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SUMMARY. We report a model constituted by three integro-differential equations for the densities
of nucleons, high-energy mesons and low-energy mesons diffusing in the Earth’s atmosphere after
the collision of the primary cosmic rays with the air particles. We neglect the transformation of
mass into energy, since it is usually considered not relevant, and we study the problem by referring
to the theory of evolution equations in the Banach space L1(I, dE) ∩ L1(I, EdE), where E is the
energy and I ⊂ (0,∞); the norms have the meaning of the total number of nucleons and of their
total energy, respectively.

We solve the problem making some assumptions to ensure the existence, uniqueness and pos-
itivity of the solutions representing the three densities and to satisfy some physical requests, like
positivity and homogeneity of functions, and to ensure the bound of the number of particles during
the collisions.

We note that in literature one finds empirical expressions for the energy distribution functions
and for the inverses of mean free paths which do not satisfy all of such assumptions.

1 INTRODUCTION
In this paper we report a model constituted by three integro-differential equations for the densities

of nucleons, high-energy mesons and low-energy mesons diffusing in the Earth’s atmosphere after
the collision of the primary cosmic rays with the air particles.

Several systems of balance equations are reported in literature, see [1, 2, 3, 4], to describe the
mentioned densities. The assumption that the secondary particles, produced after the collisions in air
of primary particles with air molecules, have a lower energy with respect to the incident ones holds
(the transformation of mass into energy is considered not to be relevant).

The quoted authors treat a couple of transport equations, one for the nucleons and the other for
the mesons. Say E′ ∈ (0,∞) the energy of the incident particle and E ∈ (0, E′) the energy of
the emerging particle, after a collision. Say f(E, E′) the energy distribution function, ϕ(x,E′)
the density of the incident particles having energy E′ at the atmospheric depth x > 0, and σ(E′)
the inverse of mean free path of the incident particle having energy E′. Integrals having the struc-
ture

∫∞
E

f(E, E′)σ(E′)ϕ(x,E′)dE′ represent the positive gain contributions to the densities due to
those particles emerging, after a collision, with energy E. The negative loss contributions are due to
collisions and/or decay.

The quoted authors give empirical expressions for the initial distribution of the nucleons, at the
null atmospheric depth x = 0, i.e. it is assumed to be a given function of the form N0E

−2.7, and
for the inverse of mean free path: σ(E) = σ0E

a with a = 0 or a = 0.06, or rather σ(E) =
σ0(1 + a ln(E/ε)), E, ε in GeV, or σ(E) = σ0(1 + a ln2(E/ε)), E, ε in GeV, see [2, 5]. The
energy distribution functions f(E, E′) are assumed to be homogeneous of degree −1, so that the
formulation is independent from the energy unit. Guessed expressions for the energy distributions
f(E, E′) are given, see also [5, 6]. An example is given by the energy distribution for pions Π:
fNΠ(E, E′) = 5

3 (E′
A )α[1− (E′

A )α′ E
E′ ]

4 1
E with α, α′ ¿ 1, see [6].
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In a previous work, see [7], we studied the quoted system of two transport equations allow-
ing the transformation of mass into energy. Under suitable assumptions (the physical quantities
were assumed essentially bounded, non-negative, and the energy distributions were assumed ho-
mogeneous of degree −1) we proved the existence, positivity and uniqueness of solutions for the
densities of nucleons and mesons, referring to the theory of evolution problems in the Banach space
L1 ((0,∞), dE).

In this work we neglect the transformation of mass into energy, since it is usually considered
not relevant, and we study the problem presented above by referring to the theory of evolution
equations in the Banach space L1(I, dE) ∩ L1(I, EdE), with I ⊂ (0,∞). Both spaces L1(I, dE)
and L1(I, EdE) are considered because of their physical meaning (i.e., the norms have the meaning
of the total number of nucleons and of their total energy, respectively). Moreover, referring to [8],
we consider two groups of mesons: the high energy ones, whose energy is E ∈ (E1,∞), E1 > 0,
and the low energy ones, whose energy is E ∈ (0, E1). The aim of this distinction is to emphasize
or disregard the importance of the decay of mesons. Therefore, the system is composed by three
transport equations.

