Mechanism of leakage in flat seals
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SUMMARY. We present the results of a novel approach to esértze fluid leakage in flat seals,
based on the analogy between the seal-substrate interfdca porous medium. We assume that
the interface is a random distribution of non-contact pascfthe pores) and contact spots (islands):
leakage may occur only through the pores. The lateral sidehaight of the pores are distributed
according to a probability density function, that we cadtalon the basis of Persson’s theory of con-
tact mechanics. Our theoretical approach is based on a pexeblation scheme that can stimulate
further theoretical or experimental investigations. Witthis percolation scheme we apply critical
path analysis (CPA) to calculate the hydraulic condugtieit the medium. We also compare our
predictions with other calculations very recently presdrtb the scientific community.

1 INTRODUCTION

In several mechanical devices the simplest way to preveict flloww under a pressure gradient
is the use of a mechanical seal. A typical flat seal is usua#igerof a relatively soft elastic block
squeezed against a stiffer body, so that the nominally flatiaab interface behaves as a wall the liquid
can not pass through. However, two nominally flat surfacesiriact often permit some fluid to leak
because roughness makes the contact between the seafacesumperfect. As a consequence,
the fluid can find a path to percolate and leak between the tambhkrs at different pressures.
Although seals are often one of most critical componentsagctral engineering applications only
very recently some theoretical approaches have been moposalculate leak rate of seals [1], [2],
[3] and clarify the basic physics behind the problem. Thaseltties are based on multiscale theory
of contact mechanics [4] and make use of percolation thegjrarid Critical Path Analysis (CPA),
which have been developed by physicists in seventies talleéécthe conductivity of a network
of randomly distributed resistors [6], [7], [8], [9]. The $ia physics of the phenomenon is here
described. According to Ref. [4], the apparent area of @inta(¢) between the two surfaces
is a function of the magnificatiog = L/ for any given applied load and material properties.
Here ) is the length scale at which we observe the system,/arsdthe lateral size of the nominal
contact aready. When(¢ = 1, the contacting bodies look like as they were perfectly simamd
the apparent area is just equal the nominal contact areaatBuagnificationg > 1 non contact
patches will appear. The number and the extension of sucltomiact zones will rapidly increase
as the magnification is increased. When the magnificatiorhesaa critical valu€, (percolation
threshold), one of these clusters becomes so large to cottmeetwvo opposite sides of the seal, i.e.
it percolates and leakage of fluid may occur along this exgstihannel. Percolation theory and
theory of contact mechanics allow to evaluate the threstalde (., and to determine the lateral
size and height of the smallest constriction along the chlanvhich we assume to be responsible
of the entire pressure drop. In the earliest approachesK8&e [1], [2]) the value of,. and the



size of critical constriction along the percolation chdrate = (. was considered to be enough to
estimate the leakage of fluid and, hence, the conductintpf the seal. However, we observe that
the calculation of seal conductivity needs also the diganbetween two adjacent channels to be
calculated, as well as the distarideetween the critical constrictions along the same chafielse
two gquantities in previous approaches were fixed arbijralil this article we present a further step
(Ref. [3]) and suggest a possible improvement of the metloggo Indeed, we first observe that
percolation theory predicts that at the critical magnifaathe distance ({.) between to adjacent
channels is infinitely large, and (unless also the distdri¢g) is infinite) one concludes that the
seal conductivity is necessarily zero. Therefore, we ittfiat fluid leakage will actually occur on
channels which are formed at magnifications beyond theatitialue¢.. In this case, although the
constrictions of such channels are smaller (with a smatbedactancey), the distancey between
these channels is finite and the seal conductiwgymust result larger than zero i.eg > 0. One
can then, by following the CPA technique (see Ref. [9] forails}, calculate the actual value of the
seal conductivity by means of an optimization procedure.

