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SUMMARY - One of the weak aspects of the parallel robots iorbetween the workspace and

the dimension of the mechanical structure, if compared #ithserial one. Hence the shape of
the workspace of a parallel manipulator is one of the mosbitamt aspects to reflect its working

capacity. This paper introduces two innovative methods&dyae the workspace of some family of

parallel robots, with the aim of highlighting its shape.

INTRODUCTION

The very first theoretical studies on mechanisms with parkithematics go back to two hundred
years ago and were made by English and French mathematiciansarticular, the first article
appeared in 1813. In that work Cauchy examined the motiosilpilites and stiffness aspects of
an articulated octahedron. The first parallel spatial meisina was invented by James E. Gwinnet
in 1928. Some years later Willard L.V. Pollard realized thstfindustrial parallel robot. This
manipulator, now called Tripod, was made up of three kin@nathains featured with two links
interconnected by universal joints and actuated by the sanmder of motors placed on the base of
the robot.

In 1947 Eric Gough presented the first articulated octahedte Exapod, a mechanism with six
extensible links for tyre orientation during wear tests [1h]1965 D. Steward studied the possibility
of employing a platform with six degrees of freedom for thalimation of a flight simulator [2].
These two scholars proposed several solutions for novelsinidl applications. The most famous
among these is the Gough-Stewart platform. In practicdiegons these solutions did not achieve
the expected results, because of the complexity in the latiemrelations. As a matter of fact, it
was not possible to obtain a real-time solution of the kingerproblem given the limited calculation
resources available at that time.

In 1989 Raymond Clavel developed the first Delta Robot [3]isTtovel architecture featured
with three degrees of freedom leaded to a second generdtiparallel mechanisms. Industrial
realizations of such a manipulator architecture allowddeaing outstanding performances (e.g. a
maximum speed of 10m/s and a maximum acceleration of appedgly 10g) and are suitable for
those applications where quick and small movements areresju

Several methods [4, 5, 6, 7] have been proposed in literdturéhe workspace determining
of parallel manipulators. This paper presents two methodshis purpose. Both are based on the
position inverse kinematics. This because, in presencaraflpl architecture, the inverse kinematics
is easier to be identified with respect to the direct one.

The first method takes into account a spatial region andtindisishes, by means of the inverse
kinematics, between the points that belong to the workspadethe ones that do not. Afterwards,
the same region is sliced by horizontal planes. This way pioissible to graphically highlight the
frontier of the workspace by drawing the points in which thengs pass from the first to the second
region. This approach is very duty from an computationahpoi view, and does not achieve an high



accuracy level, but it gives a graphical representatiomefitorkspace directly from the kinematic
equations.

On the other hand, the second method requires to elaboeatevtrse kinematic. Let us consider
the kinematic in terms dfy, 65, 03] = f(z,y, z). This novel approach consists in subdividing the
workspace in region by analyzing the symmetry of the mea@structure. For each of this region
it is possible to find which actuator limits the movement of tlobot. This way, in the inverse
kinematic, a known terms could be changed with an unknowna Awsatter of fact it is possible to
find the equation of the frontier by means of the equatio#;, 6x] = f(x,y,6;) by changing the
value ofi, j andk for each region. In these regions, the i-value is fixed so disdoseparately the
highest and the lowest coordinate, that can be reached by the end-effector, ghwen aind they
coordinates4;, = fx(z,y) andz, = fi(x,y)).

1 THE 3DOF TESTBED MANIPULATORS
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Figure 1: The 3dof parallel linear manipulator with its siified model

Figure 1 shows a parallel manipulator, used as testbed,itwigimplified model. This manipu-
lator has some features in common with Cheope [8] and is vesitidbed in [9]. Here follows the
equation of the inverse kinematics for the three dof pdriaiear manipulator :

o = x-cos(g)—z-sin(g)—l—\/(z-sin()—x-cos())2—x2—y2—z2+l2 1)
@ = y- cos2(%) o sin(%) ccos(L) — 2 -sin( ) +

+ \/(z~sin(g)+x-sin(g) -cos(Z) — y cos2(%))2 By IR e @)
a5 = —y-cos’(T)—a-sin(g) - cos(g) —z-sin(F) +

+ \/(z : sin(%) - sin(%) .cos(%) —y- c0s2(%))2 —2—y =242 (3)

The other testbeds are a classic Delta Robot [3] and the A@leattro manipulator [10].