We make some assumptions to ensure the existence, uniqueness and positivity of the solutions
representing the three densities and to satisfy some physical requests, like positivity and homogene-
ity of functions, and to ensure that the number of particles is bounded and the total energy does not
increase during the collisions.

We note that in literature one finds empirical expressions for the energy distribution functions
and for the inverse of mean free path which do not satisfy all of such assumptions, see for instance
[5, 6].

2 THE MODEL
Let N(x,E) be the density of nucleons, Mh(x,E) the density of high energy mesons and

Ml(x,E) the density of low energy mesons, at the atmospherical depth x > 0. We recall that
the atmospheric depth x is measured in g · cm−2, the energy E > 0 in eV, the densities N(x,E),
Mh(x, E) and Ml(x,E) are measured in (eV)−1cm−2s−1sr, the inverse of mean free path of nucle-
ons σ(E) and the one of mesons σM (E) are measured in g−1cm2, fij(E, E′), with i, j ∈ {N, h, l},
are energy distribution functions, measured in (eV)−1.

The integro-differential balance equations to be considered for x > 0 are written as follows:

∂

∂x
N(x,E) = −σ(E)N(x,E) +

∫ ∞

E

fNN (E,E′)σ(E′)N(x,E′)dE′, (1)

for E ∈ (0,∞), with N(x = 0, E) = G(E);

∂

∂x
Mh(x,E) =− σM (E)Mh(x,E) +

∫ ∞

E

fhh(E, E′)σM (E′)Mh(x,E′)dE′

+
∫ ∞

E

fNh(E, E′)σ(E′)N(x,E′)dE′,
(2)

for E ∈ (E1,∞), with Mh(x = 0, E) = 0;

∂

∂x
Ml(x,E) =− σM (E)Ml(x, E)− b

Ex
Ml(x,E) +

∫ E1

E

fll(E, E′)σM (E′)Ml(x,E′)dE′

+
∫ ∞

E1

fhl(E,E′)σM (E′)Mh(x,E′)dE′+
∫ ∞

E

fNl(E, E′)σ(E′)N(x, E′)dE′,
(3)
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for E ∈ (0, E1), with Ml(x = 0, E) = 0.
The second term in the right hand side in the third equation takes into account the decay of low

energy mesons (b > 0 is a constant measured in eV), see [8].
We recall that we neglect the transformation of mass into energy, therefore the total energy does

not increase. It is also physically consistent to assume that the total number of particles cannot ex-
plode to infinity. For physical reasons, we assume that all the densities of particles are nonnegative
and we suppose that the inverse of mean free paths and the energy distributions functions are positive
almost everywhere in their domain. The energy distribution functions are supposed to be homoge-
neous of degree −1. We list all these physical requests in Section 3 together with the mathematical
ones.

3 THE SOLUTION OF THE EVOLUTION PROBLEM WHEN THE INVERSES OF MEAN
FREE PATHS ARE ESSENTIALLY BOUNDED

We look at the system (1)-(3) together with the initial conditions like an evolution problem with
respect to x in the Banach space L1(I, (1 + E)dE), with I ⊂ (0,∞). Say J = (0,∞), Jh =
(E1,∞) and Jl = (0, E1). We assume that

(1) σ ∈ L∞(J), ess supE∈J |σ(E)| = σ, σ(E) > 0 a.e. E ∈ J ;

(2) σM ∈ L∞(J), ess supE∈J |σM (E)| = σM , σM (E) > 0 a.e. E ∈ J ;

(3) fNN homogeneous of degree −1, fNN (E, E′) > 0 a.e. (E,E′) ∈ (0, E′) × J and∫ E′

0
fNN (E, E′)dE ≤ cNN < ∞ a.e. E′ ∈ J ,

∫ E′

0
fNN (E,E′)EdE ≤ E′ a.e. E′ ∈ J ;

(4) fNh homogeneous of degree −1, fNh(E, E′) > 0 a.e. (E, E′) ∈ Jh × (E,∞) and∫ E′

E1
fNh(E,E′)dE ≤ cNh < ∞ a.e. E′ ∈ Jh;

(5) fNl homogeneous of degree −1, fNl(E,E′) > 0 a.e. (E, E′) ∈ Jl × (E,∞) and∫ E1

0
fNl(E, E′)dE ≤ cNl < ∞ a.e. E′ ∈ Jh and

∫ E′

0
fNl(E,E′)dE ≤ c′Nl < ∞ a.e.

