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SUMMARY. Most of commercial finite element softwares anaymnodels starting from assigned
poses. The proposed method might help designers to inédgrasingle package the elastodynamics
analysis along with the inverse positioning and orientiraptems of PKMs, with ensuing saved time
and avoiding annoying manual procedures.

1 INTRODUCTION

Evaluating stiffness helps designers to predict positigréind orienting errors of the manipula-
tors and to individuate resonance frequencies.

A common method to study the stiffness of robotic manipukatonsists in creating FEA models
[1, 2], but it implies very tedious routines as these modeigito be remeshed over and over again
when the robot changes its pose inside its workspace.

In the next sections, an algorithm to study the elastodyosmwi parallel kinematic machines
(PKMs), with arbitrary number of limbs and links, will be grased. The algorithm is general and
based on the matrix structural analysis [3-9].

In Section 2 the outlines of the method are presented: seiemof a real PKM, nodal arrays,
nodal matrices and joint arrays are introduced and expldamdetail.

In Section 3 the algorithm is applied to a planar PKM, th&RR robot. Results are validated
by means of Nastran2005.

Finally, conclusions summarize results of the proposedaoteand point out its feasible appli-
cations.

2 GENERAL DESCRIPTION OF THE ALGORITHM

The proposed algorithm is aimed to find the stiffness matnid the natural frequencies of a
PKM. Only linear analysis and small deformations will be siolered. A generic PKM is thought
composed of a rigid moving platform (MP) connected to a fixagd)i.e. the base platform (BP), by
means of, at least, two or more limbs. Each limb, in turn, islenap of a number of links connected
by means of joints. Here, for the sake of simplicity, all knkre modeled as beam finite elements.
Moreover, the actuated joints are considered clamped inriference position.
Then, the algorithm proceeds with the following introdugtsteps:

1. each link with mass and inertia is split into two flexibledies joined by a fixed connectidh
at its mass center; MP is modeled as a rigid body.

2. the bodies and joints are enumeratédm BP to MP: each body is included between two
consecutive joints, whereas prisma@arevoluteR, universalJ, sphericaBand fixedF joints
are considered.

IHereafter, the lettarwill be associated to bodies, while the lettavill be coupled with joints.



3. nodal arrays, thus nodal coordinates, are introduceddoh joint. All joints, but the fixed,
count for two nodal vectors; the fixed joint counts for onealogkctor.
The generi6—dimensionalnodal array! = [ (), (), (w)). (u), (ul)y (ul)y]"
includes six nodal coordinates: three translations arekthotations, of the section of the baidy-
cated at the joinj. Otherwiseu’, , will indicate the nodal array of the body+ 1 located at the
same joinf. The bond between two nodal arrays located at the samgj jaint

u = u'ZH +H@¢ 1)

whereH is a6 x m(;j) matrix depending on the dimensian(;) of the joint arrayp’. The matrix
H’ and the joint arrayd’ depend on the nature of the joint: the former containing uedtors
indicating geometric axes; the latter containing jointrchigates, either lineas?, for translations, or
angulard’, for rotations. The following expressions for principasses of joints are derived:
Prismatic joint
J _
HP:[V(V)], oF = 5 )

wherew? is the unit vector parallel to the direction of translatidrttee prismatic jointP, s/
is the scalar length of translation afids the 3-dimensional zero vector.

Revolutejoint
HR:[O}, oF — i 3)

w/

wherew? is the unit vector along the axis of the revolute jofand is the rotation angle
about the said axis.

In similar manner, other class of joints may be introduced.
For the case of the fixed joifit the following expression stands:
= @)

in which the dependence from the body inddvas been deleted.
Notice that each column of the matiX is the Plucker array of the generic joint [10].

J =
ui:u

2.1 GENERALIZED STIFFNESS MATRIX

The stiffness of each body, modeled as a flexible beam, isrginexpressed by a2 x 12
stiffness matrixK;. Let L be the length of the generic bodi,the area of the orthogonal cross
section of the bodyJ the torsional constant,the mass moment of inerti& the Young modulus
andG the shear modulus, depending on the material, here coesitmogeneous and isotropic;
then, the stiffness matriK; of theith body, expressed in the local frame of the same body, ieeblv



between the two consecutive joinftandj+1, is
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(5)
The total deformation energ¥p i ;s of the PKM is the sum of the contribut&3 of each limb;
in turn, the latter are partitioned as sum of the contribiigs.-1) ;) of each subchain. Thus,

