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SUMMARY. Most of commercial finite element softwares analyze models starting from assigned
poses. The proposed method might help designers to integrate in a single package the elastodynamics
analysis along with the inverse positioning and orienting problems of PKMs, with ensuing saved time
and avoiding annoying manual procedures.

1 INTRODUCTION
Evaluating stiffness helps designers to predict positioning and orienting errors of the manipula-

tors and to individuate resonance frequencies.
A common method to study the stiffness of robotic manipulators consists in creating FEA models

[1, 2], but it implies very tedious routines as these models have to be remeshed over and over again
when the robot changes its pose inside its workspace.

In the next sections, an algorithm to study the elastodynamics of parallel kinematic machines
(PKMs), with arbitrary number of limbs and links, will be proposed. The algorithm is general and
based on the matrix structural analysis [3–9].

In Section 2 the outlines of the method are presented: segmentation of a real PKM, nodal arrays,
nodal matrices and joint arrays are introduced and explained in detail.

In Section 3 the algorithm is applied to a planar PKM, the 2PRRR robot. Results are validated
by means of Nastran2005.

Finally, conclusions summarize results of the proposed method and point out its feasible appli-
cations.

2 GENERAL DESCRIPTION OF THE ALGORITHM
The proposed algorithm is aimed to find the stiffness matrix and the natural frequencies of a

PKM. Only linear analysis and small deformations will be considered. A generic PKM is thought
composed of a rigid moving platform (MP) connected to a fixed base, i.e. the base platform (BP), by
means of, at least, two or more limbs. Each limb, in turn, is made up of a number of links connected
by means of joints. Here, for the sake of simplicity, all links are modeled as beam finite elements.
Moreover, the actuated joints are considered clamped in their reference position.
Then, the algorithm proceeds with the following introductory steps:

1. each link with mass and inertia is split into two flexible bodies joined by a fixed connectionF
at its mass center; MP is modeled as a rigid body.

2. the bodies and joints are enumerated1 from BP to MP: each body is included between two
consecutive joints, whereas prismaticP, revoluteR, universalU, sphericalSand fixedF joints
are considered.

1Hereafter, the letteri will be associated to bodies, while the letterj will be coupled with joints.
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3. nodal arrays, thus nodal coordinates, are introduced foreach joint. All joints, but the fixed,
count for two nodal vectors; the fixed joint counts for one nodal vector.

The generic6−dimensional nodal arrayuji =
[

(uji )x (uji )y (uji )z (uji )ϕ (uji )θ (uji )ψ
]T

includes six nodal coordinates: three translations and three rotations, of the section of the bodyi lo-
cated at the jointj. Otherwise,uji+1 will indicate the nodal array of the bodyi + 1 located at the
same jointj. The bond between two nodal arrays located at the same jointj is

u
j
i = u

j
i+1 + Hj

θ
j (1)

whereHj is a6 × m(j) matrix depending on the dimensionm(j) of the joint arrayθj . The matrix
Hj and the joint arrayθj depend on the nature of the joint: the former containing unitvectors
indicating geometric axes; the latter containing joint coordinates, either linearsj , for translations, or
angularϑj , for rotations. The following expressions for principal classes of joints are derived:

Prismatic joint

HP =

[
wj

0

]
, θP = sj (2)

wherewj is the unit vector parallel to the direction of translation of the prismatic jointP, sj

is the scalar length of translation and0 is the 3-dimensional zero vector.

Revolute joint

HR =

[
0

wj

]
, θR = ϑj (3)

wherewj is the unit vector along the axis of the revolute jointR andϑj is the rotation angle
about the said axis.

In similar manner, other class of joints may be introduced.
For the case of the fixed jointF the following expression stands:

u
j
i ≡ u

j
i+1 = uj (4)

in which the dependence from the body indexi has been deleted.
Notice that each column of the matrixH is the Plücker array of the generic joint [10].

