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SUMMARY. From [1] we present a uniqueness theorem for the solutions to the initial boundary va-
lue problem, a generalized Hamilton principle, and a theorem of reciprocity of work for incremental
thermoelectroelasticity with initial fields.

1 INTRODUCTION
The increasing wide use in sensing and actuation has attracted much attention towards theories

about materials exhibiting couplings between elastic, electric, magnetic and thermal fields.
Nowacki [2, 3] proved a uniqueness theorem for the solutions of the initial boundary value pro-

blems, a generalized Hamilton principle and a theorem of reciprocity of work, in linear thermopie-
zoelectricity referred to a natural state, i.e., with no initial fields.

Li [4] generalized the uniqueness and reciprocity theorems for linear thermo-electro-magneto-
elasticity referred to a natural state.

Aouadi [5] established a reciprocal theorem for a linear generalized theory of thermo-magnetoelectroelasticity,
referred to a natural configuration,with a thermal relaxation time.

Iesan [6] uses the Green-Naghdi theory of continuum thermomechanics to derive a linear theory
of thermoelasticity with internal structure where in particular a uniqueness result holds.

Related works on thermoelasticity and thermoelectromagnetism can be found e.g. [7] to [11].
The classical linear theory of thermopiezoelectricity assumes infinitesimal deviations of the field

variables from a reference state, where there are no initial mechanical and electric fields. In order
to describe the response of thermoelectroelastic materials in the presence of initial fields one needs
the theory for infinitesimal fields superposed on initial fields, and this can only be derived from the
fully nonlinear theory of thermoelectroelasticity. Yang [13] derived, from the equations of nonlinear
thermoelectroelasticity given in Tiersten [12], the equations for infinitesimal incremental fields su-
perposed on finite biasing fields in a thermoelectroelastic body with no assumption on the biasing
fields.

Here we present the results of Montanaro [1], where the aforementioned three Nowacki’s theo-
rems [2], [3] are extended to incremental thermoelectroelasticity with initial fields.

The incremental theory [13] is used here, and we rewrite from this paper, with the same notations,
some formulae and results on constitutive equations of incremental thermoelectroelasticity.

In the uniqueness theorem below we assume that in the initial state entropy does not depend on
time and temperature is uniform. For the theorem of reciprocity of work below we assume that in
the initial state both entropy and temperature fields do not depend on time.
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2 EQUATIONS OF NONLINEAR THERMOELECTROELASTICITY
2.1 Balance laws and constitutive equations

The thermoelectroelastic body under consideration in the reference configuration occupies a re-
gion V with boundary surface S. Its motion is described by

yi = yi(XL, t) ,

where yi denotes the present coordinates and XL the reference coordinates of material points with
respect to the same Cartesian coordinate system.

Let KLj , ρo, fj , ∆L, ρE , θ, η, QL and γ respectively denote the first Piola-Kirchoff
stress tensor, the mass density in the reference configuration, the body force per unit mass, the
reference electric displacement vector, the free charge density per unit undeformed volume, the
absolute temperature, the entropy per unit mass, the reference heat flux vector, and the body heat
source per unit mass. Then we have the following equations of motion, electrostatics, and heat
conduction written in material form with respect to the reference configuration:

KLi,L + ρofi = ρoÿi , (1)

∆L,L = ρE , (2)

ρoθη̇ = −QL,L + ρoγ , (3)

The above equations are adjoined by constitutive relations defined by the specification of the free
energy ψ and heat flux QL:

ψ = ψ(EMN , WM , θ) , QL = QL(EMN , WM , θ, ΘM ) (4)

where
EMN = (yj,Myj,N − δMN )/2 , WM = −φ,M , ΘM = θ,M (5)

are the finite strain tensor, the reference electric potential gradient, and the reference temperature
gradient; of course, δMN is the Kronecker delta, and φ is the electric potential. Hence, by using ψ
the constitutive relations (4) of [13] are deduced for KLi, ∆L, η; here we rewrite them from [13]:

KLi = yi, Aρo
∂ψ

∂EAL
+ JXL, j εo(EjEi −

1
2
EiEiδji) ,

∆L = εoJXL, jEj − ρo
∂ψ

∂WL
, η = −∂ψ

∂θ
, (6)

with Ei = −φ, i. Recall that the heat-flux constitutive relation (4)2 is restricted by

