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SUMMARY. The present paper is focused on the dynamic analysis of circular cylindrical shells 

under seismic excitation: the excitation direction is the cylinder axis, the shell is clamped at the 

base and connected to a rigid body on the top, the base provides the seismic excitation which is 

supposed sinusoidal. The goal is to investigate the shell response when a resonant forcing is 

applied: the first axisymmetric mode is excited around the resonance at relatively low frequency 

and low amplitude excitation. A violent resonant phenomenon is experimentally observed as well 

as an interesting saturation phenomenon close to the previously mentioned resonance. A 

theoretical model is developed to reproduce the experimental evidence and provide an explanation 

of the complex dynamics observed experimentally. 

1 INTRODUCTION 

The continuous growing of the commercial use of Space facilities lead to the development of 

new and more efficient aerospace vehicles; therefore, new and accurate studies on light-weight, 

thin-walled structures are needed. A wide part of the technical literature in the past century was 

focalized on the analysis of thin-walled structures and tried to investigate their behaviour in many 

different operating conditions, i.e. under static or dynamic loads, either in presence or absence of 

fluid-structure interaction. Both linear and nonlinear models have been developed to forecast the 

response of such structures. Many studies were concerned with cylindrical shells that constitute 

main parts of aircrafts, rockets, missiles and generally aerospace structures. 

The literature about vibration of shells is extremely wide and the reader can refer to Refs. [1,2] 

for a comprehensive review of models and results present in literature.  

Trotsenko and Trotsenko [3], studied vibrations of circular cylindrical shells with attached rigid 

bodies, by means of a mixed expansion based on trigonometric functions and Legendre 

polynomials; they considered only linear vibrations.  

The literature analysis shows that in the past several methods were developed for investigating: 

i) linear vibrations of complex shells; ii) nonlinear vibrations of shells having simple shape and 

boundary conditions. Therefore, a contribution toward the knowledge of new dynamic phenomena 

on shells is welcome. 

In the present paper, experiments are carried out on a circular cylindrical shell, made of a 

polymeric material (P.E.T.) and clamped at the base by gluing its bottom to a rigid support. The 

axis of the cylinder is vertical and a rigid disk is connected to the shell top end. In Ref. [4] this 

problem was fully analyzed from a linear point of view. Here nonlinear phenomena are 

investigated by exciting the shell using a shaking table and a sine excitation. Shaking the shell 

from the bottom induces a vertical motion of the top disk and, therefore, axial loads due to inertia 

forces. Such axial loads generally give rise to axial symmetric deformations; however, in some 

conditions it is observed that a violent resonant phenomenon takes place, with a strong energy 

transfer from low to high frequencies and huge amplitude of vibration. Moreover, an interesting 
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saturation phenomenon is observed. 

A mathematical model is developed to explain the phenomenon, such model is a semi-

analytical approach based on the nonlinear Sanders-Koiter shell equations discretized by means of 

a mesh-less method. The agreement with experiments is excellent for which concern the linear 

dynamics and qualitative in the case on nonlinear vibrations. 

2 THEORETICAL MODEL: EQUATIONS OF MOTION 

In Figure 1 three displacement fields represent the shell deformation: axial u(x,, t), 

circumferential v(x,,t) and radial w(x, , t); a cylindrical coordinate system is used. 

Geometric imperfections can be considered in the theory by means of an initial radial 

displacement field w0(x,); however, in the numerical results, only perfect shells are considered. 
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Figure 1. Shell geometry. 

Strain Energy 

The Sanders-Koiter theory is based on Love’s first approximation: (i) h<<R; (ii) strains are 

small; (iii) transverse normal stresses are small; and (iv) the normal to the undeformed middle 

surface remains straight and normal to the middle surface after deformation, no thickness 

stretching is present (Kirchhoff-Love kinematic hypothesis) [1,2,5]; (v) rotary inertia and shear 

deformations are neglected.  

Strain components 
x , 

  and 
x  at an arbitrary point of the shell are ([1]: 

,0x x xr k    
,0 r k       

,0x x xr k        (1) 

where: 
,0x , 

,0  and 
,0x  are middle surface strains; 

xk , k  and 
xk 

 are curvature and 

Torsion changes of the middle surface; and r is the distance of the arbitrary point of the shell from 

the middle surface (see Figure 1(b)). The definition of strain-displacement relationships can be 

found in [1,2,4]. 