2.1 GENERALIZED STIFFNESS MATRIX
The stiffness of each body, modeled as a flexible beam, is generally expressed by a12 × 12

stiffness matrixKi. Let L be the length of the generic body,A the area of the orthogonal cross
section of the body,J the torsional constant,I the mass moment of inertia,E the Young modulus
andG the shear modulus, depending on the material, here considered homogeneous and isotropic;
then, the stiffness matrixKi of theith body, expressed in the local frame of the same body, involved
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between the two consecutive jointsj andj+1, is

Ki =
E

L




A 0 0 0 0 0 −A 0 0 0 0 0
0 12I

L2 0 0 0 6I
L

0 − 12I
L2 0 0 0 6I

L

0 0 12I
L2 0 − 6I

L
0 0 0 − 12I

L2 0 − 6I
L

0
0 0 0 GJ

E
0 0 0 0 0 −GJ

E
0 0

0 0 − 6I
L

0 4I 0 0 0 6I
L

0 4I 0
0 6I

L
0 0 0 4I 0 − 6I

L
0 0 0 4I

−A 0 0 0 0 0 A 0 0 0 0 0
0 − 12I

L2 0 0 0 − 6I
L

0 12I
L2 0 0 0 − 6I

L

0 0 − 12I
L2 0 6I

L
0 0 0 12I

L2 0 6I
L

0
0 0 0 −GJ

E
0 0 0 0 0 GJ

E
0 0

0 0 − 6I
L

0 4I 0 0 0 6I
L

0 4I 0
0 6I

L
0 0 0 4I 0 − 6I

L
0 0 0 4I




(5)
The total deformation energyVPKM of the PKM is the sum of the contributesVl of each limb;

in turn, the latter are partitioned as sum of the contributesVSj(k−1),j(k) of each subchain. Thus,

VPKM = V1 + V2 + · · · + Vn (6)

wheren is the number of limbs. For the case oflth-limb the following expression forVl stands:

Vl =
1

2

[
u1

1

u2
1

]T [
K

1,1
1 K

1,2
1

K
2,1
1 K

2,2
1

] [
u1

1

u2
1

]
+

1

2

[
u2

2

u3
2

]T [
K

2,2
2 K

2,3
2

K
3,2
2 K

3,3
2

] [
u2

2

u3
2

]
+ · · ·

+
1

2

[
u
j−1
i

u
j
i

]T [
K
j−1,j−1
i K

j−1,j
i

K
j,j−1
i K

j,j
i

] [
u
j−1
i

u
j
i

]
+ · · ·

+
1

2

[
u
nj−1
ni

u
nj

ni

]T [
K
nj−1,nj−1
ni K

nj−1,nj
ni

K
nj ,nj−1
ni K

nj ,nj

ni

] [
u
nj−1
ni

u
nj

ni

]
(7)

in whichni andnj are the total numbers of bodies and joints inside thel-th limb, respectively.2 The

nodal arrayqM of MP, along with the nodal arraysujl(k), l = 1, . . . , n, that is the nodal arrays of the
sections which the lumped masses are attached to, will be theindependent generalized coordinates
of the system, hereafter denoted with overlined arrays. Hence, we define a global arraỹq containing
all the aforementioned nodal arrays:

q̃ =
[

uM
T

uj1(1)
T

uj1(2)
T

· · · uj1(n1
k)
T

· · · ujn(nn
k )T

]T
(8)

wherenlk stands for the number of independent joints with lumped masses of thel-th limb. Then,
after this general overview, the steps of the algorithm are introduced with direct application to a case
study.

2Notice thatnj = ni + 1.
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Figure 1: Schematic model of the 2-PRRR manipulator

Parameters of the 2-PRRR
Notation Description Value Unit

L1 proximal link’s length 1 [m]
L2 distal link’s length 1 [m]
d OMl

√
0.5 [m]

r radius of cylindrical links 0.03 [m]
A link’s orthogonal cross section area2.827 · 10−3 [m2]
I mass moment of inertia 6.362 · 10−7 [kg m2]
J torsional constant 1.272 · 10−6 [kg m2]
E Young modulus 210 · 109 [Pa]
G shear modulus 79.545 · 109 [Pa]
ρ density of the material 4222.71 [kg/m3]

mp MP’s mass 100 [kg]
Ip MP’s inertia matrix 0.011 [kg m2]

Table 1: The 2-PRRR geometric, inertial and structural parameters

3 CASE STUDY: 2PRRR PARALLEL ROBOT
The planar manipulator, investigated in this section, is shown in Fig.1. It consists of a mobile

platform and two identical limbs: each limb is of PRRR type and it is composed of two links: the
horizontal and the vertical link. All links are modeled as beam elements, while MP is a rigid body.
In Tab.1 the geometrical, structural and inertial parameters are reported.