QLΘL ≤ 0 . (7)

Note that, in particular, (4)2 includes the case in which QM is linear in ΘL, that is,

QM = −κML(θ, WA) ΘL . (8)
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2.2 The initial boundary value problem for a thermoelectroelastic body
To describe the corresponding boundary conditions to add to the field equations (1)-(3), three

partitions (Si1, Si2), i = 1, 2, 3, of the boundary surface S = ∂B can be assigned. For mechani-
cal boundary conditions, deformation ỹi and traction t̃i per unit undeformed area are prescribed,
respectively, on S11 and S12; for electric boundary conditions, electric potential φ̃ and surface-
free charge ∆̃ per unit undeformed area are prescribed, respectively, on S21 and S22; while for
thermic boundary conditions, temperature θ̃ and normal heat flux Q̃ per unit undeformed area are
prescribed, respectively,on S31 and S32. Hence, we can write

yi = ỹi on S11 , KLiNL = K̃i on S12 (′mechanical′) , (9)

φ = φ̃ on S21 , ∆LNL = −∆̃ on S22 , (′electric′) (10)

θ = θ̃ on S31 , QLNL = Q̃ on S32 (′thermic′) , (11)

where N = (NL) is the unit exterior normal on S and

Si1 ∪ Si2 = S , Si1 ∩ Si2 = ∅ (i = 1, 2, 3) . (12)

Let
A :=

(
fi, ρE , γ, ỹi, K̃i, φ̃, ∆̃, θ̃, Q̃

)
. (13)

The initial boundary value problem is then stated as: given an external action A, to find the
solution (φ, θ, yi) in B to the constitutive relations (6) and field equations (1)-(3), which satisfies
the boundary conditions (9)-(11) and assigned initial conditions.

3 INITIAL AND INCREMENTAL FIELDS
In incremental theories three configurations are distinguished: the reference, initial and present

configuration.
In the reference state the body is undeformed and free of all fields. A generic point at this state

is denoted by X with rectangular coordinates XN . The mass density in the reference configuration
is denoted by ρo.

In the initial state the body is deformed finitely under the action of a prescribed initial action.
The position of the material point associated with X is given by yoα = yoα(X, t), with the Jacobian
of the initial configuration denoted by Jo = det(yoα, L). The initial fields

yoα = yoα(X, t), φo = φo(X, t), θo = θo(X, t) (14)

satisfy the equations of nonlinear thermoelectroelasticity (1)-(11) under the prescribed action. The
electric potential, electric field and temperature field are denoted by φo(X, t), W o

α = −φo, α and
θo(X, t), respectively. The solution to the initial state problem is assumed known.

To the deformed body at the initial configuration, infinitesimal deformations, electric, and ther-
mal fields are applied. The present position of the material point associated with X is given by
yi(X, t), with electric potential φ(X, t) and temperature θ(X, t).

The fields yi(X, t), φ(X, t), θ(X, t) satisfy (1) under the action of the external action (13).
Let ε be a small number. The incremental process ε(y1, φ1, θ1) for (y, φ, θ) superposed to

the initial process (yo, φo, θo) is assumed to be infinitesimal and, therefore, we write:

yi = δiα(yoα + εy1
α) , φ = φo + εφ1 , θ = θo + εθ1 , (15)
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Corresponding to (15), any other quantity Q in the present state can be written as

Q ∼= Qo + εQ1 , (16)

where, due to nonlinearity, higher powers of ε may arise. We want to derive equations governing the
incremental process

(
u := y1 , φ1 , θ1

)
. From (15) and (16), we can further write:

EKL ∼= EoKL + εE1
KL , WL

∼= W o
L + εW 1

L , ΘL
∼= Θo

L + εΘ1
L , (17)

where

EoKL = (yoα,Ky
o
α, L − δKL)/2 , E1

KL = (yoα,Ky
1
α,L + yoα, Ly

1
α,K)/2 ,

W o
L = −φo, L , W 1

L = −φ1
, L , Θo

L = θo, L , Θ1
L = θ1, L . (18)

Substituting (15)-(18) into the constitutive relations (1), Yang (2003) obtains the expressions:

KMi
∼= δiα(Ko

Mα + εK1
Mα) , ∆M

∼= ∆o
M + ε∆1

M , η ∼= ηo + εη1 , QM ∼= QoM + εQ1
M ,

where
K1
Mα = GMαLγuγ, L +RLMαφ

1
, L − ρoΛMαθ

1 , (19)

∆1
M = RMNγuγ,N − LMNφ

1
, N + ρoPMθ

1 , (20)

η1 = ΛMγuγ,M − PMφ1
,M + αθ1 , (21)

Q1
M = −κMNαuα,N − κEMNφ

1
, N − κMθ1 − κMNθ

1
, N . (22)

In (19)-(22), GMαLγ = GLγMα are the effective elastic constants, RLMα are the effective pie-
zoelectric constants, ΛMα are the effective thermoelatic constants, LMN = LNM are the effective
dielectric constants, PM are the effective pyrolectric constants, α is related with the specific heat.
Their expressions are given by Eqs. (14), (15) in [13].

3.1 Restriction on the incremental heat flux
Condition (7) on the heat flux (4)2, together with the condition QoL = 0 for Θo

L = 0, implies
an analogous restriction on the incremental heat flux (22), that is,

Q1
LΘ1

L ≤ 0 . (23)

3.2 Incremental field equations
By substituting (15)-(22) into (1), we find the governing equations for the incremental fields

K1
Mα,M + ρo f

1
α = ρo üα , (24)

∆1
M,M = ρ1

E , (25)

ρo (θoη̇1 + θ1η̇o) = −Q1
M,M + ρo γ

1 . (26)

Introducing the constitutive relations (19)-(22) into the incremental equations of motion (24), the
equation of the electric field (25), and the heat equation (26), for f1

α = 0 we have

GMαLγuγ, LM +RLMαφ
1
, LM − ρoΛMαθ

1
,M = ρo üα , (27)
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RMNγuγ,NM − LMNφ
1
, NM + ρoPMθ

1
M = ρ1

E , (28)

ρoθ
o
(

ΛMγ u̇γ,M − PM φ̇1
,M + αθ̇1

)
+ ρoθ

1η̇o = (29)

= κEMNφ
1
, NM + κMθ

1
,M + κMNθ

1
, NM + κMNαuα,NM + ρoγ

1. (30)

4 UNIQUENESS THEOREM OF THE SOLUTION OF THE INCREMENTAL DIFFEREN-
TIAL EQUATIONS

In [1] the proof in [3] is generalized when there are initial fields with η̇o = 0 and Θo
L = 0 (uni-

form initial temperature field θo). Substituting the constitutive relations (19) into the fundamental
energy equation ∫

V o

(
f1
α − ρov̇α

)
vα dV +

∫
So

K̃α vα dS =
∫
V o

K1
Mα u̇α,M dV (31)

we obtain∫
V o

(
f1
α − ρov̇α

)
vα dV +

∫
So

K̃α vα dS =
∫
V o

(
GMαLγuγ, L +RLMαφ

1
, L − ρoΛMαθ

1
)
u̇α,M dV , (32)

thus

d

dt

(
W+K

)
=
∫
V o

f1
α vα dV +

∫
So

K̃α vα dS +
∫
V o

(
ρoΛMαθ

1 −RLMαφ
1
, L

)
u̇α,M dV , (33)

where W is the work of deformation and K is the kinetic energy:

W =
1
2

∫
V o

GMαLγ uα,M uγ, L dV , K =
1
2

∫
V o

ρo vαvα dV . (34)

Let

E =
1
2
LKM

∫
V o

W 1
MW

1
K dV , P =

α

2θo

∫
V o

ρoθ
1 θ1 dV , χφ =

κEML

θo

∫
V o

θ1,Mφ
1
, LdV ,

(35)

χ =
κM
θo

∫
V o

θ1,Mθ
1 dV , χθ =

κML

θo

∫
V o

θ1,Mθ
1
, LdV , χu =

κMLα

θo

∫
V o

θ1,Muα,LdV .