The elastic strain energy US of a circular cylindrical shell, neglecting the radial stress 
r  

(Love’s first approximation), is given by [5] 
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In the case of homogeneous and isotropic materials, stresses x,  and x are related to strains 

( 0r  , case of plane stress) [5] 
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where E is the Young’s modulus and  is the Poisson’s ratio.  

Using equations (1-3), the following expression of the potential energy is obtained 
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(4)
 

where O(h
4
) is a higher-order term in h according to the Sanders-Koiter theory.  

The first term of the right end side of equation (5) is the membrane energy (also referred to 

stretching) and the second one is the bending energy.  

The kinetic energy TS of a circular cylindrical shell (rotary inertia is neglected) and the virtual 

work W done by the external forces are given by 

 
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where 
S
 is the mass density of the shell, the overdot denotes a time derivative and qx, q and qr 

are the distributed forces per unit area acting in axial, circumferential and radial directions.  

In-plane forces and bending moments depend on the shell strain: 
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3 LINEAR VIBRATION: MODAL ANALYSIS. 

In order to carry out a linear vibration analysis, in the present section, linear Sanders-Koiter 

theory is considered, i.e. in equation (5), only quadratic terms are retained. 

The best basis for expanding displacement fields is the eigenfunction basis, but only for special 

boundary conditions such basis can be found analytically; generally, eigenfunctions must be 

evaluated in approximate way. 

In order to attack the general problem of circular cylindrical shell vibration, displacement 

fields are expanded by means of a double series: the axial symmetry of the geometry and the 

periodicity of the deformation in the circumferential direction, leads to use harmonic functions; 

Chebyshev polynomials are considered in the axial direction. 

Let us now consider a modal vibration, i.e. a synchronous motion: 

u(,,t)=U(,) f(t) v(,,t)=V(,) f(t)  w(,,t)=W(,) f(t) (7)
 

where: U(,), V(,) and W(,) represent the modal shape. 

The modal shape is now expanded in a double series, in terms of Chebyshev polynomials 
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where    * 2 1m mT T    and Tm() is the m-th order Chebyshev polynomials. 

Expansions (8) do not satisfy any particular boundary condition. 

3.1 Boundary conditions 

In the present work boundary conditions are considered by applying constraints to the free 

coefficients of expansions (8). Some of the coefficients 
,m nU , 

,m nV  and 
,m nW  of the equation (8) can 

be suitably chosen in order to satisfy boundary conditions, see Ref. [4] for analytical details. 

In case of shells carrying a top disk both theoretical, experimental and finite elements analyses 

were carried out in Ref. [4]; in Figure 2 the geometry of the system as well as the dimensions are 

represented, the scheme corresponds to the experimental setup of Figure 3. 
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Figure 2. Shell with top disk: representation. Figure 3. Shell with top disk: 

experimental setup. 

 

The shell is clamped at the bottom to a rigid support; therefore, for =0 the boundary 

conditions are clamped. 

In order to impose boundary conditions to the top end of the shell, it is useful to consider the 

rigid body motion of the disk. Such a body has six degrees of freedom; however, in the present 

work torsional vibration is not considered; therefore, the number of degrees of freedom is reduced 

to five.  

Three displacements of the disk are considered  SDx, SDy, SDz see Ref. [4] and two rotations 

about horizontal axes αy and αz. Such displacements and rotations induce specific displacements on 

the shell top end. 

It is to note that, for n>1 boundary conditions given by the rigid body motion correspond to 

clamping (see equations 8); moreover, axisymmetric modes (n=0) are influenced by SDx only. 

3.2 Kinetic energy: disk on the top 

The kinetic energy of the shell is given by equation (5); when a rigid body is connected to one 

of the shell ends, its kinetic energy must be added to the shell energy. 

If one is not interested in torsional vibrations of the shell, the rotation about x axis can be 

neglected; therefore, the kinetic energy of the disk is given by: 

   
2 2

2 2 21 1 1 1 1

2 2 2 2 2
D D Dy z G D Dz y G z z y y D DxT m S h m S h J J m S                  (9) 

where hG is the position of the centre of mass of the disk in x direction with respect to the centre of 

the top shell end. 