E′ ∈ Jl;

(6) fhh homogeneous of degree −1, fhh(E, E′) > 0 a.e. (E, E′) ∈ (E1, E
′) × Jh and∫ E′

E1
fhh(E, E′)dE ≤ chh < ∞ a.e. E′ ∈ Jh;

(7) fll homogeneous of degree −1, fll (E,E′) > 0 a.e. (E,E′) ∈ (0, E′) × Jl and∫ E′

0
fll(E,E′)dE ≤ cll < ∞ a.e. E′ ∈ Jl;

(8) fhl homogeneous of degree −1, fhl (E, E′) > 0 a.e. (E, E′) ∈ Jl × Jh and∫ E1

0
fhl(E, E′)dE ≤ chl < ∞ a.e. E′ ∈ Jh.

Remark 1. Integrating both members of (1) with weight E, we deduce that
∫ E′

0
fNN (E, E′)EdE ≤

E′ a.e. E′ ∈ (0,∞), since energy does not increases when x changes. This condition is physically
consistent, but it is not actually used in the mathematical proofs.

Remark 2. The condition
∫ E′

0
fNN (E,E′)dE ≤ cNN a.e. E′ ∈ (0,∞) represents the bounded-

ness of the total number of nucleons produced as a consequence of the collision of a nucleon and it
is used in the following mathematical treatment.

3



The following linear operators are bounded (here I denotes the identity operator):

(a) σI , with domain L1(J, (1 + E)dE) and range in L1(J, (1 + E)dE), and with norm ‖σI‖ ≤
ess supE∈J σ(E) + σ;

(b) σMI , with domain L1(Jh, (1 + E)dE) and range in L1(Jh, (1 + E)dE), and with norm
‖σMI‖ ≤ ess supE∈Jh

σM (E) + σMh ≤ σM ;

(c) σMI , with domain L1(Jl, (1 + E)dE) and range in L1(Jl, (1 + E)dE), and with norm
‖σMI‖ ≤ ess supE∈Jl

σM (E) + σMl ≤ σM .

(d) KNN , with domain L1(J, (1+E)dE) and range in L1(J, (1+E)dE), acting as KNNN(E) =∫∞
E

fNN (E,E′)σ(E′) N(E′) dE′ , with norm ‖KNN‖ +kNN ≤ σ cNN ;

(e) KNh, with domain L1(J, (1+E)dE) and range in L1(Jh, (1+E)dE), acting as KNhN(E) =∫∞
E

fNh(E, E′)σ(E′)N(E′) dE′, with norm ‖KNh‖ + kNh ≤ σ cNh;

(f) KNl, with domain L1(J, (1+E)dE) and range in L1(Jl, (1+E)dE), acting as KNlN(E) =∫∞
E

fNl(E, E′)σ(E′)N(E′)dE′, with norm ‖KNl‖+kNl≤σcNl, where cNl =max{cNl,c
′
Nl};

(g) Khh, with domain L1(Jh,(1+E)dE) and range in L1(Jh,(1+E)dE), acting as KhhMh(E)=∫∞
E

fhh(E, E′) σM (E′)Mh(E′) dE′ with norm ‖Khh‖ + khh ≤ σMh chh;

(h) Kll, with domain L1(Jl, (1+E)dE) and range in L1(Jl, (1+E)dE), acting as KllMl(E) =∫ E1

E
fll(E,E′)σM (E′)Ml(E′) dE′, with norm ‖Kll‖ + kll ≤ σMl cll;

(i) Khl, with domain L1(Jh, (1+E)dE) and range in L1(Jl, (1+E)dE), acting as KhlMh(E) =∫∞
E1

fhl(E,E′)σM (E′)Mh(E′) dE′, with norm ‖Khl‖ + khl ≤ σMh chl.

Proofs of the above estimates are easily obtained, thus they are omitted. The positivity assumptions
are not essential to obtain estimates, but they have physical meaning.