By some manipulations we arrive at the modified energy balance

d

dt

(
W +K + P + E + ρoPK

∫
V o

θ1W 1
K dV

)
+
(
χ + χθ + χφ + χU

)
=

=
∫
V o

f1
α vα dV +

∫
So

K̃α vα dS +

+
κEML

θo

∫
So

θ1φ1
, LNM dS +

κL
θo

∫
So

θ1NL dS +
κML

θo

∫
So

θ1θ1, LNM dS + (36)

+
1
θo

∫
V o

ρo θ
1γ1 dV −

∫
So

∆̇1
KNKφ

1 dS .

The energy balance (36) makes possible the proof of the uniqueness of the solution.
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We assume that two distinct solutions (u′i, φ
1′, θ1′) and (u′′i , φ

1′′, θ1′′) satisfy Eqs.(24)-(26)
and the appropriate boundary and initial conditions. Their difference

(ûi = u′i − u′′i , φ̂ = φ1′ − φ1′′, θ̂ = θ1′ = θ1′′)

therefore satisfies the homogeneous equations (24)-(26) and the homogeneous boundary and initial
conditions. Equation (36) holds for (ûi, φ̂, θ̂).

In view of the homogeneity of the equations and the boundary conditions, the right-hand side of
Eq.(36) vanishes. Hence

d

dt

(
W +K + P + E + ρoPK

∫
V o

θ1W 1
K dV

)
= −

(
χ + χθ + χφ + χu

)
≤ 0 ,

(37)

where the last inequality is true since by (22), (36) and (23) we have

−
(
χ + χθ + χφ + χu

)
=

1
θo

∫
V o

Q1
MΘ1

M dV . (38)

The integral in the left-hand side of Eq.(37) vanishes at the initial instant, since the functions
ûi, φ̂, θ̂ satisfy the homogeneous initial conditions. On the other hand, by the inequality in (37)
the left-hand side is either negative or zero.

Now we assume (i− iii) below; note that (iii) is the sufficient condition of J. Ignaczak, written
in [3] on pages 176-177.

(i) The initial deformation yoα realizes that the tensor GMαLγ is positive-definite, so that W ≥
0 by (34).

(ii) The tensor LKN is positive-definite so that, by (35), E ≥ 0.
(iii) LIJ is a known positive-definite symmetric tensor, gI = ρoPI is a vector, and c =

ρoα/2θo > 0; consider the function

A(θ1, WL) = (θ1)2 + 2θ1gIW 1
I + LIJW

1
IW

1
J

A is nonnegative for every real pair (θ1, W 1
k ) , provided

|gI | ≤ cλm

where λm is the smallest positive eigenvalue of the tensor LIJ .
Under these three assumptions, (37) implies

ûi, L = 0, θ̂ = 0, ŴL = 0 ,

which imply the uniqueness of the solutions of the incremental thermoelectroelastic equations,
i.e.,

u′i = u′′i , θ1′ = θ1′′, W 1
I
′ = W 1

I
′′ .

Moreover, from the constitutive relations we have that

K1
Iα
′ = K1

Iα
′′, ∆1

L
′ = ∆1

L
′′, η1′ = η1′′ .
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5 ON THE GENERALIZED HAMILTON’S PRINCIPLE
The free energy, electric enthalpy, and potential of the heat flow are respectively defined by

ψ1 =
1
2
GMαLγuα,Muγ, L +RLMαφ

1
, Luα,M − ρoθ1

[
ΛMαuα,M − PMφ1

,M +
α

2
θ1
]
, (39)

H1 = ψ1 − 1
2
LABW

1
AW

1
B = ψ1 − 1

2
LABΦ1

, AΦ1
, B , Γ = Q1

M θ1,M . (40)

Extending Eqs.(36)-(38) of [3], we define two functionals

Π =
∫
V o

(
H1 + ρoη

1θ1 − f1
αuα

)
dV −

∫
So

(
K̃1
αuα − ∆̃1φ1

)
dS (41)

and
Ψ =

∫
V o

(
Γ− ρo(η1θoθ̇1 + η1θ̇oθ1 + ηoθ1θ̇1 + γ1θ1)

)
dV +

∫
So

θ1Q̃ dS . (42)

The generalized Hamilton’s principle has the form

δ

∫ t2

t1

(
K −Π

)
dt = 0 , δ

∫ t2

t1

Ψ dt = 0 . (43)

The virtual processes (δuα, δθ1, δφ1) of the body must be compatible with the conditions
restricting the process of the body and must satisfy the conditions

δuα(x, t1) = δuα(x, t2) = 0, δθ1(x, t1) = δθ1(x, t2) = 0, δφ1(x, t1) = δφ1(x, t2) = 0.