2 THE FAST METHOD

The first approach takes into account the set of points neawothot, and it verify if these points
can be reached by the manipulator. As the matter of fact, lnsief the inverse kinematics, given
the coordinates y andz of each point, it is possible to calculate the valuépf, andés. If these
values exist and are inside a proper range, the consideistigam be reached, and so it belongs to
the workspace. This way, given the inverse kinematics of aipodator, it is possible to highlight
directly the workspace. On the other hand this method is coatipnally complex, because the
inverse kinematic should be calculated of each point. Dpog®s lead simultaneously to a very
accurate representation and to an high numbers of calonlati

Interesting results in representation are reached by nodatsertain number of horizontal planes
in which are the points that belong to the workspace in camétt points that do not belong to.
In figure 2 is represented the frontier of the parallel linesmipulator with horizontal planes at
different distance. Figure 3 shows the workspace frontie olassic delta robot from different
points of view. It is often interesting to analyze the worksp from the top in order to highlight the
shape and the symmetries.
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Figure 3: The first method applied to the ABB kinematics



3 THE ACCURATE METHOD

The main goal of the second method consists in achieving goatmns of the manipulator
workspace frontier. The first step of this method consisténiding in which area of the:y plane
each actuator limits the the upper and the lower movementseafobot link becomes the upper or
the lower limit of the workspace. This method is still basedhee analysis of the inverse kinematics,
but it requires an elaboration. As the matter of fact, theilisg kinematics allows to fingy, 0, and
03 given thex y andz values. In this algorithm the value becomes an unknown, while one by
one the free coordinates becomes a known value tfEbie; known is set to the value which makes
the corresponding actuator to limit the workspace. Therathend§,, are used to figure out if the
considered point belongs to the workspace or not. This wayrtverse kinematics results modified
in two functionsz=f, (x,y) andz=f;(z,y) .
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Figure 4: Relationship between regions and link limits

Taking into account the two delta robots (the linear one &edctassic one), the figure 4 shows
thexy areas in which each link upper limits the workspace. Thesasatan be written as follows:

{y>z-V3} N {y<-z-V3}
{y<o} N {y<az-V3}
{y=0t N {y>-z-V3}
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Figure 5: Relationship between regions and link limits




Besides the figure 5 shows the areas in which each link lowetslithe workspace. This time
these areas can be written as follows:

{y<z-V3} n {y>-z-V3}
{y>0} n {y>=z-V3}
{y<0} n {y<-z-v3}

3.1 THE LINEAR DELTA MANIPULATOR

This manipulator, depicted in figure 1, has upper limit ofreslader in the origin of the reference
frame. This way each actuator limits the upper movementseofdbot when it reaches this position.

Hence the inverse kinematic gives the same equation foraetalator in order to understand if the
considered point belongs to the workspace.

2+ 12 <0 (4)

Moreover the same equation is given in order to find the uppetier of the workspace, for example
with ¢; = 0:

r=/—22 2 - [2

{0<g<lin{0<g <1}
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Figure 6: Upper Limit: Single and Whole Links

On the other hand, taking into account that the movementeotlider is equal to the lenght
of the link, the lower movement of the manipulator are liditehen one slider reaches the lower
position. The rug inclination is equal &0°. In this case three different equation, one for each
region, allow finding the lower frontier. Hence when= [

z=—§+\/—(x—l-§)2—y2+z2
{0< @ <i}n{0<qg <1}



In the second region the limits is given by = [ and the equations are:

—l—\/ (x—1- cos( ))2—(Jc—l~§~sin(§)) + 12
{Oéqlél}ﬁ{Ungél}

The last case, whegy = [, is handled by the equations that follow:

s =Ly~ —1- L cos(4))2 — (¢ — 1 L2 - sin(4F))2 + 2
{OSCHSZ}Q{OS%SZ}
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Figure 7: Lower Limit: Single and Whole Links

The results of each area should be joined in order to find theesentations of the upper
workspace frontier (see figure 8) and of the lower one (seediglu In these figure the workspace
are depicted with an high resolution, and from differentwi@mint. On the right of each figure it is
possible to easy identify the regions and the symmetries.
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Figure 8: Two views of the upper frontier of the linear deltampulator

3.2 THE CLASSIC DELTA MANIPULATOR

The areas of the delta robot are the same of the previous ndeyra depicted in figures 4 and 5.
As a consequence the study of the delta robot has similatiequaet us consider, as the distance
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Figure 9: Two views of the lower frontier of the linear deltamfpulator

between the origin of the reference frame and the actuat®isign, 7, as the length of the crank,
andr, as the length of the link connected to the end-effector. T@eulimits are given when a
crank takes an angle equaltg2.