The theory of semigroups of bounded linear operators in Banach spaces allows us to state the
following theorems for the abstract formulation of problem (1)-(3), see [9, 10, 11]:

Theorem 3. The abstract differential problem

Ṅ(x) = (−σI + KNN )N(x), N(x = 0) = G ∈ L1(J, (1 + E)dE) (4)

has one and only one strongly continuously differentiable solution [0,∞) 3 x 7→ N(x) ∈ L1(J, (1+
E)dE) given by:

N(x) =
∞∑

n=0

xn(−σI + KNN )nG

n!
. (5)

The solution is nonnegative if G(E) ≥ 0 a.e. E ∈ J .

Theorem 4. The abstract differential problem

Ṁh(x) = (−σMI + Khh)Mh(x) + KNhN(x), Mh(x = 0) = 0, (6)

where N(x) is the solution of problem (4), has one and only one strongly continuously differentiable
solution [0,∞) 3 x 7→ Mh(x) ∈ L1(Jh, (1 + E)dE) given by

Mh(x) =
∫ x

0

Zhh(x− r)KNhN(r)dr (7)
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where

Zhh(x) +
∞∑

n=0

xn(−σMI + Khh)n

n!
.

The solution is nonnegative if G(E) ≥ 0 a.e. E ∈ J .

One has to consider the following operator:

(j) β(x), x > 0, with domain D(β(x)) ⊂ L1(Jl, (1 + E)dE) and range in L1(Jl, (1 + E)dE),
acting as β(x)Ml(E) + − b

Ex Ml(E), where b > 0 is a constant measured in eV. The domain
D(β(x)) + Dβ of this operator does not depend on x > 0; it is dense in L1(Jl, (1 + E)dE)
since continuous functions with compact support in Jl belong to Dβ . Moreover β(x) is a
closed operator, since for λ > 0 the resolvent operator [λI−β(x)]−1, with domain L1(Jl, (1+
E)dE), has norm

∥∥[λI − β(x)]−1
∥∥ ≤ λ−1 (a similar proof can be found in [7]). Therefore,

β(x) ∈ G(1, 0; L1(Jl, (1 + E)dE)).

Theorem 5. The abstract differential problem

Ṁl(x) = [β(x)− σMI + Kll] Ml(x) + KhlMh(x) + KNlN(x) , Ml(0) = 0 , (8)

where N(x) is the solution of problem (4) and Mh is the one of problem (6), has one and only one
strongly continuously differentiable solution [0,∞) 3 x 7→ Ml(x) ∈ Dβ given by

Ml(x) =
∫ x

0

V (x, r) [KhlMh(r) + KNlN(r)] dr . (9)

where the family
{
V (x, s) : 0 ≤ s ≤ x , x > 0

}
is the evolution system generated by the linear

unbounded operator β(x) − σMI + Kll in the space L1(Jl, (1 + E)dE) and solves, for ϕ ∈
L1(Jl, (1 + E)dE), the equation:

V (x, s)ϕ = V(x, s)ϕ +
∫ x

s

V(x, r)Kll V (r, s)ϕdr,

where
{V(x, s)

}
is the evolution system generated by the unbounded linear operator

{
β(x) −

σMI ; x > 0
}

and it is given by:

(V(x, s) ϕ
)
(E) = e−σM (E) (x−s)

( s

x

) b
E

ϕ(E),

if 0 ≤ s ≤ x , x > 0.

The proof is analogous to that given in [7].

4 THE SOLUTION OF THE EVOLUTION PROBLEM WHEN THE INVERSES OF MEAN
FREE PATHS ARE LOCALLY ESSENTIALLY BOUNDED

In literature one finds inverses of mean free paths that do not satisfy the hypotheses given in
Section 3. For instance, in [2] one finds the following particular case in which σ(E) = σ0E

a, where
σ0 is positive, and drawings of graphics where a = 0.03, a = 0.04, a = 0.06 and a = 0.10. It
is also foreseen the case a = 0. The best value is considered to be a = 0.06. In [5], one finds
σ(E) = σ0(1 + a ln(E/ε)) and graphics are drawn for σ0 = (1/96.4)g−1cm2, a = 0.027, ε = 20
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GeV, E measured in GeV and for σ0 = (1/80)g−1cm2, a = 0.037, ε = 20 GeV, E measured in
GeV. In the same article another expression for σ(E) is given: σ(E) = σ0(1 + a ln2(E/ε)), where
σ0 = (1/96.4)g−1cm2, a = 4.975× 10−3, ε = 10 GeV, E measured in GeV. In [6] we find again a
power-law function: σ(E) = σ0 (E/B)a where σ0 = (1/96.40) g−1cm2, B = 20 GeV, a = 0.027
or, in a different energy region, the best fit for σ(E) is for σ0 = (1/80) g−1cm2, B = 1 TeV,
a = 0.06.

