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SUMMARY. Normal form for bifurcation equations of finite-dimensional dynamical systems, 

are studied. First, the general theory for no-parameter systems is restated in a form amenable to 

further developments. Then, the presence of bifurcation parameters in the equations is accounted 

for. The drawbacks affecting two classical methods usually employed in literature are commented. 

A new method, based on a perturbation expansion, which is free from these difficulties, is 

proposed, and illustrated by a worked example. 

 

1 INTRODUCTION 

The main goal of the local bifurcation analysis from equilibrium points consists in classifying 

the long-time behavior of a dynamical system in the parameter space. The task requires obtaining 

bifurcation equations capturing the asymptotic essential dynamics. The bifurcation equations are 

usually built-up via the Center Manifold Theory [1,2], that permits to reduce the dimension of the 

original system to that of the critical (generalized) eigenspace of the associated linear system. 

These equations describe the asymptotic motion of the nonlinear system on an invariant manifold 

which is tangent to the critical subspace. Once the bifurcation equations have been obtained, and 

in order to make their analysis easier, they are conveniently transformed according to the Normal 

Form Theory [1,2].  

The normal form of a nonlinear ordinary differential equation is the simplest form it can 

assume under a suitable change of coordinates. Of course, the best occurrence would be to 

transform the nonlinear equation in a linear one. This is indeed possible whenever the eigenvalues 

of the Jacobian matrix are non-resonant, i.e. none of them can be expressed as a linear 

combination, with positive integers, of the eigenvalues. However, this favorable circumstance 

never occurs in bifurcation analysis, since the Jacobian matrix admits zero and/or purely 

imaginary eigenvalue, for which resonance always exists; therefore, bifurcation equations cannot 

be linearized. In spite of this, the equations can be strongly simplified, by removing all the non-

resonant terms and leaving only the unmovable resonant terms. 

The procedure of elimination of the non-resonant terms is often described in literature through 

successive changes of coordinates able to (partially) remove, in turn, quadratic, cubic and higher-

order terms [1-3]. A nicer illustration of the procedure is presented in [4], in the framework of a 

perturbation method, where a unique change of coordinates is introduced, and linear perturbation 

equations are solved in chain. The previous treatments, however, are devoted to systems in which 

no parameters appear in the equation.  In contrast, the main interest of bifurcation analysis just 

relies on equations in which parameters do appear, able to span the neighborhood of the 

bifurcation point. To account for parameters, it is suggested in literature to consider them as 



dummy state-variables, constant in time, similarly to that done in the Center Manifold Theory 

[1,3]. The procedure, although simple in principle, leads to cumbersome calculations, since 

increases the dimension of the dynamical system.  

An alternative algorithm is suggested in [2], and illustrated with reference to a simple Hopf  

bifurcation. There, the parameters as considered as fixed quantities, included in the coefficients, 

and therefore they do not increase the dimension of the system. As a drawback, the procedure 

leads to linear equations which are quasi-singular close to bifurcation, so that resonances become 

quasi-resonances. These latter, if not properly tackled, would entail the occurrence of small 

divisors both in the coordinates transformation and in the normal form. The problem can be easily 

overcome in the case in which the Jacobian matrix is diagonalizable, namely in the example 

illustrated in [2], but, in contrast, is not trivial in the case in which the Jacobian matrix contains a 

Jordan block.  

In this paper, parameter-dependent dynamical systems are considered, close to bifurcation 

points, at which their Jacobian matrix, admitting non-hyperbolic eigenvalues, is either 

diagonalizable or non-diagonalizable.  A perturbation algorithm is developed to derive parameter-

dependent normal forms, without extending the state space, but, in contrast, by keeping unaltered 

the dimension of the original system. In Sect 2, the background relevant to the Normal Form 

Theory, concerning the parameter-independent case, is supplied. In Sect 3 a new algorithm 

accounting for parameter-dependent system is detailed, and an example is worked out in Sect 4. 

