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SUMMARY. The present paper intends to couple the Fast Multipole Method (FMM) with the Bound-
ary Element Method (BEM) in 2D acoustic problems. The evaluation of the integrals involved in the
governing Boundary Integral Equations (BIEs) is fasten by the FMM contribution. The multipole
expansion and some suitable moment translations make the procedure much faster if compared to
the conventional approach. The generalised minimal residual iterative solver (GMRES) is adopted to
improve the overall computational efficiency. A simple numerical example is shown to demonstrate
the reliability of the method.

1 INTRODUCTION
The BEM has been used to solve interior/exterior acoustic problems for many years because

of its boundary only discretisation and automatically satisfaction of the radiation condition at in-
finity. The main drawback is related to the final system of equations which results to have dense,
non-symmetrical and sometimes ill-conditioned coefficient matrices. Solving the system of equa-
tions becomes prohibitively expensive when applied at large-scale engineering problems. In fact,
the computation of the coefficients of the matrices governing the discrete problem require O(N2)
operations and another O(N3) operations are necessary to solve the system using any direct solver
(let N be the number of equations).

In 1983 Rokhlin [1] proposed an algorithm for rapid solution of classical boundary value prob-
lems for the Laplace equation based on iteratively solving integral equations of potential theory.
The CPU time requirement obtained was proportional to N . The starting point was the harmonic
expansion of the kernel. The algorithm appeared to be the most efficient of the at that time available
tools for the solution of large scale boundary value problems whenever the solution needed to be
evaluated at a limited number of points. The procedure was then extended, a few years later, to
two dimensional acoustic scattering in [2] where the author described a similar procedure capable to
reduce the CPU time requirements of the algorithm to N4/3. In both papers no connection with the
BEM was introduced.

It took almost ten years for scientific community to realise the potential capability of coupling the
FMM with the BEM. A comprehensive review of the fundamentals of FMM and FMM accelerated
Boundary Integral Equation Method (BIEM) with reference to the Laplace and Helmholtz equations
is surveyed in [3]. With conventional BIEM it is not possible to solve beyond several thousands
of unknowns with a desktop computer. Actually, methods of solution of problems of the size of
more than 108 unknowns (which roughly correspond to 106 unknowns in the BEM context) are
investigated in FEM with massively parallel computers. With fast multipole accelerated BIEM,
problems of the size of 106 unknowns can be handled even in desktop computers. However, the use
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of the FMM has increased the complexity in implementations of the BEM: the structure of the code
changes completely and the pre-processor stage becomes more important than in the conventional
approach. An interesting introduction to the Fast Multipole Boundary Element Method (FMBEM)
for potential problems is presented in [4]: the structure of a FMBEM program along with the details
of the method with reference to the Laplace equation is presented.

An adaptive FMBEM for 3D acoustic wave problems is investigated in [5] where the Burton-
Miller formulation is applied to overcome the non-uniqueness difficulties. The adaptive approach
is demonstrated to be several times faster than the non-adaptive FMBEM while maintaining the
accuracy of the BEM.

To the authors’ knowledge [6] represents the unique application of the FMBEM to 2D acoustic
problems. The FMM is used to accelerate the construction of the influence matrix in the BEM. The
approach is of non-adaptive type and the number of floating-point operations is reduced from O(N2)
to O(N logaN) where a is a small constant independent on N .

This paper intends to present a FMBEM for two-dimensional acoustics aimed at noise control.
The iterative solver GMRES is adopted to improve the overall computational efficiency. A numer-
ical example is shown to demonstrate the accuracy and potentials for solving large-scale problems.
After this Introduction, the integral equations which govern the 2D acoustic problem are presented
along with the main relations of the FMM. Afterward, the algorithm and the integration schemes
are detailed. Finally, a numerical example is investigated in order to measure the reliability of the
procedure.

2 THE FAST MULTIPOLE BOUNDARY INTEGRAL RELATIONS
The propagation of time-harmonic acoustic waves in a homogeneous isotropic acoustic medium

(either finite or infinite) is described by the Helmholtz equation:

∇2p(x) + k2p(x) = 0 (1)

under the boundary conditions:

p(x) = p(x) x ∈ Γ1 (2a)
q(x) = p(x),n = q(x) x ∈ Γ2 (2b)

where p is the acoustic pressure, k = ω/c with ω = angular frequency and c = sound velocity,
comma indicates partial derivative, Γ1 ∪ Γ2 = Γ, Γ is the boundary of the domain Ω under analysis,
n = n(x) is the outward normal to the boundary in x, q is the flux and the barred quantities indicate
given values.