It is clear that those functions do not satisfy assumptions in Section 3. As a consequence, we
have to change hypotheses on σ and σM to obtain inverses of mean free paths agreeing with those
presented in literature. We assume σ and σM belonging to L∞loc(J) for almost every E ∈ J . The
assumptions on the energy distribution functions given in the previous Section still hold, and we
also assume the following bounds: ess supE′∈J

{σ(E′)
1+E′

∫ E′

0
fNN (E, E′)(1 + E)dE

}
+ γ < 1;

ess supE′∈Jh

{σ(E′)
1+E′

∫ E′

E1
fNh(E,E′)(1+E)dE

}
+ γ′; ess supE′∈Jh

{σM (E′)
1+E′

∫ E′

E1
fhh(E, E′)(1+

E)dE
}

+ γh <1; ess supE′∈Jl

{σM (E′)
1+E′

∫ E′

0
fll(E, E′)(1+E)dE

}
+ γl <1; ess supE′∈Jh

{σM (E′)
1+E′ ×∫ E1

0
fhl(E, E′) (1 + E) dE

}
+ γ′h; ess supE′∈Jl

{ σ(E′)
1+E′

∫ E′

0
fNl(E, E′) (1 + E) dE

}
+ γ′l ;

ess supE′∈Jh

{σ(E′)
1+E′

∫ E1

0
fNl(E, E′) (1 + E) dE

}
+ γ′′l .

Consider the following linear operators:

(a’) Σ, with domain D(Σ) + D ⊂ L1(J, (1 + E)dE) and range in L1(J, (1 + E)dE), acting as
ΣN(E) + σ(E)N(E);

(b’) ΣM , with domain Dh(ΣM ) + Dh ⊂ L1(Jh, (1 + E)dE) and range in L1(Jh, (1 + E)dE),
acting as ΣMMh(E) + σM (E)Mh(E);

(c’) ΣM , with domain Dl(ΣM ) + Dl ⊂ L1(Jl, (1 + E)dE) and range in L1(Jl, (1 + E)dE),
acting as ΣMMl(E) + σM (E)Ml(E);

(d’) KNN , with domain D(KNN ) = D(Σ) + D ⊂ L1(J, (1 + E)dE) and range in L1(J, (1 +
E)dE), acting as KNNN(E) =

∫∞
E

fNN (E, E′)σ(E′)N(E′) dE′;

(e’) KNh, with domain D(KNh) = D(Σ) + D ⊂ L1(J, (1 + E)dE) and range in L1(Jh, (1 +
E)dE), acting as KNhN(E) =

∫∞
E

fNh(E, E′) σ(E′)N(E′) dE′;

(f’) KNl, with domain D(KNl) = D(Σ) + D ⊂ L1(J, (1 + E)dE) and range in L1(Jl, (1 +
E)dE), acting as KNlN(E) =

∫∞
E

fNl(E, E′)σ(E′) N(E′) dE′;

(g’) Khh, with domain D(Khh) = Dh(ΣM ) + Dh ⊂ L1(Jh,(1+E)dE) and range in L1(Jh,(1+
E)dE), acting as KhhMh(E)=

∫∞
E

fhh(E, E′) σM (E′) Mh(E′) dE′;

(h’) Kll, with domain D(Kll) = Dl(ΣM ) + Dl ⊂ L1(Jl, (1 + E)dE) and range in L1(Jl, (1 +
E)dE), acting as KllMl(E) =

∫ E1

E
fll(E,E′)σM (E′)Ml(E′) dE′;

(i’) Khl, with domain D(Khl) = Dh(ΣM ) + Dh ⊂ L1(Jh, (1+E)dE) and range in L1(Jl, (1+
E)dE), acting as KhlMh(E) =

∫∞
E1

fhl(E, E′)σM (E′) Mh(E′) dE′.