2 PARAMETER-INDEPENDENT NORMAL FORMS 

Let us first consider a dynamical system independent of parameters. Its equation of motion, 

Taylor-expanded around the equilibrium point, read: 

  

 ( )= +x Jx f x�  (1) 

 

where 
2

( ) O( )=f x x , orN N∈x � � , and J is the Jacobian matrix recast in Jordan form. Our 

goal is to transform Eq (1) into the normal form: 

 

 ( )= +y Jy g y�  (2) 

 

where 
2

( ) O( )=g y y is the simplest possible. To this end, we introduce a near-identity 

transformation of coordinates →x y , in which y differs from x only by higher order-quantities: 

 

 ( )= +x y h y  (3) 

 

with 
2

( ) O( )=h y y an unknown function. With Eqs (2) and (3), since [ ( )]= + yx I h y y� � , 

where I the N N×  identity matrix and ( )yh y the Jacobian matrix of h(y), Eq (1) modifies into: 

 

 ( ) ( ) ( ( )) [ ( )] ( )− = + − +
y y

h y Jy Jh y f y h y I h y g y  (4) 

 

This is a differential equation for the unknown h(y), for any properly chosen g(y). Since it cannot 

be solved exactly, we will solve it by series expansions [4]. We assume: 
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( )( )( )

( ) ( ) ( )

( ) ( ) ( )

   
   

= + +   
     
     

f yf yf y

g y g y g y

h y h y h y

�  (5) 

 

where ( ), ( ), ( )
k k k

f y g y h y are homogeneous polynomials of degree k in y.  By substituting the 

series expansions (5) in (4), and equating separately to zero terms of the same degree, we obtain 

the following chain of equations: 

 

 

2, 2 2 2

3, 3 3 2, 2 2, 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

− = −

− = + − −
y

y y y

h y Jy Jh y f y g y

h y Jy Jh y f y f y h y h y g y g y

���

 (6) 

  

which are linear in ( )
k

h y . They can be solved recursively, to furnish 2 2( ), ( )h y g y at the order-

2, 3 3( ), ( )h y g y at the order-3, and so on. The generic equation (6) can be rewritten as: 

                            

 ˆ( ) ( ) ( ) 2,3,
k k k

k= − =h y f y g y ��  (7) 

 

in which �  is a linear differential operator, whose action is 
                          

,( ) : ( ) ( )k k k= −yh y h y Jy Jh y� ; moreover ˆ ( )kf y is a known-term, since 2 2
ˆ ( ) ( )≡f y f y and 

ˆ ( ) ( 2)k k >f y is completely determined by the lower-order solutions. 

2.1 Solving the generic perturbation equation 

The three homogeneous polynomials of degree k appearing in Eq (7), are: 

 

 

1 1 1

ˆ ( ) ( ), ( ) ( ), ( ) ( )
k k kM M M

k km km k km km k km km

m m m

α β γ
= = =

= = =∑ ∑ ∑f y p y g y p y h y p y  (8) 

 

where , ,
km km km

α β γ are constants, and 1 2{ ( ), ( ), , ( )}
kk k kM

p y p y p y�  is a basis of Mk linearly 

independent vector-valued monomial of degree k in the N coordinates 
j

y . By substituting Eqs (8) 

in Eq (7), and equating separately to zero the coefficients of the same monomials, we obtain a 

linear system of equations, of type: 

                          

 
k k k k

= −L γ α β  (9) 

 

in which 
k

L  is a 
k k

M M× matrix; moreover, : { }, : { }
k km k km

α β= =α β  and  : { }
k km

γ=γ  are 

Mk-vectors. In Eq (9), coefficients 
k
α  are known, whereas coefficients 

k
β  and 

k
γ are unknown. 



However, since our goal is to render ( )
k

g y the simplest possible, we have some freedoms in 

choosing 
k
β . Of course, the best choice would be to take 

k
=β 0  (entailing ( )

k
=g y 0 ); 

however, this operation is subordinated to the rank of 
k

L . Two cases must be analyzed: (a)  

matrix 
k

L  is non-singular ; (b) matrix 
k

L  is singular. 

If det 0
k

≠L , we can take 
k

=β 0 and solve (9) for 
k
γ , to obtain 

1

k k k

−=γ L α . 

Consequently, from Eqs (8), ( )
k

=g y 0 , and ( )
k

h y is univocally determined. In contrast, if 

det 0
k

=L , in order for Eq (9) can be solved, its know-term 
k k

−α β  must belong to the range 

of matrix 
k

L (solvability, or compatibility condition). This requirement is fulfilled if the known 

term is orthogonal to the kernel of the adjoint operator 
H

k
L (transposed and conjugate of 

k
L ). 