Vexkmv=Vi+ Vot +V, (6)

wheren is the number of limbs. For the caseldi-limb the following expression fo¥; stands:

v — 1 [ ul r K}"l K%’Q ul +1 u’ r Kg,z Kg"g u’ L
o ud K> K?? u? 2 | ul Ky? K3*° ul
1wt 77 1 gi-19-1 gi-Li w!
1IN i aa | I B
1 i uzz—l T KZZ_Lnj_l KZ'Z_Lnj uzz—l 7
+ 5 uzj KZ‘?',’H,]'—]. sz,n] u:llj ( )

in whichn; andn; are the total numbers of bodies and joints insidel itielimb, respectively. The
nodal arrayy ,, of MP, along with the nodal array_sil(’“), l=1,...,n,thatis the nodal arrays of the
sections which the lumped masses are attached to, will bedependent generalized coordinates
of the system, hereafter denoted with overlined arraysceleme define a global arrd@ycontaining
all the aforementioned nodal arrays:

~ T .1 T .1 T .1 1T o n\T T

i=[w,” @0 @O ”.Wm>.nwmw} (8)
wheren! stands for the number of independent joints with lumped eeeé thel-th limb. Then,

after this general overview, the steps of the algorithmmreduced with direct application to a case
study.

2Notice thatn; = n; + 1.
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Figure 1: Schematic model of the RRR manipulator

Parameters of the 2RHRR
Notation | Description Value Unit
Ly proximal link’s length 1 [m]
Lo distal link’s length 1 [m]
d OM; V0.5 [m]
r radius of cylindrical links 0.03 [m]
A link’s orthogonal cross section arga2.827 - 1072 |  [m?]
I mass moment of inertia 6.362- 1077 | [kgm?]
J torsional constant 1.272-1076 | [kgm?]
E Young modulus 210-10° [Pa]
G shear modulus 79.545 - 109 [Pa]
p density of the material 4222.71 [kg/m3]
my MP’s mass 100 [kg]
I, MP’s inertia matrix 0.011 [kg m?]

Table 1: The 2-RRR geometric, inertial and structural parameters

3 CASE STUDY: 2RRRR PARALLEL ROBOT

The planar manipulator, investigated in this section, mshin Fig.1. It consists of a mobile
platform and two identical limbs: each limb is o0RRR type and it is composed of two links: the
horizontal and the vertical link. All links are modeled asbeelements, while MP is a rigid body.
In Tab.1 the geometrical, structural and inertial paransedee reported.

3.1 APPLICATION OF THE ALGORITHM
The algorithm proceeds with the following steps:

1. Considering the reference posture of the manipulatatydeference frame9(z;, v, z;) are
defined for each link. Then, rotation matridg$, = 1, 2, are introduced in order to express



all vectors into the inertial framé(z, y, z):
1 0 0 -1 0 0
Ry={0 1 0 R2=| 0 -1 0 9)
0 0 1 0 0 1

Similarly, the body-frame of the vertical frame are expeesimto the frames of the horizontal
links by means of rotation matric&?, [ = 1,2, i.e.

0 0 —1
0|, RE=1|1 0 (10)
1 0 0

= o o

Moreover, all revolute joinfshave axes normal to the plane of the manipulator, hence

wi=wi=wi=[0 0 1] =wi=wi=w)} (11)

wherew-{, with [, j = 1,2 are the unit vectors along the axes of jftlb revolute joint of the
[-th limb. The matriced], [, j = 1,2, are the same column arrays, i.e.

H =H}=H}=[0 0 0 0 0 1] =H}=H}=H;] (12)

Once the partition of the links is made, th¢h body, (i = 1,2, 3,4), enclosed between the
jointsj andj+1, has a(12 x 12) stiffness matrixK;, as expressed in eq.(5) into the local
body-frame. Then, by expressing all stiffness matricesting¢ inertial frame, matricds; are
obtained as B .

K, =T, K, T; (13)
where the rotation matricéB; need to produce the said transformation:

m= | Mo | =[S Ry | 09
HereafterO and1 will be the3 x 3 zero- and identity-matrix, respectively.
2. With reference to Fig.2, we define the arjay
=12 4 M] (15)

containing the numbers of the independent nodal arrayderibielth-limb. Besides, we settle
the nodal arrays according to Fig.2.

