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SUMMARY. Small scale turbulent fluctuations induce a commonplace phenomenology on the trans-
port of small inertial particles, known as clustering. Particles spread disunformly and form aggre-
gates where their local concentration is much higher than it is in nearby rarefaction regions, the
voids, where in extreme cases not even a single particle can be found.

The underlying physics has been exhaustively analyzed in statistically homogeneous and isotropic
flows under the so called one-way coupling regime, i.e. in conditions where the momentum exchange
between the carrier fluid and the disperse phase is negligible.

In this framework we addressed in a recent paper the effect the anisotropic advecting field may
have on such aggregates to show how the clusters can even increase their directionality in the small-
est scales, contrary to the naive expectation based on the isotropy recovery behavior of velocity
fluctuations. This unexpected finding opens new issues in presence of large mass loads, when the
momentum exchange between the two phases becomes significant and the back-reaction of the par-
ticles on the carrier flow cannot be neglected.

By discussing direct numerical simulations of particle laden homogeneous shear flows in the
two-way coupling regime under various mass loads, we present here the new effect we have found:
The energy depletion of the classical inertial scales and the amplitude increase of the smallest ones
where the particle back-reaction pumps energy on the turbulent eddies dramatically altering their
energy content. Overall this appears as by-pass of the classical energy cascade in the presence of
an additional dissipation channel represented by the friction exerted by the particles on the flow
accompanied by a substantial increase of anisotropy down to viscous dissipation.

1 INTRODUCTION
Transport of inertial particles is involved in several fields of science such as droplets growth and

collisions in clouds [9, 20] or the plankton accumulation in the oceans [12]. Several technological
applications are concerned, e.g. inertial particles dynamics is crucial for designing injection sys-
tems of internal combustion engines, to prevent sediment accumulation in pipelines [14] or for the
appropriate dimensioning of filtering devices of various kinds.

The relevant physical aspect in particles dynamics consists in their finite inertia which prevents
them from following the fluid trajectories. Consequently new interesting features emerge. The most
evident is the “preferential accumulation” which, in inhomogeneous flows such as wall bounded
flows, occurrs in the form of the so called “turbophoresis”, i.e. preferential localization of particles
in the near wall region. An exhaustive review of the subject can be found e.g. in [16], see also the
recent paper [13] for a physical explanation in terms of statistical properties of velocity fluctuations
in the near wall region.

When the idealized conditions of isotropic turbulence are addressed, preferential accumulation
manifests itself in the form of small scale clustering, with the disperse phase forming small scale
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aggregates where most particles concentrate, separated by void regions of small particle density, see
e.g. [2] and references therein.

So far the effect of turbulent transport on particle dynamics has been studied extensively in many
flow configurations. Much less is known about the effect the disperse phase may have on the carrier
flow. It is expected that, under proper coupling conditions, the momentum exchange between the
two phases may become relevant in driving the turbulent fluctuations away from their universal
equilibrium state predicted by Kolmogorov in the early forties. Clearly, in contrast to the one-
way coupling regime, addressing these effects calls into play the more realistic two-way coupling
mechanism, where the disperse phase provides an active modulation of velocity fluctuations.

In this context, the few experimental investigation at finite mass load [11, 18] or the even less
numerous two-way coupling numerical simulations [3, 17] are typically focused on the idealized
conditions of isotropic turbulence. In some cases both experimental and numerical works have
addressed the classical channel flow geometry [19]. In any case, the overall effect of particles back
reaction on the carrier phase is reported as an attenuation of turbulence fluctuations controlled by
the mass load ratio defined as the ratio of total disperse phase mass to fluid mass, see e.g. [8] for a
review of the main results both in isotropic and wall bounded flows.

In this scenario important issues still need to be addressed more in depth. A first point concerns
the range of turbulent scales which are directly modulated by the particles. We anticipated already
that, at least for isotropic conditions, the particles lead to the attenuation of turbulent fluctuations. We
do not know, however, which is the range of scales where such attenuation predominantly occurs, and
how the range of affected scales depends on the characteristics of the particles and of the turbulence.
We do not know either if the effect is a systematic depletion of turbulent flactuation irrespective of
the scale or, to the contrary, whether there exists scales where particles pump back part of the energy
on the carrier flow. To properly address this issue, preferential accumulation might become central,
since the back force on the fluid will present a continous spectrum controlled by the multiscale
nature of the particle accumulation process and by its significant small scale features. In shear flows
in particular [7, 5] the phenomenology is expected to be particularly rich. Hence, motivated by
recent findings in the context of anisotropic clustering [10, 15], we consider here the modulation
of turbulence by transported particles addressing the particle laden homogeneous shear flow in the
two-way couling regime, see also [1]. Such flow can be considered as a sort of bridge between the
idealized conditions of isotropic turbulence and the more realistic geometries of wall bounded flows,
since it preserves spatial homogeneity and retains the anisotropic features of shear flows.

For our purposes here, it is worth recalling that, under shear, turbulent fluctuations are strongly
anisotropic at the largest scales due to production of turbulent kinetic energy via interaction of the
mean velocity gradient and turbulent fluctuations. At smaller scales, below the so-called shear scale
LS , inertial energy transfer usually prevails (see e.g. [4] for a discussion of high accuracy wind
tunnel data showing that this may not always be the case). In such conditions re-isotropization of
turbulent fluctuation takes place following a route described in [7].

In such flows we have found that turbulent fluctuations in one-way coupling regime induces
the anisotropic clustering of the disperse phase. Actually, in contrast to the small scale behavior
of velocity fluctuations, particles aggregates do not lose their directionality. Their anisotropy even
icreases down to the viscous scales where clusters still keep memory of the spatial orientiation of
the large scale coherent motions [10].