Since this space is spanned by 
k

H  vectors 
kh

v satisfying 0H

k kh
=L v  ( 1,2, , )

k
h H= � , 

where 
k

H is the geometrical multiplicity of the zero-eigenvalue of 
k

L , compatibility requires:  

 

 
H H

k k k k
=V β V α  (10) 

 

where 1 2: [ | | | ]
kk k k kH

=V v v v� is a 
k k

M H×  matrix collecting the vectors 
kh

v . Equations 

(10) entail that only 
k k

M H−  (suitable) entries of vector 
k
β  can be taken equal to zero, the 

remaining having to satisfy compatibility. Therefore 
k

H monomials in ( )
k

g y  cannot be removed 

by the near-identity transformation.  

The previous analysis must, of course, be carried out at each order k, up-to the maximum order 

K considered in the analysis. At each of these orders, the number Mk of independent vectors 

( )
km

p y  increases, this entailing large-dimensional matrix 
k

L  and vectors , ,
k k k
α β γ . It is likely 

to occur, for example, that matrix 
k

L  is non-singular, but 1k +L  is singular. In this case, we will 

be able to remove all nonlinearities of degree k, but just some of degree k+1. As final result of the 

procedure, the vector ( )g y furnishes the normal form (2) of the original system (1), truncated at 

the order K. Moreover, the associated vector ( )h y , permits to come back to the original variable 

x, via the near-identity transformation (3).  

2.2 Resonance conditions 

An important question concerns the possibility to predict in advance, on the ground of the sole 

knowledge of the spectral properties of the Jacobian matrix J, if matrix
k

L is singular or not, and, 

in addition, which terms in ( )
k

f x  can be removed and which, instead, have to remain in the 

normal form. It is possible to show (see, e.g. [1]), that, if the Jacobian matrix J  is diagonalizable, 

then 
k

L is also diagonal: 

 

 diag[ ]
k im

= ΛL  (11) 



where: 

 

 

1

: ( ), 1,
N

im j j i

j

m i Nλ λ
=

Λ = − =∑  (12) 

 

and where { }1 2, , Nm m m� are all the combinations of positive integers such that  

1 2 N
m m m k+ + + =� )

1
. Equation (11) states that 

k
L is nonsingular (and therefore all 

nonlinearities of degree k are removable) if all 0imΛ ≠ . In contrast,  
k

L is singular (and 

therefore some nonlinearities of degree k are not removable) if one or more 
imΛ  are zero (or 

nearly zero). In this latter case, the monomial associated with 
imΛ (i.e. the m-th independent 

monomial in the i-th equation) survives in the normal form. The condition 0
im

Λ = is also 

referred to as resonance condition (of order k), since it entails that one of the eigenvalue, e.g. 
i

λ ,  

is as a linear combination of all the eigenvalues.  

It is important to stress that, when the eigenvalues at an equilibrium point are on the imaginary 

axis, resonance always occur, due to the fact that the imaginary eigenvalues are conjugate in pairs. 

This confirms the well known results that  the flow around a non-hyperbolic equilibrium point 

cannot be linearized.  

Finally, we mention the fact that, when the Jacobian matrix is not diagonalizable, the matrix 

k
L , appearing in the equation (9), is no more diagonal. Nevertheless, it can be proved, that its 

eigenvalues are still given by (12), so that singularity of 
k

L is due to the occurrence of the 

resonance conditions 0
im

Λ =  . Therefore, only resonant terms appear in the normal form, but 

their a priori selection is not trivial as in the diagonal case. 

 

2.3 Normalization conditions 

Equations (9), in the case of interest in which 
k

L is singular, are now analyzed in greater detail. 

As we have already observed, due to the 
k

H compatibility condition (10), 
k k

M H− components 

of vector 
k
β can be chosen freely, best if equal to zero. Therefore, normal form is not unique, but 

it depends on the specific components that are zeroed. In order to state a criterion that determines 

k
β uniquely, it needs to introduce a normalization condition that establishes the space 

�
�  of 

belonging of the vector, namely: 

 

 
k k k

=β B b  (13) 

                                                           
1
 For example, if N=2, and k=3, there are M3=8 independent monomials in Eq (8);  therefore, from Eqs (11), (12):  

 

