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SUMMARY - One of the weak aspects of the parallel robots is ratio between the workspace and
the dimension of the mechanical structure, if compared withthe serial one. Hence the shape of
the workspace of a parallel manipulator is one of the most important aspects to reflect its working
capacity. This paper introduces two innovative methods to analyze the workspace of some family of
parallel robots, with the aim of highlighting its shape.

INTRODUCTION
The very first theoretical studies on mechanisms with parallel kinematics go back to two hundred

years ago and were made by English and French mathematicians. In particular, the first article
appeared in 1813. In that work Cauchy examined the motion possibilities and stiffness aspects of
an articulated octahedron. The first parallel spatial mechanism was invented by James E. Gwinnet
in 1928. Some years later Willard L.V. Pollard realized the first industrial parallel robot. This
manipulator, now called Tripod, was made up of three kinematics chains featured with two links
interconnected by universal joints and actuated by the samenumber of motors placed on the base of
the robot.

In 1947 Eric Gough presented the first articulated octahedron: the Exapod, a mechanism with six
extensible links for tyre orientation during wear tests [1]. In 1965 D. Steward studied the possibility
of employing a platform with six degrees of freedom for the realization of a flight simulator [2].
These two scholars proposed several solutions for novel industrial applications. The most famous
among these is the Gough-Stewart platform. In practical applications these solutions did not achieve
the expected results, because of the complexity in the kinematics relations. As a matter of fact, it
was not possible to obtain a real-time solution of the kinematic problem given the limited calculation
resources available at that time.

In 1989 Raymond Clavel developed the first Delta Robot [3]. This novel architecture featured
with three degrees of freedom leaded to a second generation of parallel mechanisms. Industrial
realizations of such a manipulator architecture allowed achieving outstanding performances (e.g. a
maximum speed of 10m/s and a maximum acceleration of approximately 10g) and are suitable for
those applications where quick and small movements are required.

Several methods [4, 5, 6, 7] have been proposed in literaturefor the workspace determining
of parallel manipulators. This paper presents two methods for this purpose. Both are based on the
position inverse kinematics. This because, in presence of parallel architecture, the inverse kinematics
is easier to be identified with respect to the direct one.

The first method takes into account a spatial region and it distinguishes, by means of the inverse
kinematics, between the points that belong to the workspaceand the ones that do not. Afterwards,
the same region is sliced by horizontal planes. This way it ispossible to graphically highlight the
frontier of the workspace by drawing the points in which the planes pass from the first to the second
region. This approach is very duty from an computational point of view, and does not achieve an high
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accuracy level, but it gives a graphical representation of the workspace directly from the kinematic
equations.

On the other hand, the second method requires to elaborate the inverse kinematic. Let us consider
the kinematic in terms of[θ1, θ2, θ3] = f(x, y, z). This novel approach consists in subdividing the
workspace in region by analyzing the symmetry of the mechanical structure. For each of this region
it is possible to find which actuator limits the movement of the robot. This way, in the inverse
kinematic, a known terms could be changed with an unknown. Asa matter of fact it is possible to
find the equation of the frontier by means of the equation[z, θj , θk] = f(x, y, θi) by changing the
value ofi, j andk for each region. In these regions, the i-value is fixed so as tofind separately the
highest and the lowestz coordinate, that can be reached by the end-effector, given thex and they
coordinates (zh = fh(x, y) andzl = fl(x, y)).

1 THE 3DOF TESTBED MANIPULATORS

Figure 1: The 3dof parallel linear manipulator with its simplified model

Figure 1 shows a parallel manipulator, used as testbed, withits simplified model. This manipu-
lator has some features in common with Cheope [8] and is well described in [9]. Here follows the
equation of the inverse kinematics for the three dof parallel linear manipulator :
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The other testbeds are a classic Delta Robot [3] and the AdeptQuattro manipulator [10].

2



2 THE FAST METHOD
The first approach takes into account the set of points near the robot, and it verify if these points

can be reached by the manipulator. As the matter of fact, by means of the inverse kinematics, given
the coordinatesx y andz of each point, it is possible to calculate the value ofθ1 θ2 andθ3. If these
values exist and are inside a proper range, the considered point can be reached, and so it belongs to
the workspace. This way, given the inverse kinematics of a manipulator, it is possible to highlight
directly the workspace. On the other hand this method is computationally complex, because the
inverse kinematic should be calculated of each point. Densepoints lead simultaneously to a very
accurate representation and to an high numbers of calculation.

Interesting results in representation are reached by meansof a certain number of horizontal planes
in which are the points that belong to the workspace in contact with points that do not belong to.
In figure 2 is represented the frontier of the parallel linearmanipulator with horizontal planes at
different distance. Figure 3 shows the workspace frontier of a classic delta robot from different
points of view. It is often interesting to analyze the workspace from the top in order to highlight the
shape and the symmetries.

Figure 2: The first method with 5cm and 1cm division

Figure 3: The first method applied to the ABB kinematics
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3 THE ACCURATE METHOD
The main goal of the second method consists in achieving the equations of the manipulator

workspace frontier. The first step of this method consists infinding in which area of thexy plane
each actuator limits the the upper and the lower movements ofthe robot link becomes the upper or
the lower limit of the workspace. This method is still based on the analysis of the inverse kinematics,
but it requires an elaboration. As the matter of fact, the inverse kinematics allows to fingθ1, θ2 and
θ3 given thex y andz values. In this algorithm thez value becomes an unknown, while one by
one the free coordinates becomes a known value. Thethetai known is set to the value which makes
the corresponding actuator to limit the workspace. The other θj andθk are used to figure out if the
considered point belongs to the workspace or not. This way the inverse kinematics results modified
in two functionsz=fu(x,y) andz=fl(x,y) .

