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SUMMARY. We present the results of a novel approach to estimate the fluid leakage in flat seals,
based on the analogy between the seal-substrate interface and a porous medium. We assume that
the interface is a random distribution of non-contact patches (the pores) and contact spots (islands):
leakage may occur only through the pores. The lateral size and height of the pores are distributed
according to a probability density function, that we calculate on the basis of Persson’s theory of con-
tact mechanics. Our theoretical approach is based on a novelpercolation scheme that can stimulate
further theoretical or experimental investigations. Within this percolation scheme we apply critical
path analysis (CPA) to calculate the hydraulic conductivity of the medium. We also compare our
predictions with other calculations very recently presented to the scientific community.

1 INTRODUCTION
In several mechanical devices the simplest way to prevent fluid flow under a pressure gradient

is the use of a mechanical seal. A typical flat seal is usually made of a relatively soft elastic block
squeezed against a stiffer body, so that the nominally flat contact interface behaves as a wall the liquid
can not pass through. However, two nominally flat surfaces incontact often permit some fluid to leak
because roughness makes the contact between the sealing surfaces imperfect. As a consequence,
the fluid can find a path to percolate and leak between the two chambers at different pressures.
Although seals are often one of most critical components in practical engineering applications only
very recently some theoretical approaches have been proposed to calculate leak rate of seals [1], [2],
[3] and clarify the basic physics behind the problem. These theories are based on multiscale theory
of contact mechanics [4] and make use of percolation theory [5] and Critical Path Analysis (CPA),
which have been developed by physicists in seventies to calculate the conductivity of a network
of randomly distributed resistors [6], [7], [8], [9]. The basic physics of the phenomenon is here
described. According to Ref. [4], the apparent area of contact A (ζ) between the two surfaces
is a function of the magnificationζ = L/λ for any given applied load and material properties.
Hereλ is the length scale at which we observe the system, andL is the lateral size of the nominal
contact areaA0. Whenζ = 1, the contacting bodies look like as they were perfectly smooth and
the apparent area is just equal the nominal contact area. Butat magnificationsζ > 1 non contact
patches will appear. The number and the extension of such noncontact zones will rapidly increase
as the magnification is increased. When the magnification reaches a critical valueζc (percolation
threshold), one of these clusters becomes so large to connect the two opposite sides of the seal, i.e.
it percolates and leakage of fluid may occur along this existing channel. Percolation theory and
theory of contact mechanics allow to evaluate the thresholdvalueζc, and to determine the lateral
size and height of the smallest constriction along the channel, which we assume to be responsible
of the entire pressure drop. In the earliest approaches (SeeRefs. [1], [2]) the value ofζc and the
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size of critical constriction along the percolation channel at ζ = ζc was considered to be enough to
estimate the leakage of fluid and, hence, the conductivityσS of the seal. However, we observe that
the calculation of seal conductivity needs also the distance χ between two adjacent channels to be
calculated, as well as the distancel between the critical constrictions along the same channel.These
two quantities in previous approaches were fixed arbitrarily. In this article we present a further step
(Ref. [3]) and suggest a possible improvement of the methodology. Indeed, we first observe that
percolation theory predicts that at the critical magnification the distanceχ (ζc) between to adjacent
channels is infinitely large, and (unless also the distancel (ζc) is infinite) one concludes that the
seal conductivity is necessarily zero. Therefore, we inferthat fluid leakage will actually occur on
channels which are formed at magnifications beyond the critical valueζc. In this case, although the
constrictions of such channels are smaller (with a smaller conductanceg), the distanceχ between
these channels is finite and the seal conductivityσS must result larger than zero i.e.σS > 0. One
can then, by following the CPA technique (see Ref. [9] for details), calculate the actual value of the
seal conductivity by means of an optimization procedure.

2 THE MODEL

Figure 1: Sketch of the continuous percolation scheme adopted. The figure shows the apparent area
of contact (black) when the magnification is increased (fromleft to right). Randomly distributed
voids (cyan) with size∼ λ initially make unconnected non contact areas. As magnification is in-
creased new vacancies of smaller dimensions join the non contact area and form clusters. Only when
ζ = ζc one cluster of percolation (green) in an infinitely extendedregion connects the two oppo-
site sides permitting the leakage. Rate limiting pores are schematically shown (red). In the proposed
percolation scheme, voids are randomly distributed squares, with dimensions following a probability
density functionη(λ) that the authors have derived from a theory of contact mechanics.