3 1 1 1 2 1 1 2 1 2 1 1 2 1 2 2 1 2 2 2 2

1 1 2 2 2 1 1 2 1 1 2 2

diag[3 ,2 , 2 ,3 ; 3 ,2 , 2 ,3 ]

diag[2 , , 2 ,3 ; 3 ,2 , , 2 ]

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

= − + − + − − − + − + − −

= + − − +

L  



where 
k

B is a 
k k

M H× matrix, listing columnwise a basis for 
�

� , and   

: { } ( 1, 2, , )
k kh k

b h H= =b �  are the components of 
k
β in this basis. With this normalization, 

the compatibility conditions (Eq (10)) become: 

 

 
H H

k k k k k
=V B b V α  (14) 

 

which is a system of 
k

H equations in the 
k

H unknowns 
k

b .  A common choice consists in  

requiring 
k
β has zero-projection onto the range ( )

k
L� , i.e. ( )H

k
∈β L

�
� , this entailing 

k k
≡B V ;  however, this choice not always give the ‘simplest’ normal form. 

Once 
k
β has been determined, Eqs (9) give kH∞ solutions for 

k
γ , namely: 

 

 ˆ
k k k k k

= + ∀γ γ U c c  (15) 

 

where 1 2: [ | | | ]
kk k k kH

=U u u u� is a 
k k

M H×  matrix collecting the right eigenvectors 
kh

u  

satisfying 0
k kh

=L u . The arbitrary constants 
k

c can be chosen by enforcing a second 

normalization condition, of the type: 

 

 
H

k k
=C γ 0  (16) 

 

which requires 
k
γ  is orthogonal to the space spanned by the columns of the  

k k
M H×  matrix 

k
C . Again, one can take 

k k
≡C V , from which ˆH

k k k
= −c V γ , since 

H

k k
=V U I ; if 

k
L is non-

diagonalizable, the same result holds if the proper left eigenvectors in 
k

V are substituted by the 

higher-order generalized eigenvectors. It should be noticed that, different choices for 
k

C entail 

different coordinate transformations ( )
k

h y , all leading to the same normal form ( )
k

g y ; 

however, these different choices have repercussions on higher-order terms. 

 

3 PARAMETER-DEPENDENT  NORMAL FORMS 

The previous treatment is devoted to systems at bifurcation, in which parameters (if any) 

assume fixed values. In contrast, the main interest of bifurcation analysis is to study systems close 

to a bifurcation, in which parameters are likely to vary. There exist two approaches in literature to 

include parameters in Normal Forms. They are shortly commented ahead; then, an alternative 

method is illustrated.  

3.1 Usual approaches 

The commonest procedure followed in literature consists in considering the parameters as 

dummy state-variables, constant in time, (similarly to that done in the Center Manifold Theory 

[1,3]). Accordingly, the state-space is extended to parameters µ , and trivial equations are 



appended to the bifurcation equations, that therefore read: 

                                           

 { ( , )= +
=

x Jx f x µ

µ 0

�

�
 (17) 

 

where J is the Jacobian matrix at the bifurcation point ( , ) ( , )=x µ 0 0 , and bilinear (and higher-

order) terms ,
µ

J µx�  have been shifted into ( , )f x µ . Accordingly, the normal form and the 

near-identity transformation must be taken, respectively, as:
  

 

 ( , ), ( , )= + = +y Jy g y µ x y h y µ�  (18) 

 

The procedure, although simple in principle, leads to cumbersome calculations, due to the larger 

number of independent monomials in the ( , )y µ -space. 

An alternative procedure is suggested in [2]. According to this method, the parameters are 

incorporated in the coefficients, and therefore they do not increase the dimension of the system. 

Consequently, Eqs (1)-(3) change into: 

 

 ( ) ( ; ), ( ) ( ; ), ( ; )= + = + = +x J µ x f x µ y J µ y g y µ x y h y µ� �  (19) 

 

and Eq (9) into: 

 

 ( ) ( ) ( ) ( )
k k k k

L µ γ µ = α µ -β µ  (20)                               

 

The dependence on µ  of the eigenvalues of J, of course entails a similar dependence of the 

eigenvalues of ( )
k

L µ . Since, due to the resonance, ( )
k

L 0 is singular for some k, and since µ  is 

small, ( )
k

L µ is nearly-singular, i.e. a quasi-resonance occurs. If this occurrence were not 

properly tackled, small denominators would appear in the normal form, leading to series not 

uniformly valid. The drawback can be overcame in the diagonal case, by considering the nearly-

zero eigenvalues ( )
im

Λ µ of ( )
k

L µ as they were exactly zero, by exploiting the arbitrariness of 

the quantities 
k
β ’s. However, the problem is not so trivial if the Jacobian matrix is not 

diagonalizable, and a solution of the problem, available in the literature, is not known to the author.  