Lemma 6. The operator A + −Σ + KNN belongs to G(1, γ; L1(J, (1 + E)dE)).
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Proof. The domain D of A is dense in L1(J, (1+E)dE) because continuous functions with compact
support in J belong to D. Besides, for every z > γ the operator (zI−A)−1 from L1(J, (1+E)dE)
to D exists, is linear and bounded and in particular it is such that: ‖(zI − A)−1‖ ≤ 1

z−γ . In-
deed, solving equation (zI − A)N(E) = g(E) for every g ∈ L1(J, (1 + E)dE) and z > γ,
one obtains N(E) = g(E)

z+σ(E) + 1
z+σ(E)

∫∞
E

fNN (E, E′)σ(E′)N(E′)dE′. Putting KN(E) =
1

z+σ(E)

∫∞
E

fNN (E, E′)σ(E′)N(E′)dE′, one has N(E) = g(E)
z+σ(E) + KN(E) with ‖KN(E)‖ ≤

∫∞
0

1
z+σ(E)

∫∞
E

fNN (E, E′)σ(E′)|N(E′)|dE′(1+E)dE =
∫∞
0

σ(E′)|N(E′)| 1+E′
1+E′ dE′∫ E′

0
1

z+σ(E)×
fNN (E, E′)(1 + E)dE =

∫∞
0
|N(E′)|(1 + E′)dE′

{
σ(E′)
1+E′

∫ E′

0
1

z+σ(E)fNN (E, E′)(1 + E)dE
}
≤

1
z

∫∞
0
|N(E′)|(1 + E′)dE′

{
σ(E′)
1+E′

∫ E′

0
fNN (E, E′)(1 + E)dE

}
≤ 1

z

∫∞
0
|N(E′)|(1 + E′)dE′ ×

ess supE′∈J

{
σ(E′)
1+E′

∫ E′

0
fNN (E, E′)(1+E)dE

}
= 1

z γ
∫∞
0
|N(E′)|(1+E′)dE′ = 1

z γ‖N(E)‖ =

ξ‖N(E)‖ where one has put ξ + 1
z γ. Note that it results ξ < γ < 1. Therefore, it is ‖K‖ ≤

ξ < γ < 1. Being N(E) =
∑∞

n=0 Kn g(E)
z+σ(E) , one has ‖N(E)‖ ≤ ∑∞

n=0 ‖K‖n
∥∥∥ g(E)

z+σ(E)

∥∥∥ ≤
∑∞

n=0 ξn
∥∥∥ g(E)

z+σ(E)

∥∥∥ = 1
1−ξ

∥∥∥ g(E)
z+σ(E)

∥∥∥ ≤ 1
1−ξ

‖g(E)‖
z = 1

z−γ ‖g(E)‖ for every g ∈ L1(J, (1+E)dE)

and z > γ. Therefore ‖(zI−A)−1g(E)‖ ≤ 1
z−γ ‖g(E)‖ for every g ∈ L1(J, (1+E)dE) and z > γ.

To conclude, it also implies that the operator A is closed and so A belongs to G(1, γ; L1(J, (1 +
E)dE)).

Referring to the theory of semigroups of linear operators in Banach spaces, see [9, 10, 11], the
following theorem can be stated:

Theorem 7. The abstract differential problem

Ṅ(x) = (−Σ + KNN )N(x), N(x = 0) = G ∈ D (10)

has one and only one strongly continuously differentiable solution [0,∞)3x 7→N(x)∈D given by:

N(x) = Z(x)G, (11)

where

Z(x) + eγx lim
n→∞

{(
I − x

n
A1

)−1
}n

is the semigroup generated by A + (−Σ+KNN ) ∈ G(1, γ;L1(J, (1+E)dE)), being A1 + A−γI .
The solution is nonnegative if G(E) ≥ 0 a.e. E ∈ J .

Similarly, one has (the proof is analogous to that given for Lemma 6):

Lemma 8. The operator Ah + −ΣM + Khh belongs to G(1, γh;L1(Jh, (1 + E)dE)).