3.1 APPLICATION OF THE ALGORITHM
The algorithm proceeds with the following steps:

1. Considering the reference posture of the manipulator, body-reference framesO(xl, yl, zl) are
defined for each link. Then, rotation matricesRl

0, l = 1, 2, are introduced in order to express
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all vectors into the inertial frameO(x, y, z):

R1
0 =




1 0 0
0 1 0
0 0 1



 R2
0 =




−1 0 0
0 −1 0
0 0 1



 (9)

Similarly, the body-frame of the vertical frame are expressed into the frames of the horizontal
links by means of rotation matricesR2l

1l, l = 1, 2, i.e.

R21
11 =




0 −1 0
1 0 0
0 0 1



 , R22
12 =




0 −1 0
1 0 0
0 0 1



 (10)

Moreover, all revolute joints3 have axes normal to the plane of the manipulator, hence

w1
1 ≡ w3

1 ≡ w5
1 ≡

[
0 0 1

]T
≡ w1

2 ≡ w3
2 ≡ w5

2 (11)

wherewj
l , with l, j = 1, 2 are the unit vectors along the axes of thej-th revolute joint of the

l-th limb. The matricesHj
l , l, j = 1, 2, are the same column arrays, i.e.

H1
1 ≡ H3

1 ≡ H5
1 ≡

[
0 0 0 0 0 1

]T
≡ H1

2 ≡ H3
2 ≡ H5

1 (12)

Once the partition of the links is made, thei-th body,(i = 1, 2, 3, 4), enclosed between the
joints j and j+1, has a(12 × 12) stiffness matrixKi, as expressed in eq.(5) into the local
body-frame. Then, by expressing all stiffness matrices into the inertial frame, matrices̃Ki are
obtained as

K̃i = T
T

i KiTi (13)

where the rotation matricesTi need to produce the said transformation:

Ti =

[
Rl T

0 R1l
l O

O Rl T
0 R1l

l

]
Ti =

[
Rl T

0 R1l
l R2l

1l O

O Rl T
0 R1l

l R2l
1l

]
(14)

Hereafter,O and1 will be the3 × 3 zero- and identity-matrix, respectively.

2. With reference to Fig.2, we define the arrayjl:

jl =
[

2 4 M
]

(15)

containing the numbers of the independent nodal arrays inside thelth-limb. Besides, we settle
the nodal arrays according to Fig.2.

3. The joint anglesθj , j = 1, 3, 5, are calculated for each limb through the minimization of the
deformation energyVl with respect toθj , i.e.

dVl

dθj
= 0 (16)

Thus, the following expressions are derived

θ1 = F1,2u2; θ3 = F3,2u2 + F3,3u3
3; θ5 = F5,4u4 + F5,5uMl

; (17)

3The enumeration of the joints is shown in Fig.2.
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Figure 2: Nodal arrays enumeration

where the matricesF1,2, Fj,j−1 andFj,j , j ∋ j1, are

F1,2 ≡ −(H1TK
1,1
1 H1)−1H1TK

1,2
1 ≡

[
0 3.000 0 0 0 −0.500

]
(18a)

F3,2 ≡ −(H3TK
3,3
2 H3)−1H3TK

3,2
2 ≡

[
0 −3.000 0 0 0 −0.500

]
(18b)

F3,3 ≡ −(H3TK
3,3
2 H3)−1H3TK

3,3
2 ≡

[
0 3 0 0 0 −1

]
(18c)

F5,4 ≡ −(H5TK
5,5
4 H5)−1H5TK

5,4
4 ≡

[
3.000 0 0 0 0 −0.500

]
(18d)

F5,5 ≡ −(H5TK
5,5
4 H5)−1H5TK

5,5
4 ≡

[
−3 0 0 0 0 −1

]
(18e)

It should be noted that, hereafter, only the first limb will beanalyzed, omitting the same
procedure for the second limb.