3.2 A perturbation algorithm 

A perturbation algorithm is proposed to derive parameter-dependent normal forms. In order to 

keep unaltered the dimension of the original system, the state space is not extended.  Equation (20), 

is again taken into account, but instead to solve it as is, the parameters appearing in the equations 

are rescaled as ε→µ µ , where 0ε >  is a small bookkeeping parameter. Consequently, after 

expanding in series all quantities, it follows: 

 



 

,0 ,1 ,2

2 2

,0 ,1 ,2 ,0 ,1 ,2

,0 ,1 ,2

,

k k k k

k k k k k k k k

k k k k

ε ε ε ε

       
       

= + + + = + + +       
      
      

α α α α

L L L L β β β β

γ γ γ γ

� �  (21) 

 

where: 

 

 

2
2

,0 ,1 ,2 2

2
2

,0 ,1 ,2 2

d d1
: ( ), : , : ,

d 2 d

d d1
: ( ), : , : ,

d 2 d

k k
k k k k

k k
k k k k

= =

= =

= = =

= = =

µ 0 µ 0

µ 0 µ 0

L L
L L 0 L µ L µ

µ µ

α α
α α 0 α µ α µ

µ µ

�

�

 (22) 

 

and similar. By substituting Eqs (21) and (22) in Eq (20), and equating separately to zero terms 

with the same power of ε , the following chain of perturbation equations is obtained:  

 

 

0

,0 ,0 ,0 ,0

1

,0 ,1 ,1 ,1 ,1 ,0

,0 , , ,

:

:

ˆ:

k k k k

k k k k k k

n

k k n k n k n

ε

ε

ε

−

L γ = α -β

L γ = α -β L γ

L γ = α -β

��
 (23) 

 

where ,
ˆ

k n
α is a vector known from the previous steps. The generating equation (231) coincides 

with that of the no-parameter case; therefore, quasi-resonances are ruled out at any orders, since 

,0k
L is (exactly) singular. By solving in sequence Eqs (23), and enforcing compatibility and 

normalization at each step, all the terms of the series (212) for 
k
β  and 

k
γ are evaluated up-to the 

desired order. An example of the procedure is worked out in the next section. 

 

4 AN EXAMPLE: THE DOUBLE-ZERO BIFURCATION 

As an example, let us consider  the following two-dimensional dynamical system, governing 

the motion, reduced to the Center Manifold, of a larger system around a double-zero (Takens-

Bogdanov) bifurcation: 

 

 

2 2

21 1 22 1 2 23 21 1

2 2
2 2 24 1 25 1 2 26 2

0 1 x x x xx x

x x x x x x

α α α

ν µ α α α

 + +    
= +        + +      

�

�
 (24) 

 

where ( , )µ ν=µ are bifurcation parameters, vanishing at the bifurcation point. To make the 

example simplest as possible, the coefficients 2m
α  are assumed to be independent of µ . 



According to Eqs (18), we assume a normal form and a near-identity transformation as follows:  

 

 

2 2

21 1 22 1 2 23 21 1

2 2
2 2 24 1 25 1 2 26 2

2 2

21 1 22 1 2 23 21 1

2 2
2 2 24 1 25 1 2 26 2

( ) ( ) ( )0 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

y y y yy y

y y y y y y

y y y yx y

x y y y y y

β β β

ν µ β β β

γ γ γ

γ γ γ

 + +    
= + +       + +      

 + +   
= + +      + +     

µ µ µ

µ µ µ

µ µ µ

µ µ µ

�
�

�

�

 (25) 

 

By substituting Eqs (25) in Eq (62) and zeroing separately the coefficients of the three  

independent monomials in the two equations, we obtain six algebraic equations, of the type (20) 

(with 2k = ): 

 

 