We assume that the seal is a rubber block pressed against a isotropic rough rigid surface by
means a uniform distribution of pressurep0. The nominal contact area is a rectangle of sizeslx,
ly wherely is the length of the seal along the liquid leakage direction and lx the seal lateral size.
We take under analysis a very large (infinite in the limiting case) square in the interior of the seal-
substrate interface. We assume the square has a side of length L, and we define the magnification
ζ = L/λ, whereλ is the resolution at which we observe the contact. At magnification equal to
1, the two surfaces matches perfectly at the interface, therefore leakage of liquid cannot occur at
this magnification. However because of surface roughness, the squeezing pressure is not in general
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sufficient to guarantee complete contact, as a consequence non contact areas will appear as we reduce
the length scaleλ of observation, i.e. as we increase the magnificationζ. When the magnification
is sufficiently large some percolation channels are formed which connect the two opposite sides of
the square. The channels are separated by an average spacingχ. The size and shape of the channels

Figure 2: Sketch of a two-scale rough profile in contact with an elastic block. At scalei the voids
have a widthλi and heightui, while at scalei + 1 the voids have a widthλi+1 and heightui+1. In
three dimensional contact the voids have dimensions of order λi × λi × ui. The picture is not in
scale: according to theory of contact mechanicsu << λ.

depend on the roughness and on the elastic deformation of theblock. In particular the cross section
of the channel varies along the path and one can imagine that it reaches a minimum value at some
location. Assuming that the pressure drop is only caused by these strong channel restrictions, the
calculation of the seal conductivity needs the distancel between these restrictions, the conductance
of each restriction, and the spacing between two parallel channels. Figure 1 shows a schematic
projection of the non contact areas over thex-y plane at different magnifications: asζ is increased
new voids are formed. Being, at each magnificationζ, the size of the new formed void of the order
λ = L/ζ, one concludes that as the magnification is increased, increasingly smaller voids may join
the existing ones to form clusters of non contact areas. The size of the voids is distributed according
to a continuous probability density functionη (λ). In particular, ifA(λ) is the apparent area of
contact in units of nominal contact area at a fixed magnification ζ = L/λ, then the probability of a
square site to have a characteristic sizeλ∗ < λ is P (λ∗ < λ) = A(λ). Thus, taking theλ derivative
we obtain

η(λ) =
dA(λ)

dλ
(1)

whereA(λ) can be derived from numerical calculations of contact between rough surfaces or from
a theory of contact mechanics. In particular we have found Persson’s theory of contact mechanics
[4], [10], [11] is the most convenient approach. As shown in the Figure 1 and according to [1, 2] we
know that at the critical magnificationζc the non contact area percolates and one percolating channel
connects the two opposite sides of the nominal contact area.This critical value of the magnification
ζc is found enforcing the conditionANC (ζ) = Pc whereANC(ζ) = 1−A (ζ) is the normalized non
contact area andPc is the critical threshold probability which depends on the percolation scheme
[5]. We assumePc ≈ 0.6 as suggested in Refs. [1] and [12]. At the critical magnification ζc,
percolation theory shows that just one channel is formed connecting the two opposite sides of the
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infinite interface. For this reason, although the channel will carry a certain amount of fluid through
its smallest restriction of sizeλc = L/ζc, its contribution to the overall conductivityσS of the seal
vanishes. We must conclude that the hydraulic conductivityof the seal is instead determined by
channels which are formed at magnificationζ > ζc. In fact, if the magnification is increased beyond
the critical value, additional non contact zones appear [9], so that at very large magnifications the
interface will look like a large sea made of non contact areaswith a distribution of small islands
of contact zones. We map the sea as an ensemble of squares of random distributed lateral size
λ = L/ζ. Each square has a heightu (ζ) ≪ λ, which we calculate on the basis of the theoretical
approach presented in Refs. [10], [11]. Being,u ≪ λ the hydraulic conductanceg (ζ) of each

Figure 3: Sketch of the equivalent hydraulic network. Whenζ = ζ1 the percolation channels
have distanceχ(ζ1) from each other and the the distance between the rate limiting conductances
(big red circles) isl(ζ1). Whenζ = ζ2 the percolation channels have distanceχ(ζ2) and the the
distance between the rate limiting conductances (small green circles) isl(ζ2). The two networks
have different conductivityσ, that is so a function of the magnificationζ.
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non-contact square is

g (ζ) =
u3 (ζ)

