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In this work a new automatic procedure to optimize the contact pattern of a hypoid gear drive under
misalignment perturbations is presented. It provides the designer with a systematic tool to perform
the robust optimization of a hypoid transmission in a few hours and without requiring deep insight on
the enveloping and meshing processes. The presented procedure has been tested on several hypoid
drives for aeronautical applications.

1 INTRODUCTION
In the aerospace industry, the demand of ever increasing power-to-weight ratios leads to light-

weight designs where the flexibility of the rims and the mounting supports must be accounted for in
order to avoid premature failure caused by edge contact. Therefore, in aerospace transmissions the
optimization of the contact pattern with misalignments within prescribed boundaries is of paramount
importance and it is the very motivation of this work.

Several approaches have been proposed to optimize the contact pattern but only at nominal con-
ditions, that is with fixed misalignments. Optimal machine setting corrections can be directly found
through sensitivity analysis [1] or, alternatively, through a pinion ease-off topography identifica-
tion [2]. These methods usually require a trial-and-error approach and the aid of a skilled operator.

In this work we extend the procedure developed in [3], which aimed at obtaining a “good” contact
pattern while avoiding edge contacts, to cope with robustness issues caused by uncertain misalign-
ments. While in [3] the misalignments had fixed values, here they may vary within known ranges,
thus making the optimization much more demanding.

The proposed method provides the designer with the following benefits: (i) no particular insight
in the enveloping and cutting processes is required; (ii) only high-level specifications on the contact
pattern shape is requested; (iii) the typical trial-and-error procedure is avoided; (iv) different sets of
machine settings can be selected to obtain the same desired pinion tooth surface.

Taking advantage of the low computational cost of the geometric contact pattern estimation pro-
cedure presented in [4], the total computational time of a robust optimization is about four hours on a
1.8 GHz computer, thus dramatically reducing the design time with respect to traditional approaches.

2 HYPOID TOOTH MODEL
In the present work, face-milled hypoid teeth are considered. The cutting/grinding process is

performed according to the Gleason face-milling, fixed-setting method. The mathematical model is
obtained through theinvariant approach[5, 6].

2.1 Tooth Surface Sampling
Using the same notation of [6] we denote bypg(ξ, θ, φ) the position vector of a generic point of

the family of surfaces with motion parameterφ, whereξ andθ are the Gaussian coordinates of the
tool surface. Due to the complexity of the enveloping process, the mathematical expression of the
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hypoid surface is not available in closed form. For this reason it is typically sampled over a given
n×m grid whose generic point is identified by the two valuesξi andθj (i = 1, . . . , n; j = 1, . . . , m).

The position vectorpij of a generic sampled pointPij is obtained through the solution of the
following system

{

pij = pg(ξi, θj , φij)

f(ξi, θj , φij) = 0
(1)

where the last one is theequation of meshing.

2.2 B-spline Tooth Surface Interpolation
For practical reasons it is better to deal with a closed form surface. To this end a B-spline

interpolation of the sampling pointsPij is performed yielding the following benefits:

• an approximate closed form tooth surface is obtained;

• a B-spline surface can be easily implemented since it is recursively defined;

• the B-spline domainU ∈ R2 is rectangular and it can be chosen as[0, 1] × [0, 1] ⊂ R2;

• if the original tooth surface is sampled on a sufficiently large number of points, then the B-
spline approximation gives an accurate representation of it [4].

2.3 Ease-Off Topography Definition
In the literature the ease-off is commonly defined as the deviation of the pinion and gear from

their conjugate surface (see for instance [7]). In this work, for simplicity, the ease-off is defined as
the flank surface modification with respect to the basic design.

The ease-off topography can be easily defined by a scalar function h(u, v; c) as follows

h(u, v; c) =

N
∑

k=1

ckΨk(u, v) (2)

whereΨk(u, v) are polynomial basis functions,ck are given coefficients andN the number of basis
functions.

Denoting bys(u, v) the position vector of a generic point on the original B-spline surface, and
by ŝ(u, v; c) the position vector of its corresponding point on the modified surface, the ease-off
topography is such that the following relation holds

ŝ(u, v; c) = s(u, v) + h(u, v; c)n(u, v) (3)

wheren(u, v) is the inward unit normal vector of the original B-spline surface. The definition (3)
implies that a positive ease-off stands for material removal.