The boundary value problem described by the above equations can be transformed into the fol-
lowing integral representation [7]-[8]:

c(ξ)p(ξ) +
∫

Γ

q∗(ξ,x)p(x)dΓ(x)−
∫

Γ

p∗(ξ,x)q(x)dΓ(x) = 0 (3)

where c(ξ) occurs in the limiting process from the internal point to the boundary point, being equal
to 0.5 if the tangent line to the boundary at ξ is continuous. The fundamental solutions p∗ and q∗ are
given by:

p∗(ξ,x) =
i

4
H

(1)
0 (kr) (4a)

q∗(ξ,x) = − ik

4
H

(1)
1 (kr)r,n (4b)
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where r =‖ x − ξ ‖ is the distance between the collocation point ξ and the field point x, H
(1)
0 and

H
(1)
1 are the Hankel function of the first kind, 0th and 1st order respectively.

The conventional BEM numerical procedure is based on two steps: first, the discretisation of
the boundary Γ, second, the collocation of the eq (3) in each node in order to build a final (square)
system of equations in the unknowns either p or q on the boundary. In the present contribution
constant elements are adopted: with such a choice some integrals can be performed analytically.
The discretised equation collocated at node ξi can be written as:

c(ξi)p(ξi) +
N∑

j=1

pj

∫

Γj

q∗(ξi,x)dΓ(x) =
N∑

j=1

qj

∫

Γj

p∗(ξi,x)dΓ(x) (5)

The procedure requires the evaluation of either the integral of p∗ or the integral of q∗ on each bound-
ary element.

For convenience, the complex notation is introduced, i.e. the collocation and field points are
replaced by their complex representation:

ξ = z0 = ξ1 + i ξ2 (6a)
x = z = x1 + i x2 (6b)

with i =
√−1. With such an assumption it is simple to show that the fundamental solutions in ξ,x

coincide with their expression in complex notation:

p∗(ξ,x) = p∗(z0, z) (7a)
q∗(ξ,x) = q∗(z0, z) (7b)

The FMM relations intervene in the evaluation of integrals involved in the eq (5). The multipole
expansion is the key point in reducing the CPU time which is necessary to evaluate each integral. If
F (z0, z)f indicates either p∗(z0, z)q or q∗(z0, z)p, the following local expansion can be obtained:

∫

Γj

F (z0, z) fdΓ(z) =
i

4

∞∑
p=−∞

(−1)pL−p(zL)Ip(z0 − zL) (8)

where:
Ip(z) = (−i)pJp(kr)eipθ (9)

r, θ are the polar coordinates of z and Jp stands for the Bessel function of the pth order.
The coefficients L−p are given by the following M2L translation:

Ll(zL) =
∞∑

k=−∞
Ok+l(zL − zC)P−k(zC) (10)

where ‖ z0 − zL ‖<‖ zC − zL ‖ must be satisfied and:

Om(z) = imH(1)
m (kr)eimθ (11)
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The term Pk(zC) is called moment about zC , it is independent from the collocation point z0 and
it only needs to be computed once. Its expression is given as follows:

Pk(zC) = Mk(zC) = q

∫

Γj

Ik(z − zC)dΓ(z) (12a)

Pk(zC) = Nk(zC) = p

∫

Γj

∂Ik(z − zC)
∂n

dΓ(z) (12b)

The point zC is assumed to be located close to Γj so that maxz∈Γi ‖ z−zC ‖<‖ z0−zC ‖ holds.
The series expansion eq (10) involving Pk can be truncated to nexp terms with a good approximation
if nexp is set larger than krmax (see [2] for details).

If the point zC is moved to a new location zC′ , the following M2M translation is obtained:

Pp(zC′) =
∞∑

m=−∞
Ip−m(zC − zC′)Pm(zC) (13)

Analogously, if the point for local expansion is moved from zL to zL′ , the following L2L expansion
is obtained:

Ll(zL) =
∞∑

k=−∞
Il−k(zL′ − zL)Lk(zL′) (14)

3 THE ALGORITHM
The adaptive procedure starts from a square containing the entire boundary and then repeat-

edly divides it and the successive sub-cells into four sub-squares until a fixed maximum number of
boundary elements is contained in each cell. In Fig. 1 the subdivision process up to the last level
is depicted with the allowed maximum number of elements set to one. The last cells of the division
process (in the figure the cells containing one element) are also called leaves.