3. The joint angle$’, j = 1, 3,5, are calculated for each limb through the minimization @ th
deformation energy; with respect t@/, i.e.

dV,
T (16)
Thus, the following expressions are derived
o' = FH2u%; 03 = 322 4 F3ud; 00 = POt 4 F20uyy; a7

3The enumeration of the joints is shown in Fig.2.



Figure 2: Nodal arrays enumeration

where the matriceB*2, F//~! andF’7, j 5 j!, are

Fi2= —HKMEY)YH K2 =[0 3000 0 0 0 —0500] (18a)
F32 = (I3 K3 H?) - 1H3TK325[ —3.000 0 0 0 —0.500] (18b)
F9 = —(H* K}°H?)~ 1H3TK33E[0 3000 —1] (18c)
Fot = (5 K3SHP) T THS K°’4E[3OOO 00 0 0 —0500] (18d)
F9 = (B K)°H®) 'HY K;°=[ -3 0 0 0 0 —1 | (18e)

It should be noted that, hereafter, only the first limb will &alyzed, omitting the same
procedure for the second limb.

4. The dependent nodal arra1;1$}+1 are calculated with similar equations: thus, by minimizing
the deformation energlyj with respect t011+11 we have

d
% =07 (19)
dug,
from which we obtain
uj = G uf =GP’ + Gty ul = G (20)

whereG!2, G77~1 andG77+1 have the following expressions

00 000 0
00 000 0

12 _gipiz_ | 0 0 000 0

GP=HF"=|, o 00 o (21a)
0 0 000 O
0 30 0 0 0 —05

G¥? = —(Kj® + K3?® + K HF?) 7 (K} + K HF>?) =



[ 0997 0 0 0 0 0 ]
0 0.003 0 0 0 —0.001
. 0 0 0.500 —0.054 0.196 0
- 0 0 —1.261 0.295 —0.495 0 (21b)
0 0 —1.261 -0.136 0.074 0
| 2.992 0 0 0 0 0 |
G = —(K3° + K3° + Ky°HF*%) 1 (K3) =
[ 0.003 0 0 0 0 0.001
0 0997 0 0 0 0
_ 0 0 0.500 —0.196 0.054 0 (21¢)
B 0 0 1.261 0.074 —0.136 0
0 0 1.261 —-0.495 0.295 0
| —2.992 0 0 0 0  —0.49 |
moreover(G is defined as
1.0 0 0 0 0 0.5
0 1.0 O 0 0 —-0.5
[ 1 -QCcPMdy) |_| 0 0 1.0 —05 05 0
Gi=1o 1 =l o 0o 0o 10 0 0 (222)
0 0 O 0 10 0
0 0 0 0 0 1.0
whereQ and CPM are the rotation matrix and tt®ss product matrixf the position vector

d; [10]. .
Thus, replacing eq.(20) into (17), we obtain the arr@y# terms of the independents nodal
arrays, i.e.

ol — Y1’2ﬁ2; 03 = Y3202 + Y3’4ﬁ4; 05 = Y54t + Y5’5ﬁM; (23)
where
Y2 =10 3000 0 0 0 —0.500 | (24a)
Y32 =1 -2992 —2992 0 0 0 —0.496 | (24b)
Y3t =12992 2992 0 0 0 0.496 | (24c)
Y?*=13000 0 0 0 0 —0.500 ] (24d)
Y?®=1]-3.000 0 0 0 0 —2.500 | (24e)

. The dependents nodal arraﬁ are calculated by substituting eq.(20) and (23) into eq.(1)

thus, obtaining

u; — X322 + X3 4at,

where

X3,2 _

0
0
0.500
—1.261
1.261
0

0
0
—0.054
0.295
0.136
0

0
0
—0.196
0.495
0.074
0

5 5 4. 5 _
ui _ Xo,4u4 4 Xo,Mu]W

0

0.001

0
0
0

—0.496

(25)

(26a)



[ 0.003 0 0 0 0 0.001
0 0997 0 0 0 0
54 0 0 0.500 —0.196 —0.054 0
X = 0 0 1.261  0.074  0.136 0 (26D)
0 0 —1.261 0495 0.295 0
0 2992 0 0 0 0
[0 00 0 o0 0 ]
0 0000 0
0 0000 0
5,4 __
X"=109 0000 o0 (26c)
0 0000 0
130 0 0 0 0 —0.5 |
10 0O O 0 0 05
0 10 0 0 0 -05
s _ | 0O 0 10 —05 05 0
X"=1"9 0 0 10 0 o0 (260)
O 0 0 0 10 0
| 30 0 0 0 0 -15

