
Design Flow-Chart of Slider-Crank Mechanisms and Applications 
 
Giorgio Figliolini, Pierluigi Rea, Marco Conte 
 
DiMSAT, University of Cassino 
G. Di Biasio 43, 03043 Cassino, Italy 
E-mail: figliolini@unicas.it 

 
Keywords: Automatic machinery, kinematic analysis and synthesis, motion geometry, coupler 
curves, Berard’s curves. 
 
 

SUMMARY. This paper deals with the formulation of a suitable algorithm for the kinematic analysis of slider-
crank mechanisms for automatic machinery, in terms of shape and characteristics of the coupler curves with the aid of the 
cubic of stationary curvature and the inflection circle. 

Moreover, a practical method for the kinematic synthesis of a slider-crank mechanism as path generator, is also 
proposed for the generation of a symmetrical egg shape path with an approximate straight line. In particular, starting from 
the knowledge of the shape and the overall sizes of the required coupler curve of the slider-crank mechanism, lengths of the 
coupler-link and crank-link can be obtained from the proposed practical method and design flow-chart. 

1 INTRODUCTION 
Planar linkages have wide applications as mechanisms in the engineering practice, since 

applied to perform prescribed non-uniform motions of several mechanical devices and automatic 
machinery, as in the case of “Function Generators” from the input to the output links, “Rigid Body 
Guidance” through the study of the rigid coupler motion and “Path Generators” by referring to the 
coupler curve, as reported extensively in [1-7]. The typical procedure to develop a systematic 
mechanism design consists of three main steps: task definition, type synthesis and dimensional 
synthesis. The task definition, which comes from the analysis of the practical application, lets to 
obtain the design specifications for the development of the next steps. In fact, the second step 
consists to choose the best topology for the required task and the last step regards the dimensional 
synthesis, which consists to determine the size of each mechanical element that perform the 
required movement and the mechanical power flow from the driving to the driven link. The 
dimensional synthesis of path generator mechanisms can be carried out through classical indirect 
methods or by means of direct methods, which consists of several optimization methods. 

This paper deals with the formulation of a suitable algorithm for the kinematic analysis of 
slider-crank mechanisms for automatic machinery, in terms of shape and characteristics of the 
coupler curves with the aid of the cubic of stationary curvature and the inflection circle, as first 
introduced in [8-11]. Moreover, a practical method for the kinematic synthesis of a slider-crank 
mechanism as path generator, is also proposed for the generation of a symmetrical egg shape path 
with an approximate straight line. In particular, starting from the knowledge of the shape and the 
overall sizes of the required coupler curve of the slider-crank mechanism, lengths l and r of the 
coupler-link and crank-link, respectively, can be obtained from the proposed design flow-chart. 

A variety of slider-crank coupler curves can be obtained to meet several practical requirements, 
but the designer should select, first of all, the shape of the required path in order to define the 
adequate initial mechanism dimensions, which can be optimized through suitable optimization 
algorithms when a specific continuous path is required. In fact, usually, in the industrial practice, 
the generation of a specific continuous path is not required because, very often, only the shape and 
the overall size of a coupler curve is sufficient to satisfy the design specifications. 



2 POSITION ANALYSIS 
Referring to the kinematic sketch of Fig.1, the position analysis of the slider-crank mechanism 

ABC is carried out by developing the following closure equation 
 

+ =r l m .                                                                  (1) 
 

Vectors r, l and m are given in the fixed frame F (O, X, Y ) by 
 

[ ]cos sin Tr δ δ=r , [ ]cos sin Tl ϕ ϕ=l    and   0
T

CX= ⎡ ⎤⎣ ⎦m                     (2) 
 

where r and l are the crank and coupler lengths, respectively.  
Angle ϕ  is expressed as function of the driving crank angle δ  in the form 1sin [( / ) sin )].r lϕ δ−=  
The position vector rΩP of a generic point P of the coupler link BC, with respect to the moving 
frame f (Ω,x,y) that is attached to it, can be expressed in homogeneous coordinates as 

 
[ ]cos sin 1P P
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Thus, the position vector OPr  of the same point P in the fixed frame F (O, X, Y ) is given by 
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is the transformation matrix from the moving frame f (Ω, x, y) to the fixed frame F (O, X, Y). 
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Figure 1: Kinematic sketch of a slider-crank mechanism 