3 GEOMETRIC CONTACT PATTERN ESTIMATION
The optimization process presented in this paper (see section 4) involves a very large amount of

contact pattern calculations. In order to bound the computational time to an acceptable value, a fast
contact pattern estimation procedure is required.

In this section the recently introduced [4] geometric approach to contact pattern estimation is
briefly described.
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3.1 Tooth Contact Analysis
Denote bysf1(u1, v1, ϕ1) andsf2(u2, v2, ϕ2) the pinion and gear B-spline interpolated surfaces

expressed into a fixed reference frame. The two variablesϕ1 andϕ2 represent the pinion and gear
rotation about their respective axise1 ande2 as shown in Figure 1. It is worth remarking here that
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Figure 1: System set up. The assembly error positive directions are red highlighted.

the relative position between the pinion and the gear depends on themisalignmentsE, P, G andα,
also known asassembly errorsand defined as in Figure 1.

Assuming that pinion as the driving member, the meshing condition is given by the solution of
the following system for allϕ1:

{

sf1(u1, v1, ϕ1) = sf2(u2, v2, ϕ2)
mf1(u1, v1, ϕ1) = λmf2(u2, v2, ϕ2)

(4)

wheremf1(u1, v1, ϕ1), mf2(u2, v2, ϕ2) are the normal vectors tosf1(u1, v1, ϕ1), sf2(u2, v2, ϕ2),
andλ is a scalar value. For a givenϕ1, the system (4) consists of six equations in the six unknowns
(u1, v1, u2, v2, ϕ2, λ) and hence it can be solved numerically. The solution of (4) produces then the
following functions

(u1(ϕ1), v1(ϕ1), u2(ϕ1), v2(ϕ1), ϕ2(ϕ1), λ(ϕ1)) (5)

and it is worthwhile to remark that these take into account the misalignments.
Denoting byN1 andN2 the pinion and gear tooth number, the transmission error∆ϕ2(ϕ1) is

defined as follows

∆ϕ2(ϕ1) = ϕ2(ϕ1) −
N1

N2

ϕ1 (6)

The graphical representation of (6) is known asmotion graphand Figure 2 shows a sample of it.

3.2 Instantaneous Contact Area Estimation
In order to estimate the instantaneous contact areaunder load, the so calledrolling-test is simu-

lated. To this end a virtual uniformmarking compoundis superimposed over the gear surface. The
resulting surface is denoted byŝf2(u2, v2, ϕ2) and it is defined as follows

ŝf2(u2, v2, ϕ2) = sf2(u2, v2, ϕ2) + t nf2(u2, v2, ϕ2) (7)
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Figure 2: Motion graph of three consecutive tooth pairs. Thered highlighted line indicates the range
of contact of thei-th tooth pair

wheret is the marking compound thickness andnf2(u2, v2, ϕ2) is the unit outward normal to the in-
terpolated gear surface. Then, for each value of the pinion rotation angleϕ1, the following nonlinear
system is solved:

sf1(u1, v1, ϕ1) = ŝf2(u2, v2, ϕ2(ϕ1)) (8)

A tooth pair composed by a pinion and a gear tooth is considered to be in contact if system (8)
admits solutions. Since, for a givenϕ1, system (8) involves three equations and four unknowns
(u1, v1, u2, v2), then the obtained solution is a spatial curveΓ(ϕ1).

It is important to stress here that the value ofϕ2(ϕ1) depends on the tooth pair that, for a givenϕ1,
produces the largest value of∆ϕ2 (unilateral contact): with reference to Figure 2, theith tooth pair
determines the rigid rotation of the two mating members onlybetweenϕ1min

andϕ1max
. However,

due to the presence of the marking compound, theith tooth pair is in contact for a larger range which
is highlighted in Figure 2.

3.3 Contact Pattern Estimation
Denoting byrizi-domain the cylindrical projection plane with respect to the i-th mating member

(see [8], then for eachϕ1 the intersection curveΓ(ϕ1) is mapped intor1z1 andr2z2 thus delimiting
a typical elliptically-shaped area. The estimated contactpattern on both members is then given by
the convex hull of such areas, as depicted in Figure 3.