(a) (b)

Figure 1: Square division up to level 1 (a) and up to level 4 (b)

For a given collocation node z0, the integral over the entire boundary is determined in different
way on the basis of the distance ‖ z − z0 ‖. If the integration element is close (where close means
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in one of the cells surrounding it, see Fig. 2a) to the collocation node, the integral contribution
is determined directly as in the conventional BEM. In the present contribution such integrals are
evaluated analytically and presented in the successive section. On the other hand, if the position
of the integration element with respect to the collocation node is as depicted in Fig. 2b, i.e. the
integration element belongs to the collocation node’s parents, the eq (8) is applied via the M2L
translation. Finally, the contribution from far cells (depicted in Fig. 2c) is obtained by the local
expansion via the L2L translation.

(a) (b) (c)

Figure 2: Direct (a), M2L (b) and L2L (c) integrations

The elements of the matrix A of the final system of equations Ax = b are not stored. The product
Axi is evaluated iteratively until the solution converges within a given tolerance. The GMRES
method is adopted. It was first proposed by [9] in order to solve large, sparse and nonsymmetric
linear systems. The routine implemented in the paper allows the use of different preconditioning to
accelerate the solution process.

4 THE ANALYTICAL INTEGRATION
The FMBEM procedure requires the evaluation of some integrals. Some of them are involved

in the direct integration whereas two integrals are necessary to evaluate the moments Eq. (12). The
term Hii involving the fundamental solution q∗ when the source node belongs to the integration
element is zero as constant elements are adopted (i.e. r,n = 0).

The diagonal term Gii can be determined analytically by using the procedure presented in [10]:
∫

ΓAB

p∗(ξ,x)dΓ(x) =
i

4
lAB

[
H

(1)
0 (k

lAB

2
)

+
π

2

(
Ĥ0(k

lAB

2
)H(1)

1 (k
lAB

2
)− Ĥ1(k

lAB

2
)H(1)

0 (k
lAB

2
)
)]

(15)

where Ĥν(z) denotes the Struve function of order ν. A similar expression can be obtained when the
source point does not belong to the integration element but it lies on the line AB.

The off-diagonal terms can be analytically evaluated only in the case kr ≤ 2. The case kr > 2
can only be solved numerically. As a matter of fact, in the FMBEM context, a boundary discretisa-
tion which satisfies 6−8 elements for wavelength would never require such a numerical integration.
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The expression of Gij and Hij for kr ≤ 2 are given by:

∫

Γj

p∗(ξ,x)dΓ(x) = − 1
2π

7∑

i=1

[
Ai

2
P1,i −BiP2,i

]ξB

ξA

(16a)

∫

Γj

q∗(ξ,x)dΓ(x) =
ik

2π

[
η

7∑

i=1

(
Di

2
P1,i + EiP2,i−1

)]ξB

ξA

(16b)

where the terms involved in the above expressions are reported in [11].
The integral expressing the moment is also evaluated analytically. No contributions are available

in the scientific literature. The Mk term is analytically determined by a new procedure developed by
the authors which starts from the Graf addition theorem (see for instance [12]):

H(1)
ν (ω̃) =

∞∑
m=−∞

H(1)
m (Z)Jm(z)eimφ (17)

where ω̃, z and Z form a triangle in which φ is the angle between z and Z and ψ is the angle between
ω̃ and Z (see Fig. 3).

Figure 3: Graf’s theorem.

By the application of the above theorem it is possible to transform the integral involved in Mk

into the sum of integrals involving the Bessel functions Jm(t) only. Such integrals can be evaluated
analytically by well-known expressions.

5 NUMERICAL RESULTS
In order to demonstrate the accuracy of the proposed procedure, a numerical example, for which

the analytical solution is available, is presented. The results refer to the wave propagation inside a
cylinder of radius R = 1 for different values of the wave number. The analytical solution is available
both for pressure and for flux given on the boundary. The number of boundary elements is always
fixed in order to have 6 − 10 elements per wavelength. Table 1 presents the comparison between
analytical and numerical values on the boundary.

For the same cylinder a comparison of the CPU time required by the entire computation versus
the number of degrees of freedom (DOFs) is depicted in Fig. 4. It is well clear how effective
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0.5 1.0 2.0 5.0
p
Γ

=
1 Analytic 0.129 0.575 5.15 9.22

FMBEM 0.129 0.578 5.12 9.1

q Γ
=

1 Analytic 7.75 1.74 0.194 0.108

FMBEM 7.75 1.73 0.194 0.106

Table 1: Comparison between analytical and FMBEM solution on the boundary.

the proposed procedure is with respect to the conventional approach. It must be underlined that no
preconditioner was used in the above calculations. Therefore, further improvements in the CPU time
can be obtained if a suitable preconditioner is adopted.

Figure 4: CPU time versus DOFs.

6 CONCLUSIONS
In this paper an adaptive fast multipole boundary element method for solving 2D acoustic wave

problems is presented. The procedure allows a great save in the computational time. Numerical
analyses are still in progress.
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