3 INSTANTANEOUS GEOMETRIC INVARIANTS 
As reported in [6] and referring to Fig.1, the instantaneous geometric invariants b2, a3 and b3 

can be expressed in the form 
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where ϕ , XΩ and YΩ are, respectively, the oriented angle and the Cartesian-coordinates of the 
origin Ω of the moving frame f (Ω, x, y ) that is attached to the coupler link BC, with respect to the 
fixed frame F (O, X, Y ). The convenient starting configuration with 0ϑ =  has been chosen to 
have the instantaneous geometric invariants a0 = a1= a2 = b0 = b1 = 0. 
The position vector rOΩ of Cartesian-coordinates XΩ and YΩ of the Eqs.(5) to (7), coincides with 
vector r, which is expressed through the first of Eqs.(2), while the oriented angle ϕ  is expressed 
in the form 1sin ( sin / )r lϕ δ−= , as function of the crank angleδ . 
Therefore, the first, second and third derivatives of XΩ and YΩ with respect to angle ϕ  for the 
Eqs.(5) to (7), can be expressed in the following form 
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In particular, the first, second and third derivatives of angle δ  with respect to ϕ  are given by 
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where n and d are the numerator and denominator of the last of Eq.(9), respectively, whose first 
derivatives with respect to the angle ϕ  are expressed by 
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Therefore, the instantaneous geometric invariants b2, a3 and b3 of Eqs.(5) to (7) can be calculated 
with the aid of Eqs.(8) to (10) because these derivatives are invariants for any pair of moving and 
fixed frames. 

4 CUBIC OF STATIONARY CURVATURE 
For a given configuration of a moving coupler link, the cubic of stationary curvature is the 

locus of the coupler points whose paths have, at least, four contact points with their osculating 
circles, which means to have a stationary curvature. In particular, points B and C of the slider-
crank mechanism of Fig.1 have stationary curvature because they trace a circular path and a 
straight segment path, respectively. 
In particular, the geometric locus of the points of the moving plane having a stationary curvature 
can be expressed in the following third order algebraic implicit form 
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2 2 3 33 ( ) ( )( ) 0b x x y b y x y a x b y+ − + + + = .               (11) 
 

Referring to Fig.1 and with the aim to express this geometric locus with respect to the fixed frame 
F (O, X, Y ), which can be more important than the local frame for the mechanism understudy, a 
generic point Q of the cubic of stationary curvature can be referred to the local moving frame 
f ̃ (I, x, y ) by means of the position vector 

 

[ ]cos sin 1 T
IQ h ψ ψ=r ,             (12) 

 
where h and ψ are, respectively, the magnitude and the oriented angle of rIQ. 
Thus, the x and y Cartesian-coordinates of rIQ can be substituted in the Eq.(33) to give the 
parametric form of Eq.(34) in the local frame f ̃ (I, x, y ) as 
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The instantaneous geometric invariants b2, a3 and b3 are given by Eqs. (5) to (7). 
 



Thus, the position vector of point Q of the cubic of stationary curvature can be expressed in the 
fixed frame F (O, X, Y ) as 

OQ OI IQ=r T r ,                 (15) 
 

where the position vector rIQ is given by Eq.(34) and TOI is the transformation matrix from the 
local moving frame f ̃ (I, x, y ) to the fixed frame F (O, X, Y ). 
In particular, the transformation matrix TOI  is given by 
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where cos cosIX r lδ ϕ= + and cos cos ) tanIY r lδ ϕ δ= + , while the oriented angle ε  can be 
expressed as 
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Therefore, h as function of ψ is obtained from Eq. (13) and then substituted in the Eq. (12) in order 
to give rIQ. Finally, Eq. (15) allows the determination of the cubic of stationary curvature as 
referred to the fixed frame F (O, X, Y ). 

5 INFLECTION CIRCLE  

The inflection circle IC is the geometric locus of the coupler points, which show an inflection 
point in their paths and is always tangent to the moving and fixed centrodes in the instant center of 
rotation I. In particular, point C of the slider-crank mechanism belongs always to IC . 
Referring to Fig.1, the algebraic equation of the inflection circle IC can be obtained by still 
referring to the instantaneous geometric invariants b2, a3 and b3 of the Eqs. (5) to (7), respectively. 
In fact, this geometric locus is referred to the coupler points, which paths have a zero curvature for 
a given mechanism configuration. This geometrical condition can be expressed by  
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where the first and the second derivatives of the Cartesian coordinates of the instant center of 
rotation I with respect to the fixed frame F  are given by Eqs. (8), (9) and (10), since invariants. 
Thus, developing Eq. (18) for the starting configuration with 0ϑ =  and from Eq. (5), one has 

 
2 2
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which is the algebraic equation of the inflection circle IC with respect to the local frame f̃ (I, x, y ). 
Finally, Eq. (19) can be transferred to the fixed frame F (O, X, Y ) though the Eqs. (16) and (17). 



6 EXAMPLES: COUPLER CURVES 
The proposed algorithm has been implemented in a Matlab program in order to trace the inflection 
circle IC and the cubic of stationary curvature C for a given mechanism configuration. Moreover, 
the paths of significant coupler points, as the instantaneous center of rotation I, the inflection pole 
J, the Ball’s point B, which is the intersection point between the cubic of stationary curvature and 
the inflection circle, along with the paths of the coupler points PC and PIC , which are chosen on 
the geometric loci IC  and C, are calculated and shown in Fig. 2a), 2b), 2c) and 2d) for the slider-
crank mechanism configurations given by the crank angles δ = 0°, 40°, 90° and 320°, respectively. 
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Figure 2: Coupler curves of the significant points I, J, B and the points PC and PIC on the cubic of 
stationary curvature C and the inflection circle IC for the crank angles δ = 0°, 40°, 90° and 320°. 