3.3 Discretization: Lagrange equations 

Equation (7) and expansions (8) are inserted in the expressions of the kinetic and the potential 

energy (for the linear system); then a set of ordinary differential equations is obtained by using 

Lagrange equations. 

A vector containing all variables is built: 

, , ,..., ,..., ,..., ,..., , , , , ( )i j i j i j Dx Dy Dz y zU V W S S S f t    q       
    

(10) 

where ( ) , ( )Dx Dx Dy DyS f t S S f t S   , ( ) , ( )Dz Dz y yS f t S f t    , ( )z zf t   . 
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A unique time law f(t) is considered in order to impose a synchronous motion (modal 

vibration); such assumption will be relaxed in the case of nonlinear vibration. 

Lagrange equations for free vibrations are: 

max0 1,2,
i i

d L L
i N

dt q q

  
   

  



     (11) 

where Nmax is the dimension of vector q. 

Using equation (11) and considering an harmonic motion, f(t)=e
jt

, one obtains: 

 2  M K q 0        (12) 

A modal shape corresponding to the j-th mode is given by equations (8); where: 
,m nU , 

,m nV  and 

,m nW  are substituted with ( )

,

j

m nU , ( )

,

j

m nV  and ( )

,

j

m nW , which are components of the j-th eigenvector of 

equation (12) and the vector function          ( ) ( ) ( ), , , , , ,
Tj j j jx U x V x W x      U  is the j-th 

eigenfunction vector of the original problem.  

Eigenfunctions are normalized by imposing that the maximum amplitude referred to the 

dominant direction of a mode shape (radial w, circumferential v or longitudinal u) is equal to 1.  

4 NONLINEAR MODEL 

In the nonlinear analysis the full expression of potential shell energy (4), containing terms up 

to fourth order (cubic nonlinearity), is considered. Displacement fields u(x,, t), v(x, , t) and 

w(x,,t) are expanded by using linear mode shapes obtained in the previous section: 
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Expansions (13) respect boundary conditions, modal shapes U
(j)

(x,), V
(j)

(x,), W
(j)

(x,), are 

known functions expressed in terms of polynomials and harmonic functions. Similarly to the 

previous section a reordering of variables is useful: 
,1 ,2 ,1 ,2 ,1 ,2, ,..., , ,..., , ,...u u v v w wf f f f f f   z .  

Expansion (13) is put in the strain and kinetic energy and in the virtual work in the case of 

external excitation. Lagrange equations now read: 

,max1,2,i z

i i i

d L L W
Z i N

dt z z z

   
    

   



     (14) 

Where W is the virtual work of the external excitation that is in the present problem due to the 

seismic base motion. The base motion induces a rigid body displacement of the shell-disk system, 

such a rigid body motion gives rise to inertia forces both on the shell (axial u direction) and the 

disk; due to the particular configuration of the system (the disk mass is greatly larger than the shell 

mass) the inertia forces induced by the rigid motion of the shell are neglected, i.e. only the inertia 

forces of the disk are considered for which concern the rigid body motion. Moreover, in the 

following the attention will be focused on phenomena involving only axisymmetric or asymmetric 

shell like modes, i.e. beam like modes will be not considered because they are out of the excitation 

spectrum; this implies that rotations of the disk and displacements orthogonal to the shell axis can 

be neglected. 

The disk axial displacement can be rewritten as: 

( ) ( )DISK B DxS u t S t         (15) 

where uB and SDx are the base and the elastic displacements respectively. 

The term SDx is already considered in the kinetic energy of the disk, in the present reduced 

problem it will be the only contribution to the disk kinetic energy. 
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The term uB will be considered in evaluating the work of the inertia forces induced by the base 

motion (disk axial translation only): ( ) ( )BP t mu t   ; such load is considered uniformly 

distributed over the shell, the virtual work can be written accordingly: 

( , , ) (0, , )
2

P
W u L t u t

R
 


 

 2

0

Rd



 
       (16) 

where ( , , ) Dxu L t S   and (0, , ) 0u t   as the rigid body displacement is considered separately. 

Using the modal expansion (13) the longitudinal displacement of the disk cannot be described 

with the natural coordinate SDx and the integral of eq. (16) must be evaluated in the modal basis. 