The result of the geometric contact pattern estimation procedure strongly depends on the marking
compound thicknesst. A tuning process is thus required in order to match a reference contact pattern
obtained, e.g., with a FEM analysis tool (see [4]). Figure 4 shows the comparison between the output
of the commercial softwareHypoidFaceMilled[9] and the result of the geometric contact pattern
procedure after tuning the marking compound.

3.4 Perturbed Contact Pattern Estimation
The previous procedure for contact pattern estimation considers only a given set of misalign-

ments, i.e., the so-callednominal conditions. Nonetheless, especially in aeronautical applications,
the compliance of the transmission components may sensiblyaffect the relative position between the
pinion and the gear in operating conditions. Therefore the misalignments may vary within a bounded
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Figure 3: Instantaneous contact areas (thin and dashed lines); estimated contact pattern (red shaded
with thick line). The two highlighted areas are obtained with two different values ofϕ1.

Figure 4: HFM results (shaded); estimated contact pattern (black dashed line).

range as expressed below

E ∈ [E0 − ∆Em
, E0 + ∆EM

]

P ∈ [P0 − ∆Pm
, P0 + ∆PM

]

G ∈ [G0 − ∆Gm
, G0 + ∆GM

]

α ∈ [α0 − ∆αm
, α0 + ∆αM

]

(9)

whereE0, P0, G0, α0 are the nominal misalignments and∆xm
, ∆xM

identify the lower and upper
deviation of the misalignmentx. The goal now is to estimate the contact pattern in all the perturbed
conditions, and then estimate a precautionaryworst-casecontact pattern. To this end the variation
range of each misalignment is divided into a given number of partsNE , NP , NG andNα and the
contact pattern is estimated for all the misalignment combinations. Theworst-casecontact pattern
is thus given by the convex envelope of all the estimated contact patterns, as it is shown in Figure 5.

4 CONTACT PATTERN OPTIMIZATION
The goal of the contact pattern optimization is to modify thepinion ease-off topography in order

to match a prescribed contact pattern in both nominal and perturbed conditions. The coefficients
c that define the ease-off shape (3) are thus unknown and the optimization process seeks for the
optimal values ofc such that a given objective functionJ(c) is minimized. The optimal solutionc∗

is thus defined as follows

c∗ = argmin
c

J(c) (10)
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Figure 5: Contact patterns estimated with different misalignments (red shaded with thin black line);
perturbed contact pattern (thick green line).

After extensive tests theNelder-Meadsimplex minimization algorithm that does not require deriva-
tives, was found suitable for the solution of (10).

4.1 Target Definition
The target contact pattern is established according to theDesign Manual for Bevel Gears(ANSI-

AGMA 2005-D03 [10]): an optimal contact pattern should utilize virtually the total tooth length and
should be sufficiently far from the tooth bounds to prevent edge/corner contact situations. A realistic
target contact pattern has a typical elliptical shape as theone shown in Figure 6.

4.2 Objective Function Definition
For a givenc, denote byAi(c) the area of the current contact pattern, and byAIi

(c) the inter-
section area between the target contact pattern and the current one. The objective functionJ(c) to
be minimized is defined as follows

J(c) =

2
∑

i=1

(wdi
di(c) + wai

Ani
(c) + wei

ei(c)) (11)

where

• i = 1, 2 stands for the pinion and gear respectively;

• di(c) is the distance between the centroids of the current and the target contact patterns;

• Ani
(c) is thenon-overlaparea defined as

Ani
(c) =

Ati
+ Ai(c) − 2AIi

(c)

Ati
+ Ai(c)

(12)

and represented as a shaded area in Figure 6;

• ei(c) is a penalty function that has a large value if the current contact pattern is close to the
tooth edge, and zero elsewhere;

• wdi
, wai

andwei
are tunable weights.

Therefore the minimization of (11) according to (10) agreeswith the above specifications.
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Figure 6: Target contact pattern (green); current contact pattern (blue); non-overlap area (shaded).

4.3 Nominal and Robust Optimization
The goal of thenominal optimizationis to find the optimal ease-off shape defined byc∗ such

that the nominal contact pattern (Figure 3) matches the target one. However, in order to check the
robustness of the resulting contact pattern a sensitivity analysis must be performed considering the
misalignment perturbations.