4. The dependent nodal arraysu
j
i+1 are calculated with similar equations: thus, by minimizing

the deformation energyVl with respect touji+1, we have

dVl

du
j
i+1

= 0T (19)

from which we obtain

u1
1 = G1,2u2; u3

3 = G3,2u2 + G3,4u4; u5
5 = G1u

M ; (20)

whereG1,2, Gj,j−1 andGj,j+1 have the following expressions

G1,2 = H1F1,2 ≡




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 3.0 0 0 0 −0.5




(21a)

G3,2 = −(K3,3
2 + K

3,3
3 + K

3,3
2 H3F3,3)−1(K3,2

2 + K
3,3
2 H3F2,3) ≡
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≡




0.997 0 0 0 0 0
0 0.003 0 0 0 −0.001
0 0 0.500 −0.054 0.196 0
0 0 −1.261 0.295 −0.495 0
0 0 −1.261 −0.136 0.074 0

2.992 0 0 0 0 0




(21b)

G3,4 = −(K3,3
2 + K

3,3
3 + K

3,3
2 H3F3,3)−1(K3,4

3 ) ≡

≡




0.003 0 0 0 0 0.001
0 0.997 0 0 0 0
0 0 0.500 −0.196 0.054 0
0 0 1.261 0.074 −0.136 0
0 0 1.261 −0.495 0.295 0

−2.992 0 0 0 0 −0.496




(21c)

moreover,G1 is defined as

G1 =

[
1 −Q CPM(d1)
O 1

]
≡




1.0 0 0 0 0 0.5
0 1.0 0 0 0 −0.5
0 0 1.0 −0.5 0.5 0
0 0 0 1.0 0 0
0 0 0 0 1.0 0
0 0 0 0 0 1.0




(22a)

whereQ and CPM are the rotation matrix and thecross product matrixof the position vector
dl [10].
Thus, replacing eq.(20) into (17), we obtain the arraysθ

j in terms of the independents nodal
arrays, i.e.

θ1 = Y1,2u2; θ3 = Y3,2u2 + Y3,4u4; θ
5 = Y5,4u4 + Y5,5uM ; (23)

where

Y1,2 =
[

0 3.000 0 0 0 −0.500
]

(24a)

Y3,2 =
[
−2.992 −2.992 0 0 0 −0.496

]
(24b)

Y3,4 =
[

2.992 2.992 0 0 0 0.496
]

(24c)

Y5,4 =
[

3.000 0 0 0 0 −0.500
]

(24d)

Y5,5 =
[
−3.000 0 0 0 0 −2.500

]
(24e)

5. The dependents nodal arraysu
j
i are calculated by substituting eq.(20) and (23) into eq.(1),

thus, obtaining

u3
2 = X3,2u2 + X3,4u4, u5

4 = X5,4u4 + X5,MuM (25)

where

X3,2 =




0.997 0 0 0 0 0
0 0.003 0 0 0 0.001
0 0 0.500 −0.054 −0.196 0
0 0 −1.261 0.295 0.495 0
0 0 1.261 0.136 0.074 0
0 −2.992 0 0 0 −0.496




(26a)
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X3,4 =




0.003 0 0 0 0 0.001
0 0.997 0 0 0 0
0 0 0.500 −0.196 −0.054 0
0 0 1.261 0.074 0.136 0
0 0 −1.261 0.495 0.295 0
0 2.992 0 0 0 0




(26b)

X5,4 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3.0 0 0 0 0 −0.5




(26c)

X5,M =




1.0 0 0 0 0 0.5
0 1.0 0 0 0 −0.5
0 0 1.0 −0.5 0.5 0
0 0 0 1.0 0 0
0 0 0 0 1.0 0

−3.0 0 0 0 0 −1.5




(26d)

6. The deformation energyV1 is readily obtained in terms of the independent nodal arraysof the
first limb q1, i.e.

V1 =
1

2
q1TK1q

1 (27)

whereK1 is the generalized stiffness matrix of the first limb, i.e.