2 THE MODEL
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Figure 1: Sketch of the continuous percolation scheme adofthe figure shows the apparent area
of contact (black) when the magnification is increased (ftefnto right). Randomly distributed
voids (cyan) with size- X initially make unconnected non contact areas. As magnibicas in-
creased new vacancies of smaller dimensions join the nalaciarea and form clusters. Only when
¢ = (. one cluster of percolation (green) in an infinitely extendegion connects the two oppo-
site sides permitting the leakage. Rate limiting pores elnematically shown (red). In the proposed
percolation scheme, voids are randomly distributed sguari¢h dimensions following a probability
density function;()) that the authors have derived from a theory of contact meéckan

We assume that the seal is a rubber block pressed againstr@pisaough rigid surface by
means a uniform distribution of pressysg The nominal contact area is a rectangle of sizes
I, wherel, is the length of the seal along the liquid leakage directiod ia the seal lateral size.
We take under analysis a very large (infinite in the limitiragse) square in the interior of the seal-
substrate interface. We assume the square has a side di lenghd we define the magnification
¢ = L/, where) is the resolution at which we observe the contact. At magtifia equal to
1, the two surfaces matches perfectly at the interface, finerdeakage of liquid cannot occur at
this magnification. However because of surface roughnkessdueezing pressure is not in general



sufficient to guarantee complete contact, as a consequena®ntact areas will appear as we reduce
the length scal@ of observation, i.e. as we increase the magnificafiolVhen the magnification

is sufficiently large some percolation channels are formbithvconnect the two opposite sides of

the square. The channels are separated by an average spa€img size and shape of the channels

Figure 2: Sketch of a two-scale rough profile in contact witheastic block. At scale the voids
have a width\; and height.;, while at scale + 1 the voids have a width;,; and heightu; ;. In
three dimensional contact the voids have dimensions ofrorde \; x u;. The picture is not in
scale: according to theory of contact mechanics< \.

depend on the roughness and on the elastic deformation bfdbk. In particular the cross section
of the channel varies along the path and one can imaginettregidhes a minimum value at some
location. Assuming that the pressure drop is only causedhéset strong channel restrictions, the
calculation of the seal conductivity needs the distanoetween these restrictions, the conductance
of each restriction, and the spacing between two paralleheéls. Figure 1 shows a schematic
projection of the non contact areas over g plane at different magnifications: gds increased
new voids are formed. Being, at each magnificatjpthe size of the new formed void of the order
A = L/, one concludes that as the magnification is increased dsicrgly smaller voids may join
the existing ones to form clusters of non contact areas. itke$the voids is distributed according
to a continuous probability density function()). In particular, if A()\) is the apparent area of
contact in units of nominal contact area at a fixed magnificeti= L/)\, then the probability of a
square site to have a characteristic size< A is P(A\* < A) = A()\). Thus, taking the\ derivative

we obtain 4A(
no) = 220 (1)

where A(\) can be derived from numerical calculations of contact betweugh surfaces or from

a theory of contact mechanics. In particular we have fourrdgda’s theory of contact mechanics
[4], [10], [11] is the most convenient approach. As showrhia [Figure 1 and according to [1, 2] we
know that at the critical magnificatiafy the non contact area percolates and one percolating channel
connects the two opposite sides of the nominal contact ditga.critical value of the magnification

(. is found enforcing the conditioA y¢ (() = P. whereAyc(¢) = 1— A (¢) is the normalized non
contact area and. is the critical threshold probability which depends on tleecplation scheme

[5]. We assumeP. ~ 0.6 as suggested in Refs. [1] and [12]. At the critical magnif@at.,
percolation theory shows that just one channel is formedhediing the two opposite sides of the



infinite interface. For this reason, although the chann#éloairy a certain amount of fluid through
its smallest restriction of siz&. = L/(,, its contribution to the overall conductivitys of the seal
vanishes. We must conclude that the hydraulic conductiviitthe seal is instead determined by
channels which are formed at magnificatipr- (.. In fact, if the magnification is increased beyond
the critical value, additional non contact zones appeargd8jthat at very large magnifications the
interface will look like a large sea made of non contact akeils a distribution of small islands
of contact zones. We map the sea as an ensemble of squaresdofrralistributed lateral size
A = L/(. Each square has a height{) < A, which we calculate on the basis of the theoretical
approach presented in Refs. [10], [11]. Being< A the hydraulic conductance(¢) of each
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Figure 3. Sketch of the equivalent hydraulic network. When= (; the percolation channels
have distance((¢;) from each other and the the distance between the rate lgnitimductances
(big red circles) i9(¢1). When¢ = ¢, the percolation channels have distand€2) and the the

distance between the rate limiting conductances (smadlrgoircles) isi((z). The two networks