7 COUPLER CURVES OF BERARD AND THE QUARTIC OF BERNOULLI 
Referring to Fig.3, the algebraic equations of the coupler curves of Berard can be obtained 

from Eqs. (3) and (4). In fact, the Berard’s points PB of Fig.3a can be referred to the moving frame 

f (Ω,x,y) through the position vector rΩPB having magnitude w and oriented angle α = π or α = 0 

for the points which are located along the negative or the positive x-axis, respectively. Moreover, 

the position vector rOPB with respect to the fixed frame F (O, X, Y) can be expressed as 
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which takes the following algebraic form 
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In particular, Eq. (21) takes the form of the Quartic of Bernoulli for w = l, which means to choose 

a coupler point PBr, as opposite to C with respect to B. This curve is expressed as 
 

Br

2 2 2 21 (2 ) (2 )
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which gives the path in gross line of Fig.3b, while that in dashed line refers to the inflection pole. 
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Figure 3: Coupler curves: a) kinematic sketch; b) Berard’s curves and quartic of Bernoulli. 



8 DESIGN FLOW-CHART AND APPLICATIONS 
According to the above algorithm for the kinematic analysis of slider-crank mechanisms in 

terms of shape and characteristics of the coupler curves, a practical method for the kinematic 
synthesis of a slider-crank mechanism as path generator, is proposed. 
In particular, referring to Fig.4, a symmetrical egg shape path with given overall sizes b1 and h1, 
which is characterized to have a coupler point with stationary curvature, can be generated by a 
specific slider-crank mechanism, when a suitable Berard’s points PB is chosen along the coupler 
link BC, as belonging to the cubic of stationary curvature C. In fact, for the crank angle δ = 0°, the 
cubic of stationary curvature degenerates in a Φ-curve, as stated by Dijksmann in his book [2] and 
shown in the previous examples of Figs.2a and 3b.  
Moreover, the coupler points that are located on the line along BC generate a family of Berard’s 
curves, which have a point with stationary curvature since belonging to C and, in particular, when 
this point is chosen as coincident with the inflection pole J on the inflection circle IC , an 
approximate straight line is also obtained, as shown in Fig.3b in dashed line. 
A practical method and a design flow-chart for the kinematic synthesis of slider-crank mechanisms 
as generator of a symmetrical egg shape path, which is characterized to have a coupler point with 
stationary curvature or, in addition, to trace an approximate straight line, is proposed by referring 
to the mechanism configuration for δ = 90°, as shown in Fig.4. Thus, referring to Fig.4a, one has 
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where b1 and h1 are the sizes of the required path, r and l are the dimensions of the crank link AB 
and coupler link BC of the slider-crank mechanism, respectively, and aP gives the position of the 
particular Berard’s point PB that is coincident with the inflection pole J. 
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Figure 4: Slider-crank mechanism: a) kinematic sketch; b) design diagram. 



Tab.1 - Dimensional synthesis of slider-crank mechanisms: numerical examples 
b1 [mm] h1 [mm] b1/h1 [mm] l/r [mm] r [mm] l [mm] w [mm] ap [mm] 

240 100 2.4 1.4 50 70 98 168 
1200 600 2 1 300 300 300 600 
800 200 4 3 100 300 900 1200 

359.66 98 3.67 2.67 49 131 349.77 480.77  
 

Therefore, developing the Eqs.(23), one has  
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(24) 

which can be used for the dimensional synthesis of a slider-crank mechanism with lengths r and l 
of the crank and coupler links, when the overall sizes b1 and h1 of the required path are given. 
Equation (24) gives the design diagram of Fig.4b and numerical examples are reported in Tab.1 
along with the proposed design flow-chart of Fig.5. According to the proposed algorithm for the 
kinematic analysis of slider-crank mechanisms in terms of shape and geometrical characteristics of 
the coupler curves, along with the proposed practical method for the kinematic synthesis of the 
same mechanisms for generating egg shape paths showing an approximate straight line, two 
applications are reported. Thus, referring to Fig.6, the first application regards an automatic wood-
feeder (Fig.6a), while the second regards a leg mechanism for a walking robot (Fig.6b). In 
particular, the second mechanism has been designed by taking into account the input data: 
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and    225 [ ]p p p p p p p pI B A B A I H G mm= − = = . 
Likewise, for the slider-crank mechanism, one has: 
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,   35 [ ]l mm=

    

and    116,67 [ ]pa mm= . 

Of course, changing the position of point PB through the length aP, any other Berard’s curve can be 
obtained by the same designed slider-crank mechanism. 
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Figure 5: The proposed design flow-chart 
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Figure 6: Applications: a) automatic wood-feeder; b) leg mechanism of a walking robot. 

9 CONCLUSIONS 
The analysis and synthesis of slider-crank mechanisms for automatic machinery, which are aimed 
to give symmetrical egg shape path with an approximate straight line, have been presented. A 
practical method for the dimensional synthesis of slider-crank mechanisms has been proposed 
along with a design flow-chart and two practical applications. 
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