21 21 21

22 22 22

23 23 23

24 24 24

25 25 25

26 26 26

( ) ( )0 0 1 0 0

( ) ( )2 2 0 1 0

( ) ( )0 1 2 0 0 1

( ) ( )0 0 0

( ) ( )0 0 2 0 2

( ) ( )0 0 0 1

γ α βν

γ α βµ ν

γ α βµ

γ α βν µ ν

γ α βν ν

γ α βν µ

−−     
     −−     
     −−

=    
−− −     

     −−
        −−     

µ µ

µ µ

µ µ

µ µ

µ µ

µ µ 

 (26) 

 

The matrix 2 ( )L µ appearing in Eq (26) admits the eigenvalues 

2 2

1,2 3,4 5,6( 3 4 ) / 2, ( 4 ) / 2µ µ ν µ µ νΛ = ± + Λ ≡ Λ = ± + , which all tend to zero when 

→µ 0 ; thus 2 ( )L µ  cannot be inverted, if small denominators must be avoided. Therefore, 

according to the proposed method, we resort to the perturbation equations (23). 

The generation equation (231) is obtained by putting =µ 0  in Eq (26). Since 

2,0Rank[ ] 4=L , 2,0L  has a two-dimensional kernel 2,0 21 22( ) span{ , }=L u u� , where 

21 (0,1,0,0,0,1)T=u  and 22 (0,0,1,0,0,0)T=u ; moreover,  2,0 21 22( ) span{ , }T =L v v� , 

where 21 (2,0,0,0,1,0)T=v  and  22 (0,0,0,1,0,0)T=v . In order Eq (231) can be solved, the 

known term must satisfy two compatibility conditions (Eqs (10)): 

 

 21 21,0 25 25,0 24 24,02( ) ( ) 0, 0α β α β α β− + − = − =  (27) 

 

Since 22,0 23,0 26,0, ,β β β are not involved in compatibility, they are taken zero; moreover, 

21,0 24,0 24 25,0 25 210, , 2β β α β α α= = = +  is chosen to satisfy Eqs (27); therefore 

4 5span[ , ]
k

∈β e e is taken as normalization condition. Solution to Eq (231) furnishes 

2,0 22 26 23 1 2 21 26 1 1 2(( ) / 2, , , , , ) , ,T
c c c c cα α α α α= + + − ∀γ ; we chose 1 2 0c c= = , thus 



adopting the normalization 1 2 4 5span[ , , , ]
k

∈γ e e e e . 

Passing to the ε -order perturbation equation (232), we first evaluate the right hand member. 

Since ,1 ,1 ,0 23 23 21 26 22 23, ( , ,0, ( ) / 2, ,0)T

k k k α ν α µ α µ α α ν α ν= = + − −α 0 L γ and, according 

to normalization adopted, 2,1 24,1 25,1(0,0,0, , ,0)Tβ β=β , solvability furnishes  

24,1 21 22 26 25,1 23( ) / 2,β α µ α α ν β α ν= − + − = − . Finally, the normalized solution to Eq (232) 

reads 2,1 23 23( / 2,0,0, ,0,0)Tα µ α ν= −γ . 

By substituting the results obtained in Eqs (25),  to within an error of 
3 2 2

O( , )y µ y , we 

have the following normal form and coordinate transformation: 

 

 

2

21 1 22 1 21 1 1 1

2 2
2 2 2 224 1 25 1 2 24 1 25 1 2

00 1
,

y y yy y x y

y y x yy y y y y y

γ γ

ν µ β β γ γ

 +         
= + = +             + +           

�

�
 (28) 

 

where: 

 

 
24 24 21 22 26 25 21 25 23

21 22 26 23 22 23 24 21 23 25 26

( ) / 2, [2 ]

( ) / 2, , ,

β α α µ α α ν β α α α ν

γ α α α µ γ α γ α α ν γ α

= − + − = + −

= + − = = − + =
 (29) 

 

It should be noticed, that parameters only alter the coefficients, not the structure of the two 

expressions, as a consequence of having used the same normalizations at all orders. 

CONCLUSIONS 

By following a perturbation approach, we proposed a new method for evaluating parameter-

dependent normal forms of bifurcation equations, both for diagonalizable and non-diagonalizable 

Jabobian matrices. The method avoids the extension of the state space to parameters, as well as the 

occurrence of small denominators in the solution, which are drawbacks encountered in classical 

methods. The efficiency of the procedure was illustrated by an example, relevant to a double-zero 

bifurcation. 
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