Using Lagrange equations (13), a set of non-autonomous nonlinear ordinary differential 

equations is obtained; such system is then analyzed by using numerical time integration. The 

dissipation is added to the modal equation in order to use the modal damping ratio identified 

through experimental modal analysis, the resulting system is: 

( ) 2 ( ) ( ( )) ( )i i i i i iz t z t g t Z t   z       (17) 

where i is the modal damping ratio which must be set comparing the linear modes used in the 

expansion (13) with experimental modes, i is the circular frequency of the mode corresponding 

to the i-th coordinate, gi contains linear and nonlinear terms and Zi is the external forcing projected 

on the modal basis. 

5 LINEAR MODAL ANALYSIS 

The system under investigation is described in Figures 2 and 3. A circular cylindrical shell, 

made of a polymeric material (P.E.T.) is clamped at the base by gluing its bottom to a rigid 

support (a disk that is rigidly bolted to a shaker, such disk is technically called “fixture”); the 

connection is on the lateral surface of the shell, in order to increase the gluing surface, see Figure 1. 

A similar connection is carried out on the top; in this case the shell is connected to a disk made of 

aluminium alloy, such a disk is not externally constrained; therefore, it induces a rigid body 

motion to the top shell end.  

Table 1 shows theoretical and experimental natural frequencies concerning modes of interest 

for the present analysis: k means that the mode has k-1 nodal circumferences; n is the number of 

nodal diameters (beam modes can be considered n=1). In [4] a complete experimental, numerical 

and theoretical analysis is presented, the reader should read such paper for a full linear analysis of 

the problem under investigation. All modes are identified experimentally by using curve fitting 

techniques, present in LMS CADA-X, that give: frequency, modal damping ratio, and modal 

shape.  

 
Mode Experimental frequency [Hz] Theoretical frequencies 

 [Hz] 
k n 

1 0 314 322 

1 6 791 802 

1 7 816 797 

1 5 890 927 

1 8 950 888 

1 9 1069 1046 

1 4 1121 1191 

1 10 1290 1251 

Table 1. Experimental and theoretical natural frequencies. 

 



 7  

 In Figure 4 experimental mode shapes are reported, similar mode shapes obtained 

numerically are omitted for the sake of brevity [4].  

 

 
Figure 4. Mode shapes. 

6 SEISMIC EXCITATION: NONLINEAR ANALYSIS 

Such problem is investigated both theoretically and experimentally, the goal is a deep 

understanding of nonlinear phenomena appearing when the first axisymmetric mode is resonant: 

experiments evidenced that, when the shell is excited harmonically from the base with an 

excitation frequency close to the first axisymmetric mode, different dynamic scenarios appear and 

the energy pumped in the system at low frequency spreads over a wide range of the Fourier 

spectrum. The numerical analysis clarify the energy transfer mechanism and confirms the 

complexity of the scenario. 

 
a) 

 
Channel 1: base vibration
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b) 
 

Channel 2: shell vibration
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                                                     c) 
 

Channel 3: top disk vibration
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Figure 5. a) max amplitude of vibration (channel 1), b) max min and peak to peak of vibration 

(channel 2), c) max amplitude of vibration (channel 3) 

 

6.1 Experiments 

Tests are carried out using a seismic sine excitation, close to the resonance of the first 

axisymmetric mode (m=1, n=0).  

The complexity and violence of vibrations due to nonlinear phenomena gave several problems 

to closed loop controllers of the shaking tables; therefore, an open loop approach was chosen, the 

excitation was set about 5-10 g. 

mode (1,6) (791Hz) mode (1,7) (816Hz) mode (1,0) (314Hz) 
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Two accelerometers and a Laser telemeter are used to measure accelerations on base and top, 

and the displacement on the shell lateral surface: channel 1 records the base acceleration (the 

excitation) due to the shaking table; channel 2 records the displacement of the shell in radial 

direction, using a Micro Epsilon optoNCDT 2200 Laser Telemeter; channel 3 records the top disk 

acceleration. 

 
a) 

 

b) 

 
Figure 6. a) Time history from channel 2 (shell displacement); excitation freq 330.75 Hz. 

b) spectrum at 316Hz excitation. 