Extensive simulations have shown that, although the nominal contact pattern matches closely the
target one, one or more perturbed contact patterns may show edge contact situations (see section 6).
For this reason the misalignment perturbations must be taken into accountduring the optimization
process.

The goal of therobust optimization, therefore, is to assure that all the perturbed contact patterns
(Figure 5) do not present edge contact situations. This kindof optimization, though computationally
more demanding than the nominal one, has the following advantages

• the misalignment perturbations are considered during the optimization process;

• edge/corner contact situations of one or more perturbed contact patterns are avoided;

• a posteriorisensitivity analysis is not required since robustness is ensured by the optimization
process itself.

5 MACHINE SETTINGS IDENTIFICATION
The optimal ease-off obtained through the solution of problem (10) is, until now, avirtual surface

to be superimposed over the pinion tooth according to (3) in order to match a desired contact pattern.
The resulting surface (3) has to be physically realized through an enveloping process.

The goal is then to obtain such surface via machine setting modifications. Themachine settings
are the set of parameters that define the hypoid tooth geometry and contain

• the geometric parameters to define the tool surface;

• the parameters that define the machine kinematics.

This problem is formulated as anonlinear least squareminimization (NLS) that involves a chosen
subsetx of all the machine settings [3, 11].

With h(u, v; c∗), the target surface (3) is sampled over a given grid, yielding a set of target points
pk. Then, for a givenx themisfitf(x) between the target and the current surfaceΓ(x) is estimated
by

f(x) =
1

2
h(x)T h(x) (13)
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where the generic componenthk(x) of the vectorh(x) represents the distance betweenpk and
Γ(x). The machine settingsx∗ that identify the optimal ease-off are found as

x∗ = arg min
x

f(x) (14)

The solution of (14) is obtained by employing theLevenberg-Marquardtalgorithm with atrust
region approach [12] that guarantees convergence to a local minimum, and deals efficiently with
ill-conditioned problems.

6 TEST-CASE
The capabilities of the optimization procedure presented in this paper are now demonstrated

through a numerical test. The results presented here are obtained with a software package developed
by the authors1. The full optimization process is composed by the followingsequential steps:

• marking compound thickness tuning;

• target contact pattern definition;

• optimization at the design point:

– nominal ease-off optimization;

– identification of the nominal-optimal ease-off;

– robustness analysis;

• robust optimization:

– robust ease-off optimization;

– identification of the robust-optimal ease-off;

– robustness check.

Each of the previous steps is performed with a single function call of the developed software. In ad-
dition, the full optimization process may be executed with asingle command via a batch procedure.
It is worthwhile to remark here that the full optimization process takes only five hours on a1.8 GHz
computer.

6.1 Basic Design
Some basic settings of the considered transmission are collected in Table 1. The contact pattern

calculated by HFM at the design point shows an undesirable edge contact on the gear tip. After the
marking compound tuning process, the geometric contact pattern procedure detects the same edge
contact, as shown in Figure 7. The hypoid drive has thereforeto be optimized.

1The software has been developed in C++ with more than 60.000 lines of code. Several executable files have been created
to perform the full hypoid transmission optimization and analysis.
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Pinion tooth number 31
Gear tooth number 50

Shaft angle 105.5 deg
Mean spiral angle 35.0 deg

Pinion hand RH
Face width 33.0 mm

Outer cone distance 100.36 mm
Pinion torque 504.4Nm

Nominal misalignments E0= 0.245 mm
P0= 0.608 mm
G0= −0.009 mm
α0 = −0.087 deg

Table 1: Some basic design data of the transmission.

(a) pinion tooth (concave side) (b) gear tooth (convex side)

Figure 7: Basic loaded patterns: (color areas) HFM patterns; (black dashed curves) geometrically
estimated.

6.2 Nominal Optimization at the Design Point
The target contact pattern is defined as an ellipse over the two teeth in theirrz-domain, as it is

shown in Figure 9. The optimal coefficientsc∗ of the polynomial basis functions that define the
ease-off are obtained with about 250 iterations of the Nelder-Mead algorithm, in less than one hour
of computational time.

The machine settings identification has been performed using two different sets of parameters:
(i) the former (STD) contains 13 parameters that are typically employed by Gleason for tooth topog-
raphy optimization; (ii) the latter (CUSTOM) contains 14 parameters that are slightly different from
the previous ones. Both sets give good results in term of the residual error and the final ease-off
obtained with the CUSTOM set is shown in Figure 8. The new machine settings are collected in
Table 2, while the obtained contact pattern at the design point is shown in Figure 9.