Figure 4: Relationship between regions and link limits

Taking into account the two delta robots (the linear one and the classic one), the figure 4 shows
thexy areas in which each link upper limits the workspace. These areas can be written as follows:

{y ≥ x ·
√

3} ∩ {y ≤ −x ·
√

3}
{y ≤ 0} ∩ {y ≤ x ·

√
3}

{y ≥ 0} ∩ {y ≥ −x ·
√

3}

Figure 5: Relationship between regions and link limits
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Besides the figure 5 shows the areas in which each link lower limits the workspace. This time
these areas can be written as follows:
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3.1 THE LINEAR DELTA MANIPULATOR
This manipulator, depicted in figure 1, has upper limit of each slider in the origin of the reference

frame. This way each actuator limits the upper movements of the robot when it reaches this position.
Hence the inverse kinematic gives the same equation for eachactuator in order to understand if the
considered point belongs to the workspace.

x2 + y2 − l2 ≤ 0 (4)

Moreover the same equation is given in order to find the upper frontier of the workspace, for example
with q1 = 0:
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Figure 6: Upper Limit: Single and Whole Links

On the other hand, taking into account that the movement of the slider is equal to the lenghtl
of the link, the lower movement of the manipulator are limited when one slider reaches the lower
position. The rug inclination is equal to300. In this case three different equation, one for each
region, allow finding the lower frontier. Hence whenq1 = l
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In the second region the limits is given byq2 = l and the equations are:
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The last case, whenq3 = l, is handled by the equations that follow:
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Figure 7: Lower Limit: Single and Whole Links

The results of each area should be joined in order to find the representations of the upper
workspace frontier (see figure 8) and of the lower one (see figure 9). In these figure the workspace
are depicted with an high resolution, and from different view point. On the right of each figure it is
possible to easy identify the regions and the symmetries.

Figure 8: Two views of the upper frontier of the linear delta manipulator

3.2 THE CLASSIC DELTA MANIPULATOR
The areas of the delta robot are the same of the previous one, and are depicted in figures 4 and 5.

As a consequence the study of the delta robot has similar equation. Let us considerr0 as the distance
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Figure 9: Two views of the lower frontier of the linear delta manipulator

between the origin of the reference frame and the actuators position,r1 as the length of the crank,
andr2 as the length of the link connected to the end-effector. The upper limits are given when a
crank takes an angle equal toπ/2.

This way the first region of figure 4 is upper limited whenq1 = π
2
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In the end, withq3 = π
2

, it is possible to find the following equation:
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This time, the link that upper limit the workspace does not reach thex = 0, y = 0 position,
hence the center of the sphere is placed at a distance equal tor0. This way the workspace has not a
perfect spherical aspect, as shown in the first picture of figure 10.

Let consider the lower limits of the motorqi equal to0. The workspace frontier is lower limited
by three spheres, one for each region of figure 5. In the first one q1 assumes a value equal to0 and
the following equation is gathered:
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With the same procedure whenq2 is equal to0 it is possible to obtain the following equation:
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Figure 10: Upper and lower limit of the classic delta robot
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In the end whenq3 = 0 the lower limit of the third region is given by:
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3.3 THE ADEPT QUATTRO MANIPULATOR
The Adept Quattro is four degree-of-freedom robot. The method proposed can be easily applied

to this manipulator if the rotation of the end-effector is not considered. Nonetheless this robot has
four actuated leg, so the regions in which is divided thexy plane for the analysis are four. Figure 11
represents the regions of the upper limits, while figure 12 represents the regions of the lower ones.
By observing these two figures, it is possible to notice that the first area of the first figure is equal to
the third area of the second one; the second area of the first figure is equal to the fourth one of the
second one, end so on. This means, for example, that ifq1 gives the upper limits in a certain region,
the lower limit in the same region is given byq3.

Let us consider the same notation forr0 r1 andr2 of the last manipulator. The upper limit of
each region is given by:qi = π

2
. The corresponding four equations can be assembled as follows:
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On the other hand the lower limit of each region is given byqi = 0. The corresponding four
equations can be written as follows:
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Figure 11: The Adept Quattro upper regions

Figure 12: The Adept Quattro lower regions
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In the first picture of figure 13 is represented the upper and the lower limits of the Quattro in a
single region. In the second picture the whole frontier of the manipulator is depicted.

Figure 13: The Adept Quattro partial and full workspace frontier

CONCLUSIONS
This paper has presented two simplified method of frontier workspace computation of three de-

gree of freedom manipulators. The first one requires high computation, but it can represent the fron-
tier workspace of the manipulator directly from the inversekinematics. A more accurate method
is derived from the inverse kinematics by subdividing the workspace in regions with respect to its
symmetry. Moreover for each of this region it is possible to find which actuator limits the move-
ment of the robot. This way, in the inverse kinematic, a knownterms could be changed with an
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unknown. As a matter of fact it is possible to find the equationof the frontier by means of the equa-
tion [z, θj , θk] = f(x, y, θi) by changing the value ofi, j andk for each region. In these regions, the
i-value is fixed so as to find separately the highest and the lowestz coordinate, that can be reached
by the end-effector, given thex and they coordinates (zh = fh(x, y) andzl = fl(x, y)).
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