Hence, performing the variations in the second of Eqs.(43) and observing that
δH1 = K1

Mαδuα,M − ρoη1δθ1 + ∆1
LδΦ

1
, L, and∫ t2

t1

(
K −Π

)
dt =

∫ t2

t1

dt
[ ∫

V o

(ρo
2
u̇αu̇α − H1 − ρoη

1θ1 + f1
αuα

)
dV +

∫
So

(
K̃1
αuα − ∆̃1φ1

)
dS
]
,

we have

δ

∫ t2

t1

(
K −Π

)
dt =

∫ t2

t1

dt
[ ∫

V o

(
− ρoüαδuα − K1

Mαδuα,M −∆1
LδΦ

1
, L + f1

αδuα

)
dV

+
∫
So

(
K̃1
αδuα − ∆̃1δφ1

)
dS
]

= 0 . (44)

Since the variations δuα and δφ1 are arbitrary, it is easy to show that Eq.(44) is equivalent to the
equations governing the incremental motion and electric field, completed by the appropriate boun-
dary conditions, that are written above.

Thus (i) the variational equation (43)2 performed with δuα = 0 = δφ1 is equivalent to
(j) the entropy balance (26) and (jj) the boundary condition for the heat flow

Q1
LNL = Q̃ , ( x ∈ S ) (45)

if and only if κL = 0 .
Alternatively, (ii) by performing the variation (43)2 with all the variations δuα, δφ

1, δθ1

arbitrary, we deduce that
the variational equation (43)2 is equivalent to the entropy balance (26) and the boundary condi-

tion for the heat flow (45) if and only if κL = 0, κEML = 0, κMLα = 0 .
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6 THEOREM OF RECIPROCITY OF WORK
The theorem of reciprocity of work is extended by following and developing some steps in [3]

on pages 179-182. We assume that the body is homogeneous and moreover that the initial state is
static, so that in particular θ̇o = 0, η̇o = 0. Here we do not assume that θo is uniform. The Laplace
transform of functions ν = ν(x, t) ,

ν(x, p) =
∫ ∞

0

e−ptν(x, t) dt , (46)

will be used below. Consider two sets of causes A1, A1′ for incremental processes, and respective
effects (uα, φ, θ), (u′α, φ

′, θ′). Starting from the equations of motion

K1
Lα,L + ρofα = ρoüα , K1′

Lα,L + ρof
′
α = ρoü

′
α , (47)

taking their Laplace transform, multiplying each by θo, then multiplying the first by u′α and the
second by uα, and making the difference of their integrals over the instantaneous region V , assuming
that the initial conditions for the displacements are homogeneous, and performing some very lengthy
algebraic manipulations, we obtain

1
p

[ ∫
So

(
θ1′Q1

L − θ1Q1′
L

)
NL dS −

∫
V o

(
θ1′, LQ1

L − θ1, LQ1′
, L

)
dV
]

(48)

+pPM
∫
V o

ρoθ
o
(
− θ1′W 1

M + θ1W 1′
M

)
dV

+p
[ ∫

V o

θo
(
Fαu

′
α − F ′αuα

)
dV +

∫
So

θo
(
K

1

Lαu
′
α −K

1′

Lαuα

)
NLdS

+
∫
So

θo
(

∆1
L φ1′ −∆1′

L φ1
)
NLdS −

∫
V o

(θo), L
(

∆1
Lφ1′ −∆1′

L φ1
)
dV

−
∫
V o

θoρoPL

(
θ1W 1

L
′ − θ1′W 1

L

)
dV −

∫
V o

(θo), L
(
K1
Lαu

′
α −K1′

Lαuα

)
dV
]

(49)

+
∫
V o

ρo

(
θ1
γ1′

θo
− θ1′

γ1

θo

)
dV = 0 . (50)

The latter is the final form of the theorem of reciprocity of work, containing all causes and effects. It
generalizes Eq.(62) of [3], and reduces exactly to the latter in case of vanishing initial fields, that is,
when the initial configuration is natural.
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