A robustness analysis is then performed over the nominally-optimized transmission with respect
to the following misalignment perturbations:

∆Em
= ∆EM

= 0.1, ∆Pm
= ∆PM

= 0.2, ∆Gm
= ∆GM

= 0.1 (15)

The result of this analysis shows that in some perturbed condition an edge contact situation occurs.
This condition is confirmed by the correspondent analysis inHFM as shown in Figure 10. A ro-
bust optimization is thus required in this case, since the optimization at the design point does not
guarantees no edge contact situation under all the perturbed conditions.
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Figure 8: Target ease-off (blue); obtained ease-off (red).

NOMINAL ROBUST
Parameter BASIC STD CUSTOM STD CUSTOM
Cutter p. rad. (mm) 79.01 81.56 77.10 82.19 74.57
Blade angle (deg) 17.42 9.97 — 8.67 —
Spherical rad. (mm) 350.89 46.83 117.54 35.77 63.49

Rad. sett. (mm) 72.14 113.23 108.27 90.37 116.55
Blank off. (mm) −5.08 −27.76 26.15 7.66 36.00
MCTB (mm) 2.71 28.51 27.00 14.62 30.30
Sliding base (mm) −1.51 −15.82 −14.98 −8.11 −16.82
Cradle angle (deg) 59.73 59.59 58.03 59.82 58.48
Ratio of roll 1.7066 2.7109 2.5791 2.1631 2.5791
2C 0.0226 0.1892 0.3230 0.0667 0.4392
6D -0.0329 −3.4663 -2.4215 −1.625 -4.2203
24E 0.0 −15.6035 14.2764 1.7878 37.8946
120F 0.0 −409.385 -295.1172 −58.214 -520.366
H1 (mm/rad) 0.0 — 0.0522 — -0.00838
H2 (mm/rad2) 0.0 — 0.2474 — 0.03669

Table 2: Basic and optimal settings for the contact pattern optimization at the design point and under
perturbed conditions.

6.3 Robust Optimization
The robust optimization is then performed considering the same misalignment tolerances (15)

and the coefficients of the robust-optimal ease-off are obtained with 300 iterations of the Nelder-
Mead algorithm in about four hours of computational time.

The robust-optimal ease-off is then identified with the sametwo sets of machine parameters that
has been used for the nominal optimization. As for the previous case, both sets produce good result
in terms of the residual error, and the final ease-off obtained with the CUSTOM set is shown in
Figure 11. The resulting machine parameters are collected in Table 2.

As a final step the robustness of the modified transmission is checked: for each misalignment
combination the contact pattern estimated via the geometric approach is compared with the contact
pattern calculated with HFM. The results of the robustness analysis are shown in Figure 12. quite
remarkably in this case no edge contact situations occur thus validating the robust optimization
procedure.
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(a) pinion tooth (concave side) (b) gear tooth (convex side)

Figure 9: Contact patterns: basic (blue dashed line); target (green shaded); optimized (purple dash-
dotted line); after identification (green solid line).

7 CONCLUSION
In this paper a fully automatic procedure to optimize the contact pattern of a hypoid gear drive

under misalignment perturbations has been presented. Thisprocedure does not require a skilled
operator and it allows to robustly optimize a hypoid transmission in a few hours.

The systematic nature of the presented methodology allows to address other indices of perfor-
mance of a hypoid drive, such as the transmission error function, and to deal with the robustness
with respect to topography errors.
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Figure 11: (Blue) Robust target ease-off; (red) obtained ease-off.

(a) ( ↓ , ↓ , ↓ ) (b) ( ↓ , ↓ , ↑ )

(c) ( ↓ , ↑ , ↓ ) (d) ( ↓ , ↑ , ↑ )

(e) ( ↑ , ↓ , ↓ ) (f) ( ↑ , ↓ , ↑ )

(g) ( ↑ , ↑ , ↓ ) (h) ( ↑ , ↑ , ↑ )

Figure 12: Perturbed contact patterns for differentE, P andG and ease-off topography optimized
under perturbed conditions.
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