This way the first region of figure 4 is upper limited wh@n= 7 and the relationships are:

z=r14 /= (z —10)? = (y)? + 13
{0<@<3in{0<g¢ <73}

In the second region of the same figure the upper limit is gyeq, = 5 and so:

z=r;+ \/7(:17 — 7o cos(&))2 — (y — ro - sin(3F))2 + 73
{0<q <3In{0<gs <3}

Inthe end, withgz = 7, it is possible to find the following equation:

z=r+ \/f(x — 71+ cos(4))2 — (y — ro - sin(2F))2 + 73
{0<a<3In{0<gp <3}

This time, the link that upper limit the workspace does neicrethex = 0, y = 0 position,
hence the center of the sphere is placed at a distance equalTbis way the workspace has not a
perfect spherical aspect, as shown in the first picture ofdid0.

Let consider the lower limits of the motgy equal to0. The workspace frontier is lower limited
by three spheres, one for each region of figure 5. In the firsypassumes a value equal@and
the following equation is gathered:

2=V~ (ro+m))? = (y?+73
{0<@<3in{0<g <3}

With the same procedure whesis equal ta) it is possible to obtain the following equation:
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Figure 10: Upper and lower limit of the classic delta robot

2= \/=(e = (ro+71) - cos(3))? = (y = (ro +71) -sin(3))” + 73
0 <5In{0<gz <3}

In the end whems = 0 the lower limit of the third region is given by:

2= =@ = (ro+71) - cos(5))? = (y = (ro +71) - sin(4))” + 13
0 <5IN{0< <3}

3.3 THE ADEPT QUATTRO MANIPULATOR

The Adept Quattro is four degree-of-freedom robot. The wetbroposed can be easily applied
to this manipulator if the rotation of the end-effector is nonsidered. Nonetheless this robot has
four actuated leg, so the regions in which is dividedthelane for the analysis are four. Figure 11
represents the regions of the upper limits, while figure I2agents the regions of the lower ones.
By observing these two figures, it is possible to notice thaeffirst area of the first figure is equal to
the third area of the second one; the second area of the finséfig equal to the fourth one of the
second one, end so on. This means, for example, thaigives the upper limits in a certain region,
the lower limit in the same region is given by.

Let us consider the same notation f@rr; andr, of the last manipulator. The upper limit of
each region is given byj; = 7. The corresponding four equations can be assembled ag/ollo

Z:r1+\/—(x—roocos(i-g))Q—(y—TO'Sin(i'g))z‘H"g i=0,1,2,3
0<g; <ZIn{0< g <ZIn{0<q <%} i FEjFERFE]

On the other hand the lower limit of each region is givengby= 0. The corresponding four
equations can be written as follows:
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Figure 12: The Adept Quattro lower regions

z:\/—(:z:—(7‘0—|—7'1)-cos(i-g))Q—(y—(r0+r1)-sin(i-g))2—|—r§ 1=0,1,2,3
0 <5IN{0< g <5InN{0< g <3} iFjERFIL

In the first picture of figure 13 is represented the upper aaddwer limits of the Quattro in a
single region. In the second picture the whole frontier effanipulator is depicted.

Figure 13: The Adept Quattro partial and full workspace fiem

CONCLUSIONS

This paper has presented two simplified method of frontiekemace computation of three de-
gree of freedom manipulators. The first one requires highpetation, but it can represent the fron-
tier workspace of the manipulator directly from the inveksgematics. A more accurate method
is derived from the inverse kinematics by subdividing thekgpace in regions with respect to its
symmetry. Moreover for each of this region it is possible taifivhich actuator limits the move-
ment of the robot. This way, in the inverse kinematic, a knaenms could be changed with an



unknown. As a matter of fact it is possible to find the equatibthe frontier by means of the equa-
tion [z, 6, 8x] = f(z,y,6;) by changing the value af j andk for each region. In these regions, the
i-value is fixed so as to find separately the highest and thedowcoordinate, that can be reached
by the end-effector, given theand they coordinates4}, = fr(x,y) andz; = fi(z,y)).
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