
D

 

0.319 m -0.276 m 0.752 m 

 

For the inverse Jacobian and the joint-based schemes, the comparison between the PD and the 
PDD1/2 is carried out following the same criteria used in section 2 for the one-degree-of-freedom 
rotational system (same maximum force/torque, derivative gain tuned to its minimum value that 
assures null overshoot in presence of a step) [10]. It is possible to tune the gains using a derived 



approach with the SCARA architecture, even if it is a coupled non-linear system, with these 
assumptions: 

- for actuator 1 we consider the moment of inertia of the links 1 to 4 with q2 and q4 

constantly zero; 
- for actuator 2 we consider the moment of inertia of the links 2 to 4 with q4 constantly zero; 
- for actuator 3 we consider the translating mass (m3+m4); 
- for actuator 4 we consider the moment of inertia of link 4. 
If the inertial terms are considered constant, the gains of the four actuators can be tuned as for 

four decoupled second-order linear systems. According to this approach, in the simulations: 
- the proportional gains Kp1 to Kp4 are obtained by equation (5) with n=10 rad/s; 
- the derivative gains Kd1 to Kd4 and the half-derivative gains Khd1 to Khd4 are tuned 

according to the null-overshoot criterion, obtaining the couples of 

 

and 

 

coefficients of 
table III; 

- the saturation values are obtained by equation (6) with max = 10

 

rad/s2 for actuators 1, 2 
and 4 and amax = max·(l1+l2) for actuator 3; 

- the sampling time is T= 0.01 s. 
The six gain sets a to f have different levels of half-derivative term (null for the gain set a). The 

tracking error with the six gain sets is shown in Figures 8 and 9 for two different end-effector 
speeds (0.25 m/s and 0.5 m/s). 

The simulation results show that the introduction of the half-derivative gain allows to reduce 
the tracking error under the same limitation of maximum actuator moments/forces.  

Table III: Control parameters. 

Gain set a (PD) b (PDD1/2) c (PDD1/2) d (PDD1/2) e (PDD1/2) f (PDD1/2) 

 

0 0.5 1 2 3 4 

 

0.92 0.94 0.92 0.84 0.75 0.8 

  

  

 

Figure 8: Tracking error with end-effector 
speed v = 0.25 m/s.  

Figure 9: Tracking error with end-effector 
speed v = 0.5 m/s.  



Adopting the transpose Jacobian control, it is not possible to tune the gains according to the 
same criteria used for second-order single d.o.f. system and extended to the joint-based and 
inverse Jacobian controls, because the PDD1/2 gains are applied to errors in Cartesian space, and it 
is impossible to identify equivalent constant masses/inertias. Therefore, the effect of the 
half-derivative gain is assessed by measuring extensively the maximum tracking error with 
different combinations of proportional, derivative and half-derivative gains. 

In order to have a homogeneous behaviour we assume Kp = Kpx = Kpy = Kpz, Kd = Kdx = Kdy = 
Kdz, and Khd = Khdx = Khdy = Khdz. Let us note that the gains Kp , Kd

 

and Khd

 

are not influential 
since the simulation trajectory is with constant end-effector orientation and friction is negligible; 
therefore the torque of actuator 4 is constantly null. The 3D plot of Figure 10 shows the values of 
maximum tracking error along the trajectory A C B D , with constant speed v = 0.25 m/s, for Kp 

ranging from 200 to 800 N/m and Kd ranging from 50 to 200 Ns/m. The four surfaces are related to 
different values of Khd: 0 Ns1/2/m (PD), 25 Ns1/2/m, 50 Ns1/2/m, 100 Ns1/2/m. It is possible to note 
that the introduction of the half-derivative term reduces the maximum tracking error.  

  

Figure 10: Maximum tracking error as function of the control gains with v = 0.25 m/s.  

5 CONCLUSIONS 

In the proposed work, the PDD1/2 control scheme has been applied to position control of a 
common industrial robot, the SCARA. The PDD1/2 algorithm has been introduced in three 
different position control schemes: the Cartesian-based control, the inverse Jacobian control, the 
transpose Jacobian control. The behaviour of the SCARA robot has been assessed by simulation 
with reference to the trajectory prescribed by the ISO standards for the performance test of 
industrial robots. The results show that the introduction of the half-derivative term reduces the 
tracking error. The PDD1/2 algorithm and its possible PIDD1/2 extension seem to be interesting 
options for position control of industrial robots and other mechatronic devices, which do not 



completely revolutionize the well-known and accepted PD-PID schemes, but integrate them. In the 
following of the work several issues will be investigated, such as the effects of the introduction of 
the integral term and the influence of the half-derivative term in presence of friction.  
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