have different conductivity, that is so a function of the magnificatign



non-contact square is

g(Q) = 20 (2

wherey is the fluid viscosity. At any given magnificatiagn> (. the channels will be constituted
of squares of siza larger thanL/¢, i.e. we assume that at any given magnificatjpthe smallest
restriction that the fluid flow encounters along the chanrel lateral sizd./(, heightu (¢) and
conductance (¢) (it is noteworthy to observe that on each channel the nhumb&mallest restric-
tions can be larger than one). We further assume that thepaasure drop on each channel is
determined only by the smallest restrictions. Now, let wufoon that ensemble of channels with
smallest restrictions of lateral siZe/¢, and cally (¢) the average distance between the channels
and! (¢) the average distance between the smallest restrictiong #e channel. A sketch of this
hydraulic system is shown in the Figure 3 for two differeriues of with (; > ¢;. We can then
easily calculate the conductivity of the ensemble of chEnaemagnificatiord as

(<)

U(C):g(om (3
According to percolation theory follows a power law
X (€)= xo0lA () =A™ (4

nearby the percolation threshold, withan universal exponent that for two dimensional systems is
about4/3 [5] and x, a reference length. Eq. (3) shows that the conductivity efehsemble of
channels with smallest restrictions of lateral siz& depends on the magnificatign In particu-

lar as( is increased the correlation length¢) rapidly decreases from an infinite valueatto a
finite value at{ > (.. As a consequence, the conductivity() will increase as the magnification
is increased. However, increasing the magnification alseroiénes a strong reduction of the con-
ductancey (¢), whereas the quantity(¢) may decrease or change weakly with the magnification.
Therefore, an optimal valug,,; can be found at which the conductivity takes the maximumevalu
0 (Copt) = 0opt- IN the spirit of CPA, one assumes that all the fluid leakageisied only by chan-
nels with smallest restriction,,;, = L/(,,, and, therefore, that the total conductivity of the
seals is given by s = o,,:. In Order to carry out a quantitative estimation of the sealductivity

we need to calculate the average distahamong the critical restrictions. Some authors argue [5]
that! = x. Such an assumption simply givess = o,,: = g ({:) = 0., Which is the same value
obtained by Persson [1]. However other authors [9] assatt th general, the quantitymay be
much smaller thery, and should depend only on the probability density functboonductances

7 (A). Following this second idea the estimation of the quarit{ty) can be carried out as shown
in Ref. [3] and gives the following expression of the condlitt of the ensemble of channels with
smallest restriction of size = L/(:

1 - A() v

o= 9% [A(¢) — A(Q)]” AN+ AN/2) — AN — AN/2) ©)

where A\ is a properly selected class breadth. Eq. (5) holds true clolse to the percolation
threshold provided that > (.. According to CPA the maximum value efgiven by Eq. (5) gives
the value of the conductivity of the seal. We remark that ttaa area of contact and the separation
between surfaces as functions of the magnification have ¢adeulated following Refs. [4, 10].



0.2 0‘,4 016 O‘.S 1.C 0.60 0.62 0.‘04 0.66 0.68 O.‘].O O.‘12 0.‘14
AAcri p(1-?)/E
(@) (b)

Figure 4: The ratias/o,,, of channels having the smallest restrictions with lateizé 9 as a
function of the ratio\/ A, at a given applied pressugg ~ 1 MPa (a) and the ratio\/ A, as a
function of non dimensional logg} (1 — u2) /E (b). Results are shown for a surface with features
described at the beginning of the section and withvas = 2 um.

3 RESULTS

In this section we present the results of our theoreticat@pmh. We consider a flat seal made
of a rubber block squeezed against a rough rigid substrate. rdugh surface is a isotropic self
affine fractal forgy < ¢ < ¢1, with fractal dimensionD; = 2.2. The quantitygy = 27/L andg¢;
is the short-distance cut-off vector i.g, = 27/\; with \; the shortest wavelength of the surface
roughness. We assume that the lateral size of the non-¢atfaares is a multiple of the shortest
length-scale\;, so that we can assurde\ = )\;. Also we usey, ~ L. The surface power spectrum
of a self-affine surface satisfies the relation

7 —2(H+1)
C (q) = Co (qo) ; G0 <q<q (6)

whereH is the Hurst exponent! = 3 — D;. Cy can be calculated as

-1

h2 2(H+1)
Co- ! >["0H (45" — ") )

™

Where<h2> is the root mean square roughness of the surface.