6. The deformation energy; is readily obtained in terms of the independent nodal aroétse
firstlimb q', i.e.

1 ;7
Vi= 5(11 Klql (27)
whereK is the generalized stiffness matrix of the first limb, i.e.
Ki=Ki:+Kos+Kyn (28)

Then, the final expression of the stiffness maKixz zr is obtained upon assembling the two
termsV; andV, coming from the two limbs:

1. -
Vorrr=V1+ Vo= §qTK2RRRq

Whereq is the global independent array, which is definedas | ¥ w2' @t w?® '’ }
We only show a part of the3() x 30) matrix so obtained:

[ 0.006 0 0 0 0 0.002]
0 2375 0 0 0 0
0 0 0.0257 —0.003 0 0
Koppr =10 = (29)
0 0 —0.003 0.001  0.000 0
0 0 0 0.0001  0.000 0
| 0.002 0 0 0 0 0.002 |

7. Introducing the generalized inertia mathf; z .z Of the PKM, not reported here for brevity,
the natural frequencies of tike— PRRR can be calculated by the dynamics equations:

Marrrd + KorrrG = 0
where the latter have been linearized at an equilibrium gardition.

(30)



No. A (Hz) B (Hz) | rel.-err. P4] | No. A (Hz) B (Hz) | rel.-err. %]
1| 1,16E-05| 8,75E-06 -| 16| 2,03E+02| 2,02E+02 0,401
2 | 4,26E-05| 3,72E-07 -| 17| 2,03E+02| 2,03E+02 0,401
3| 4,26E-05| 7,04E-06 -| 18| 2,23E+02| 2,22E+02 0,400
4 | 3,91E+00| 3,91E+00 0,074| 19| 2,31E+02| 2,28E+02 1,349
5| 3,84E+01| 3,84E+01 0,155| 20| 2,31E+02| 2,28E+02 1,346
6 | 4,63E+01| 4,62E+01 0,192| 21| 1,21E+03| 1,21E+03 0,363
7 | 8,19E+01| 8,18E+01 0,066| 22| 1,22E+03| 1,22E+03 0,322
8 | 1,05E+02| 1,05E+02 0,139| 23| 1,32E+03| 1,31E+03 0,439
9| 1,16E+02| 1,16E+02 0,397| 24| 1,33E+03| 1,32E+03 0,417
10| 1,18E+02| 1,18E+02 0,397| 25| 1,59E+03| 1,59E+03 0,007
11| 1,19E+02| 1,19E+02 0,397| 26| 1,59E+03| 1,59E+03 0,007
12 | 1,38E+02| 1,37E+02 0,397| 27| 1,77E+03| 1,77E+03 0,007
13| 1,77E+02| 1,76E+02 0,550| 28| 4,17E+03| 4,11E+03 1,494
14 | 1,81E+02| 1,81E+02 0,521| 29| 6,16E+03| 6,07E+03 1,537
15| 2,02E+02| 2,01E+02 0,401| 30| 3,89E+04| 3,89E+04 0,009

Table 2: Natural frequencies of the_RRR in thehome-postureA indicates the outputs of the

algorithm;B the outputs of Nastran2005

3.2 RESULTS

The segmentation of the— PR R R manipulator has led to thirty independent nodal coordmate
Hence, thirty natural frequencies, shown in Tab.2, havea lod¢ained at the reference posture and
compared to output results dfastran®. The2 — PRRRis a planar mechanism that can undergo
rigid motions of MP along the x- and y-axes, along with a riotagbout the z-axis, normal to the
plane of the mechanism. Thus, natural frequencies assdoidth the said degrees of freedom are
zero. The relative error, shown in Fig.3, reveals good ammuof the method. Future works will
be aimed to: extend the method to hybrid robots with inteloabs, generalize the method to any
partition of links, study singularity loci in space.
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Figure 3: Relative error



4 CONCLUSIONS

The study of the elastodynamics of PKMs by means of a systerakgforithm based on the
stiffness matrix theory was introduced. The proposed ntetlam be easily adapted to a large class
of planar and spatial PKMs and easily extended by introduoinre complex finite elements. The
method was applied to a planar parallel robot oRER type. The generalized stiffness matrix was
first derived and natural frequencies were calculated antpeoed to the software Nastran2005 to
validate the model. Results showed good accuracy, esfyeftinlower frequencies.
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