 

Figures 5 a-c represent the amplitudes of vibration in terms of acceleration or displacement 

obtained when the excitation frequency is reduced. Channel 1 shows that the maximum excitation 

is between 8 and 14 g. The top disk vibration (channel 3) is magnified by the first axisymmetric 

mode resonance. However, close to 330 Hz, reducing the frequency, the linear resonance of the 

first axisymmetric mode is not present and the response is flat up to 295 Hz. In the same frequency 

range the shell experiences a violent vibration that appears suddenly, the amplitude passes from 

few microns to some millimetres; note that this corresponds to huge accelerations; for example if 

the amplitude is 3 mm, and we suppose it is purely harmonic (actually there are super-harmonic 

components) at 300 Hz, an approximate estimation of the acceleration is about 1100 g! In some 

previous experiments we measured up to 2000 g. 

In Figure 6a one can observe that the response is not regular nor stationary; moreover, some 

spikes are visible. Figure 6b shows the spectrum of a nonstationary response, it shows that the 

energy spreads over a broadband frequency range. 

Figure 7 clarifies that, when the nonlinear resonance takes place the response looses the 

periodicity, such analysis clearly shows that the phenomenon is extremely nonlinear. 
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Figure 7. Bifurcation diagram of the Poincaré maps. 
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a) 

 
 

b) 

 

                                                      c) 

 
 

Figure 8. RMS of the response. a) base motion; b) shell vibration; c) top disk vibration. 

 

The scenario represented in Figure 5 is referred to the maximum amplitude of vibration, which 

is not strictly related to the mechanical energy. In order to have an enhanced view on the 

phenomenon, useful for a physical interpretation, in Figure 8 the scenario is represented in terms 

of RMS. It is extremely interesting that, the RMS the top disk response is completely flat in a wide 

frequency range (Fig. 8 c), even though the excitation is not constant (Fig. 8 a), and the shell 

adsorbs a certain amount of energy (Fig. 8b). 

The phenomenon disappears for low amplitudes of excitation, the threshold is currently under 

investigation. 

Similar experiments were carried out by Mallon [6] who developed a model based on the 

Donnell’s shallow shell theory: he found a saturation theoretically but experiments did not confirm 

his forecast. In [6] the shaker-shell interaction was modelled. 

6.2 Numerical analysis 

It is worthwhile to stress that the present analytical model has been developed in order to give 

a contribution toward the understanding of the previously mentioned phenomenon. In developing 

the model several data from experiments were extremely important to set up the numerical model; 

for example: Young modulus and density were separately measured by specific testing; modal 

damping was identified through experimental modal analysis including curve fitting of frequency 

response function (low amplitude linear dynamics); base excitation was measured during nonlinear 

dynamics experiments (see previous section). 

Figure 9a shows the amplitude of oscillation (in terms of RMS) obtained numerically: a strong 

dynamic instability is observed in the frequency range (310-330Hz) that is narrower than the 

experimental one (295-330Hz); the agreement is qualitative in terms of amplitude. Figure 9b is 

useful for explaining the phenomenon, as single modal coordinate amplitudes are plotted; the 
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dynamic instability shows is complexity: several modes are activated with large amplitude. Figure 

9c shows the spectrum of modal time histories at 322 Hz, the response seems chaotic. 
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Figure 9. Numerical simulations. a) amplitude of oscillation on the shell; b) modal amplitudes; 

c) modal spectra at 322Hz excitation. 

7 CONCLUSIONS 

In this paper an experimental investigation on the nonlinear dynamics of circular cylindrical 
shells excited by a seismic excitation is presented. Experiments clearly show a strong nonlinear 
phenomenon appearing when the first axisymmetric mode is excited: the phenomenon leads to 
large amplitude of vibrations in a wide range of frequencies, it appears extremely dangerous as it 
can lead to the collapse of the shell; moreover, it appears suddenly both increasing and decreasing 
the excitation frequency and is extremely violent. By observing a strong transfer of energy from 
low to high frequency a conjecture can be made about the nonlinear interaction among 
axisymmetric (directly excited) and asymmetric modes. A saturation phenomenon regarding the 
vibration of the top disk is observed, this is associated with the violent shell vibration; the shell 
behaves like a energy sink, adsorbing part of the disk energy. The theoretical model partially 
confirms the conjecture. 
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