Theorem 9. The abstract differential problem

Ṁh(x) = (−ΣM + Khh)Mh(x) + KNhN(x), Mh(x = 0) = 0, (12)

where N(x) is the solution of problem (10), has a unique strict solution [0,∞) 3 x 7→ Mh(x) ∈ Dh

given by

Mh(x) =
∫ x

0

Zh(x− r)KNhN(r)dr (13)
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where

Zh(x) + eγhx lim
n→∞

{(
I − x

n
A2

)−1
}n

and A2 + Ah − γhI .

Proof. It follows from Lemma 8 (see [9]). In addition, being (12) a non-homogeneous evolution
problem, one has to prove that the source term KNhN(x) is strongly continuous. To prove the
strong continuity, one evaluates the norm: ‖KNhN(x + t)−KNhN(x)‖ ≤ ∫∞

E1

∫∞
E

fNh(E, E′)×
σ(E′) |N(x + t, E′)−N(x,E′)| dE′(1+E)dE ≤ ∫∞

E1
|N(x + t, E′)−N(x,E′)| (1+E′)dE′×

ess supE′∈Jh

{
σ(E′)
1+E′

∫ E′

E1
fNh(E,E′)(1 + E)dE

}
≤ γ′‖N(x + t) − N(x)‖ which goes to 0 for

t → 0, being N strongly continuous (because it is the strict solution of (10)).

Consider again the operator given in (j). Note that Dβ ∩ Dl 6= ∅. Following the same steps of
[7], one can prove the following theorem:

Theorem 10. The abstract differential problem

Ṁl(x) = [β(x)− σMI + Kll] Ml(x) + KhlMh(x) + KNlN(x) , Ml(0) = 0 , (14)

where N(x) is the solution of problem (10) and Mh is the one of problem (12), has one and only one
strongly continuously differentiable solution [0,∞) 3 x 7→ Ml(x) ∈ Dβ ∩Dl given by

Ml(x) =
∫ x

0

V (x, r) [KhlMh(r) + KNlN(r)] dr , (15)

where the family
{
V (x, s) : 0 ≤ s ≤ x , x > 0

}
is the evolution system generated by the

linear unbounded operator β(x) − ΣM + Kll in the space L1(Jl, (1 + E)dE) and solves, for
ϕ ∈ L1(Jl, (1 + E)dE), the equation:

V (x, s)ϕ = V(x, s)ϕ +
∫ x

s

V(x, r)Kll V (r, s)ϕdr,

where
{V(x, s)

}
is the evolution system generated by the unbounded linear operator

{
β(x) −

ΣM ; x > 0
}

and it is given by:

(V(x, s) ϕ
)
(E) = e−σM (E) (x−s)

( s

x

) b
E

ϕ(E) ,

if 0 ≤ s ≤ x , x > 0.

5 CONCLUSIONS
In literature we find several expressions for the inverses of mean free paths and for the energy

distribution functions. Astrophysicians evince such expressions from the experimental data: they
look for those mathematical expressions that best fit the experimental data. We report some of those
expressions. For instance, in [2] it is reported the particular case in which G(E) = G0E

−2.7 where
G0 is a positive constant. It is clear that this initial datum does not belong to L1(J, (1 + E)dE). In
[2] it is also assumed that the inverse of mean free path for nucleons is σ(E) = σ0E

a, where σ0

is positive, and the best fit is for a = 0.06. This function does not agree with the assumptions of
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Section 3. In [2] the energy distribution function for nucleons is f(E, E′) = (1 + β) 1
E′ (1 − E

E′ )
β .

This function, for β ≥ 0, satisfies the hypotheses given in Section 3, but one cannot say the same
for the energy distribution functions for mesons: for instance, in [2] the energy distribution function
for pions is: fNΠ(E,E′) = 1.04E′−E

E′E exp
(−5 E

E′
)

and it does not satisfy all the assumptions in
Section 3. Now consider the hypotheses of Section 4: in [2] σ is locally essentially bounded on J

but the bound requested for ess supE′∈J

{σ(E′)
1+E′

∫ E′

0
f(E, E′)(1 + E)dE

}
+ γ < 1 does not hold.

It is clear that using functions as given in [2], one does not obtain solutions in L1(I, (1 + E)dE),
with I = J, Jh, Jl.