Numerical calculations have been carried outgpr= 10* m—!, ¢; = 7.8 10° m~!. The rubber
has a Young's modulu¥ = 10 MPa and a Poisson ratie = 0.5. The fluid is assumed to be
incompressible and Newtonian with a viscosity= 0.001 Ns/m?. In Figure 4(a) the normalized
conductivityo /o, is shown as a function of the ratiy’ A at a given applied pressupg ~ 1 MPa
and for a surfacems = 2 um. As expected, the conductivity of those ensemble of channith
smallest restrictions of sizk, has a local maximum fok < A.. Local maxima identify the wave
length \,p:, which is shown in Fig. 4(b) as a function of the applied loadinits of \.. Observe
that the optimal value,,; has a local minimum equal to about th& of the critical wave length
Ac, S0 that in the whole range of loads the difference betweewptimal value\,,, and the critical
value )\, is less tharB0%. In fig. 5(a) we show the critical wave length (dashed lines) and of
the optimal wave lengtiA,,; as a function of the applied load in a linear-log diagram. Tigere
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Figure 5: The lateral siza of the smallest restriction at critical (dashed) and optifoantinuous)
magnification (a) and the heightof the smallest restriction at critical (dashed) and optif@antin-
uous) magnification (b) as a function of the nominal applaatilp,. Results are shown for the self
affine fractal surface described in the text and for valugh®@foot-mean-square roughnéssm, 2
pum, 4 pm, 6 pm.

again shows that the difference between the two quanttiegry limited. The same behavior is
followed by the height of the smallest restriction at theical magnificationu. = w ({.) and the
height of the smallest restriction,,: = uop: (Cope) at the optimal magnification [see Fig. 5(b)].
As expected both the lateral size and the height of the sgtastriction along the channel rapidly
decrease as the load is increased. The curves are plottdifféoent values of the root mean square
(rms) roughness of the substrate, and show how strong isfluemce of this surface parameter in
determining the size of the channel restriction. Being, andu,. relatively close to each other,
we expect that the optimal conductangg, turns out to be of the same order of magnitude as the
critical conductance. = g (¢.). However the optimal conductivity may instead differ verych if
compared to the conductivity. = g (¢.), that, instead, would be obtained under the assumption that
I = x. The reason of this very strong difference can be explaihede considers that following the
arguments of Ref. [3] about the calculation/pit can result several order of magnitude smaller than
the correlation lengtly. Finally, Figure 6 shows the seal conductivity versus theinal applied
load in a linear-log diagram assuming: (i) tHat y (dashed line) and (ii) thdtfollows Ref. [3]
(solid line). The former assumption gives the same resulh &ersson’s theory [1]. The latter,
instead, according to Eq. (5) needs the definition of the tarstantsA A\ andy,. As stated above,
we have used\\ = \; andyx, = L. Such an arbitrary choice of the constants makes rathecudiffi

a clear comparison between the two different approachesreidre an experimental activity should
be carried out to choose the best parametexsandy, and compare the different methodologies to
determine which one gives the best results.

4 CONCLUSIONS

In this paper we show the results of a novel approach to asldhesproblem of fluid leakage
in seals. The approach is based on critical path analysiparwblation theory. It makes use of a
recent theory of contact mechanics between rough surfaceddulate the contact area between the
contacting solids and the separation at interface as fumetf the magnification. These are, indeed,
fundamental quantities to calculate the conductance ofrilceo channels carrying the liquid flow.
We show that the conductivity of the seals is strictly redaiethe distancg between two adjacent



1018

o [m/(Pag]

H

S
w
4

1048 b

Figure 6: Seal conductivity calculated assuming thatcalculated as suggested by [3] (continuous
line) and that = x (dashed line) as a function of the applied lgad Four values of the rms have
been investigated. Surface parameters are those desuribection Ill.

channels and to the distantbetween adjacent smallest restrictions along the samanehghome
authors argue thdt = . In this case we obtain that the seal conductivity is justaédo the
conductance of the smallest restriction that is encoudtateng the flow carrying channel which
is formed just at the threshold magnificatign (the quantity(. is the value of magnification at
which for the first time a percolation cluster of non contagfions connects the two side at different
pressure of the seal). In this case our calculated valueeo$élal conductivity coincides with the
one calculated with different approaches [1], [2]. Howes@me authors argue thamay be much
smaller thany. In this casd must be calculated on the basis of a probability distributiélocal
conductances and may lead to a much smaller value of the ctivithuof the seal. This, suggest to
carry out a detailed experimental investigation or fullyrrarical calculations to clarify which one
of the proposed assumptions gives more accurate prediction
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