K1 = K1,2 + K2,4 + K4,M (28)

Then, the final expression of the stiffness matrixK2RRR is obtained upon assembling the two
termsV1 andV2 coming from the two limbs:

V2RRR = V1 + V2 ≡
1

2
q̃TK2RRRq̃

Whereq̃ is the global independent array, which is defined asq̃ ≡
[

uM u21
u41

u22
u42

]

We only show a part of the (30 × 30) matrix so obtained:

K2RRR = 109




0.006 0 0 . . . 0 0 0.002
0 2.375 0 . . . 0 0 0
0 0 0.0257 . . . −0.003 0 0

. . . . . . . . .
. . . . . . . . . . . .

0 0 −0.003 . . . 0.001 0.000 0
0 0 0 . . . 0.0001 0.000 0

0.002 0 0 . . . 0 0 0.002




(29)

7. Introducing the generalized inertia matrixM2RRR of the PKM, not reported here for brevity,
the natural frequencies of the2 − PRRR can be calculated by the dynamics equations:

M2RRR
¨̃q + K2RRRq̃ = 0 (30)

where the latter have been linearized at an equilibrium configuration.
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No. A (Hz) B (Hz) rel.-err. [%] No. A (Hz) B (Hz) rel.-err. [%]
1 1,16E-05 8,75E-06 - 16 2,03E+02 2,02E+02 0,401
2 4,26E-05 3,72E-07 - 17 2,03E+02 2,03E+02 0,401
3 4,26E-05 7,04E-06 - 18 2,23E+02 2,22E+02 0,400
4 3,91E+00 3,91E+00 0,074 19 2,31E+02 2,28E+02 1,349
5 3,84E+01 3,84E+01 0,155 20 2,31E+02 2,28E+02 1,346
6 4,63E+01 4,62E+01 0,192 21 1,21E+03 1,21E+03 0,363
7 8,19E+01 8,18E+01 0,066 22 1,22E+03 1,22E+03 0,322
8 1,05E+02 1,05E+02 0,139 23 1,32E+03 1,31E+03 0,439
9 1,16E+02 1,16E+02 0,397 24 1,33E+03 1,32E+03 0,417

10 1,18E+02 1,18E+02 0,397 25 1,59E+03 1,59E+03 0,007
11 1,19E+02 1,19E+02 0,397 26 1,59E+03 1,59E+03 0,007
12 1,38E+02 1,37E+02 0,397 27 1,77E+03 1,77E+03 0,007
13 1,77E+02 1,76E+02 0,550 28 4,17E+03 4,11E+03 1,494
14 1,81E+02 1,81E+02 0,521 29 6,16E+03 6,07E+03 1,537
15 2,02E+02 2,01E+02 0,401 30 3,89E+04 3,89E+04 0,009

Table 2: Natural frequencies of the 2-PRRR in thehome-posture; A indicates the outputs of the
algorithm;B the outputs of Nastran2005

3.2 RESULTS
The segmentation of the2−PRRR manipulator has led to thirty independent nodal coordinates.

Hence, thirty natural frequencies, shown in Tab.2, have been obtained at the reference posture and
compared to output results ofNastranr. The2−PRRR is a planar mechanism that can undergo
rigid motions of MP along the x- and y-axes, along with a rotation about the z-axis, normal to the
plane of the mechanism. Thus, natural frequencies associated with the said degrees of freedom are
zero. The relative error, shown in Fig.3, reveals good accuracy of the method. Future works will
be aimed to: extend the method to hybrid robots with internalloops, generalize the method to any
partition of links, study singularity loci in space.

Relative error[%]

Figure 3: Relative error
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4 CONCLUSIONS
The study of the elastodynamics of PKMs by means of a systematic algorithm based on the

stiffness matrix theory was introduced. The proposed method can be easily adapted to a large class
of planar and spatial PKMs and easily extended by introducing more complex finite elements. The
method was applied to a planar parallel robot of 2PRRR type. The generalized stiffness matrix was
first derived and natural frequencies were calculated and compared to the software Nastran2005 to
validate the model. Results showed good accuracy, especially for lower frequencies.
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