In [5], it is suggested that σ(E) = σ0(1 + a ln(E/ε)) and graphics are drawn for σ0 = (1/96.4)
g−1cm2, a = 0.027, ε = 20 GeV, E measured in GeV and for σ0 = (1/80)g−1cm2, a = 0.037,
ε = 20 GeV, E measured in GeV. In the same article another expression for σ(E) is given: σ(E) =
σ0(1 + a ln2(E/ε)), where σ0 = (1/96.4)g−1cm2, a = 4.975 × 10−3, ε = 10 GeV, E measured
in GeV. The functions G(E) and f(E, E′) are the same given in [2]. These functions do not satisfy
our assumptions.

In [6], we find again a power-law function: σ(E) = σ0 (E/B)a where σ0 = (1/96.40) g−1cm2,
B = 20 GeV, a = 0.027 or, in a different energy region, the best fit for σ(E) is for σ0 = (1/80)
g−1cm2, B = 1 TeV, a = 0.06. For the energy distributions, the following function is suggested:
fNΠ(E, E′) = 5

3 (E′
A )α[1− (E′

A )α′ E
E′ ]

4 1
E where A is the pion production normalization energy, and

α, α′ ¿ 1. These functions do not satisfy our assumptions either.
On the other hand, we think that the request we made for solutions being in L1(I, (1 + E)dE),

with I = J, Jh, Jl, is physically consistent and it is a natural request. Using functions as given in
the quoted articles, one does not obtain solutions in L1(I, (1 + E)dE), with I = J, Jh, Jl. Such
functions could be used if we considered energy sets having the following form: J ′ = [Emin, Emax]
with Emin > 0 and Emax < ∞, but in this way one would exclude low and high energies. Such an
assumption seems to be reductive.

References
[1] Portella, H.M., Castro, F.M.O., Amato, N. and Maldonado, R.C.H., “An alternative method to

solve the hadronic cosmic-ray diffusion equations: the muon and neutrino fluxes”, J. Phys. A:
Math. Gen., 27, 539-545 (1994).

[2] Portella, H.M., Gomes, A.S., Amato, N. and Maldonado, R.C.H., “Semigroup theory and dif-
fusion of hadrons in the atmosphere”, J. Phys. A: Math. Gen., 31, 6861-72 (1998).

[3] Portella, H.M., de Oliveira, L.C.S., Lima, C.E.C. and Gomes, A.S., “A new approach to derive
atmospheric muon fluxes”, J. Phys. G: Nucl. Part. Phys., 28, 415-425 (2002).

[4] Bellandi, J., Costa, G.C.S., Covolan, R.J.M., Dobrigkeit, C., Mundim, L.M. and Salles, C.,
“Analytical description of hadronic integral spectra of cosmic-ray superfamilies with Feynman
scaling breaking”, Phys. Rev. D, 50, 6836-42 (1994).

[5] Portella,H.M.,Shigueoka,H.,Gomes,A.S. and Lima,C.E.C., “The nucleon-air nucleus interac-
tion probability law with rising cross section”, J.Phys.G:Nucl.Part.Phys., 27,191-201 (2001).

[6] Tsui, K.H., Portella, H.M., Navia, C.E., Shigueoka, H. and de Oliveira, L.C.S., “Hadron cas-
cade by the method of characteristics”, J. Phys. G: Nucl. Part. Phys., 31, 1275-1290 (2005).

[7] Busoni, G. and Prati, L.,“On the solution of a cosmic rays diffusion system”, in Proc. XVIII Con-
gresso AIMETA (CD-ROM, Section “Generale”, GE1-4), Brescia, Italy, Sept. 11-14, (2007).

9



[8] Candia, J. and Roulet, E., “Rigidity dependent knee and cosmic ray induced high energy neu-
trino fluxes” J. Cosmol. Astropart. Phys., JCAP09(2003)005, (2003).

[9] Belleni Morante, A., Applied Semigroups and Evolution Equations, Oxford: Clarendon Press
(1979).

[10] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations,
Berlin, New York: Springer-Verlag (1983).

[11] Engel, K.J. and Nagel, R., One Parameter Semigroups for Linear Evolution Equations, Berlin,
New York: Springer-Verlag, (2000).

10