12µ
(2)

whereµ is the fluid viscosity. At any given magnificationζ ≥ ζc the channels will be constituted
of squares of sizeλ larger thanL/ζ, i.e. we assume that at any given magnificationζ, the smallest
restriction that the fluid flow encounters along the channel has lateral sizeL/ζ, heightu (ζ) and
conductanceg (ζ) (it is noteworthy to observe that on each channel the number of smallest restric-
tions can be larger than one). We further assume that the total pressure drop on each channel is
determined only by the smallest restrictions. Now, let us focus on that ensemble of channels with
smallest restrictions of lateral sizeL/ζ, and callχ (ζ) the average distance between the channels
andl (ζ) the average distance between the smallest restrictions along the channel. A sketch of this
hydraulic system is shown in the Figure 3 for two different values ofζ with ζ2 > ζ1. We can then
easily calculate the conductivity of the ensemble of channels at magnificationζ as

σ (ζ) = g (ζ)
l (ζ)

χ (ζ)
(3)

According to percolation theoryχ follows a power law

χ (ζ) = χ0 |A (ζc) − A (ζ)|
−α (4)

nearby the percolation threshold, withα an universal exponent that for two dimensional systems is
about4/3 [5] and χ0 a reference length. Eq. (3) shows that the conductivity of the ensemble of
channels with smallest restrictions of lateral sizeL/ζ depends on the magnificationζ. In particu-
lar asζ is increased the correlation lengthχ (ζ) rapidly decreases from an infinite value atζc to a
finite value atζ > ζc. As a consequence, the conductivityσ (ζ) will increase as the magnification
is increased. However, increasing the magnification also determines a strong reduction of the con-
ductanceg (ζ), whereas the quantityl (ζ) may decrease or change weakly with the magnification.
Therefore, an optimal valueζopt can be found at which the conductivity takes the maximum value
σ (ζopt) = σopt. In the spirit of CPA, one assumes that all the fluid leakage iscarried only by chan-
nels with smallest restrictionλopt = L/ζopt, and, therefore, that the total conductivityσS of the
seals is given byσS = σopt. In order to carry out a quantitative estimation of the seal conductivity
we need to calculate the average distancel among the critical restrictions. Some authors argue [5]
that l = χ. Such an assumption simply gives:σS = σopt = g (ζc) = σc, which is the same value
obtained by Persson [1]. However other authors [9] assert that, in general, the quantityl may be
much smaller thenχ, and should depend only on the probability density functionof conductances
η (λ). Following this second idea the estimation of the quantityl (ζ) can be carried out as shown
in Ref. [3] and gives the following expression of the conductivity of the ensemble of channels with
smallest restriction of sizeλ = L/ζ:

σ = g
λ

χ0
[A (ζc) − A(ζ)]

α

[

1 − A(ζ)

A(λ + ∆λ/2) − A(λ − ∆λ/2)

]1/2

(5)

where∆λ is a properly selected class breadth. Eq. (5) holds true onlyclose to the percolation
threshold provided thatζ > ζc. According to CPA the maximum value ofσ given by Eq. (5) gives
the value of the conductivity of the seal. We remark that the actual area of contact and the separation
between surfaces as functions of the magnification have beencalculated following Refs. [4, 10].
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Figure 4: The ratioσ/σopt of channels having the smallest restrictions with lateral size λ as a
function of the ratioλ/λopt at a given applied pressurep0 ∼ 1 MPa (a) and the ratioλ/λopt as a
function of non dimensional loadp0

(

1 − ν2
)

/E (b). Results are shown for a surface with features
described at the beginning of the section and with anrms = 2 µm.

3 RESULTS
In this section we present the results of our theoretical approach. We consider a flat seal made

of a rubber block squeezed against a rough rigid substrate. The rough surface is a isotropic self
affine fractal forq0 < q < q1, with fractal dimensionDf = 2.2. The quantityq0 = 2π/L andq1

is the short-distance cut-off vector i.e.q1 = 2π/λ1 with λ1 the shortest wavelength of the surface
roughness. We assume that the lateral size of the non-contact squares is a multiple of the shortest
length-scaleλ1, so that we can assume∆λ = λ1. Also we useχ0 ≈ L. The surface power spectrum
of a self-affine surface satisfies the relation

C (q) = C0

(

q

q0

)

−2(H+1)

; q0 < q < q1 (6)

whereH is the Hurst exponentH = 3 − Df . C0 can be calculated as

C0 =

〈

h2
〉

π

[

q
2(H+1)
0

H

(

q−2H
0 − q−2H

1

)

]

−1

(7)

where
〈

h2
〉

is the root mean square roughness of the surface.
Numerical calculations have been carried out forq0 = 104 m−1, q1 = 7.8 109 m−1. The rubber

has a Young’s modulusE = 10 MPa and a Poisson ratioν = 0.5. The fluid is assumed to be
incompressible and Newtonian with a viscosityµ = 0.001 Ns/m2. In Figure 4(a) the normalized
conductivityσ/σopt is shown as a function of the ratioλ/λc at a given applied pressurep0 ≃ 1 MPa
and for a surfacerms = 2 µm. As expected, the conductivity of those ensemble of channels with
smallest restrictions of sizeλ, has a local maximum forλ < λc. Local maxima identify the wave
lengthλopt, which is shown in Fig. 4(b) as a function of the applied load in units ofλc. Observe
that the optimal valueλopt has a local minimum equal to about the70% of the critical wave length
λc, so that in the whole range of loads the difference between the optimal valueλopt and the critical
valueλc is less than30%. In fig. 5(a) we show the critical wave lengthλc (dashed lines) and of
the optimal wave lengthλopt as a function of the applied load in a linear-log diagram. Thefigure
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Figure 5: The lateral sizeλ of the smallest restriction at critical (dashed) and optimal (continuous)
magnification (a) and the heightu of the smallest restriction at critical (dashed) and optimal (contin-
uous) magnification (b) as a function of the nominal applied loadp0. Results are shown for the self
affine fractal surface described in the text and for values ofthe root-mean-square roughness1 µm, 2
µm, 4 µm, 6 µm.

again shows that the difference between the two quantities is very limited. The same behavior is
followed by the height of the smallest restriction at the critical magnificationuc = u (ζc) and the
height of the smallest restrictionuopt = uopt (ζopt) at the optimal magnification [see Fig. 5(b)].
As expected both the lateral size and the height of the smallest restriction along the channel rapidly
decrease as the load is increased. The curves are plotted fordifferent values of the root mean square
(rms) roughness of the substrate, and show how strong is the influence of this surface parameter in
determining the size of the channel restriction. Beinguopt anduc relatively close to each other,
we expect that the optimal conductancegopt turns out to be of the same order of magnitude as the
critical conductancegc = g (ζc). However the optimal conductivity may instead differ very much if
compared to the conductivityσc = g (ζc), that, instead, would be obtained under the assumption that
l = χ. The reason of this very strong difference can be explained if one considers that following the
arguments of Ref. [3] about the calculation ofl, it can result several order of magnitude smaller than
the correlation lengthχ. Finally, Figure 6 shows the seal conductivity versus the nominal applied
load in a linear-log diagram assuming: (i) thatl = χ (dashed line) and (ii) thatl follows Ref. [3]
(solid line). The former assumption gives the same result asin Persson’s theory [1]. The latter,
instead, according to Eq. (5) needs the definition of the two constants∆λ andχ0. As stated above,
we have used∆λ = λ1 andχ0 = L. Such an arbitrary choice of the constants makes rather difficult
a clear comparison between the two different approaches. Therefore an experimental activity should
be carried out to choose the best parameters∆λ andχ0 and compare the different methodologies to
determine which one gives the best results.

4 CONCLUSIONS
In this paper we show the results of a novel approach to address the problem of fluid leakage

in seals. The approach is based on critical path analysis andpercolation theory. It makes use of a
recent theory of contact mechanics between rough surfaces to calculate the contact area between the
contacting solids and the separation at interface as functions of the magnification. These are, indeed,
fundamental quantities to calculate the conductance of themicro channels carrying the liquid flow.
We show that the conductivity of the seals is strictly related to the distanceχ between two adjacent
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Figure 6: Seal conductivity calculated assuming thatl is calculated as suggested by [3] (continuous
line) and thatl = χ (dashed line) as a function of the applied loadp0. Four values of the rms have
been investigated. Surface parameters are those describedin section III.

channels and to the distancel between adjacent smallest restrictions along the same channel. Some
authors argue thatl = χ. In this case we obtain that the seal conductivity is just equal to the
conductance of the smallest restriction that is encountered along the flow carrying channel which
is formed just at the threshold magnificationζc (the quantityζc is the value of magnification at
which for the first time a percolation cluster of non contact regions connects the two side at different
pressure of the seal). In this case our calculated value of the seal conductivity coincides with the
one calculated with different approaches [1], [2]. Howeversome authors argue thatl may be much
smaller thanχ. In this casel must be calculated on the basis of a probability distribution of local
conductances and may lead to a much smaller value of the conductivity of the seal. This, suggest to
carry out a detailed experimental investigation or fully numerical calculations to clarify which one
of the proposed assumptions gives more accurate predictions.
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