Here we consider the same flow under the two-way coupling scenario. In this more complex
case the first physical result we achieve consists in a new picture of multi-phase turbulent flows.
As it will be shown, small scales anisotropic clusters acts as a source/sink of momentum for the
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turbulent motions distributed along all the range of scale. They deplete the energy from the largest
inertial scales which is in part retrived in the low-inertial/dissipative range. Here the clusters keep
the velcoity fluctuations to a higher exicitation state than expected on the basis of the standard
Kolmogorov theory. As we will see such back energy scatter is highly anisotropic in shear flow,
hence the small scales fluid motions are prevented from recovering isotropy and eventually increment
their level of anisotropy due to the momentum exchange with the disperse phase, when they would
have otherwise already completely recovered the equilibrium state described by Kolmogorov.

2 METHODOLOGY
Concerning the carrier fluid, the velocity field v is decomposed into a mean flow U = Sx2 e1 and

a fluctuation u where e1 is the unit vector in the streamwise direction, x2 denote the coordinate in the
direction of the mean shear S and x3 is in the spanwise direction. Rogallo’s technique is employed
to rewrite the Navier-stokes equations for velocity fluctuations in a deforming coordinate system
convected by the mean flow according to the transformation of variables ξ1 = x1 − Stx2; ξ2 =
x2; ξ3 = x3; τ = t. The resulting system

∇ · u = 0 ;
∂u
∂τ

= (u× ζ)−∇π + ν∇2u− Su2e1 − Fp , (1)

is numerically integrated by a pseudo-spectral method combined with a fourth order Runge-Kutta
scheme for temporal evolution. In equations (1) ζ is the curl of u, π is the modified pressure which
includes the fluctuating kinetic energy u2/2, ν is the kinematic viscosity and Fp denote the back-
reaction due to the disperse phase. The latter consists of diluted particles with mass density ρp

much larger than the carrier fluid ρf . The approximation of point particles can be adopted whenever
the particle diameter dp is much smaller than the typical turbulence scales. It follows that the only
relevant force is the Stokes drag. Accordingly, the equations for particles position xp

i (t) and velocity
vp

i (t) read
dxp

i

dt
= vp

i ;
dvp

i

dt
=

1
τp

[vi(xp, t)− vp
i (t)] (2)

where vi(xp, t) is the instantaneous fluid velocity evaluated at xp
i (t) and τp = ρpd

2
p/(18νρf ) is the

Stokes relaxation time. Particle velocities are decomposed as vp
i = Ui[x

p
k(t)]+up

i where up
i denotes

the particle velocity deviation with respect to the local mean flow of the carrier fluid. Finally by
using Rogallo’s transformation eqs. (2) can be written in computational space as

dξp
i

dτ
= up

i − Sτup
2δi1 ;

dup
i

dτ
= fp

i
(3)

where fp
i = 1

τp
[ui(ξp, τ)− up

i (τ)] − Sup
2δi1 is the expression of the Stokes drag acting on the pth

particle. In the so called two way coupling regime an equal and opposite force acts on the carrier
fluid accounting for the momentum exchange between the two phases. Modeling the back reaction
in numerical simulations is an issue. Actually, fluid properties are known in an Eulerian frame while
particles evolve along their own Lagrangian trajectories. This requires a first interpolation when
the fluid velocity is computed at the particle position, namely ui(ξp, τ). An other interpolation is
required when the back-reaction on the fluid is computed since fp

i is known at the particle position.
In fact, the force acting on the pth particle is re-distributed via interpolation to the nearest Eulerian
grid points where the fluid velocity is defined. The resulting force on the fluid is computed as

Fp = −Nc

Np
Φ

np(ξ)∑
k

fp (4)
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Φ ρp/ρf Np 〈u2〉/2 −〈u1 u2〉 ε εp

0 − − 0.43 0.118 0.059 −
0.2 100 3.35 106 0.43 0.127 0.049 0.014
0.4 100 6.7 106 0.42 0.134 0.049 0.018
0.8 10 4.2 106 0.41 0.133 0.046 0.020

Summary of Direct Numerical Simulation dataset. Navier-Stokes equations are integrated in a 4π×
2π×2π periodic box with a resolution of 256×256×128 Fourier modes for the cases Φ = 0−0.4.
The simulation at Φ = 0.8 uses 384× 384× 192 Fourier modes. The 3/2 dealiasing rule is adopted
to compute the non linear terms. The Stokes number based on the Kolmogorov time is Stη ' 1.

Table 1:

where the sum is extended to all the np(ξ) particles belonging to the computational cell centered at
point ξ. In eq. (4) Nc denote the number of Eulerian cells, Np is the total number of particles and Φ
denote the mass load ratio i.e. the ratio between the mass of the disperse phase Mp = Npπρpd

3
p/6

and the carrier fluid phase Mf = ρfVf where Vf is the volume of the computational box. Equations
(3) are integrated by the same fourth order Runge-Kutta scheme used for the Navier-Stokes equations
and the interpolation adopt a tri-linear scheme.

The two parameters controlling the homogeneous shear flow are the Taylor-Reynolds number
Reλ =

√
5/(νε)〈uαuα〉 and the shear strength S∗ = S〈uαuα〉/ε where ε the turbulent kinetic

energy dissipation per unit mass. For the simulations discussed below they are Reλ ' 100 and
S∗ ' 7, corresponding to a ratio of shear to Kolmogorov scale Ls/η ' 35. Navier-Stokes equations
are integrated in a 4π × 2π × 2π periodic box see table 1 for a full description of the dataset. The
Kolmogorov scale is η = 0.02 which correspond to Kmaxη = 3.1 ensuring sufficient resolution at
small scales in view of an accurate interpolation required in the simulations. Concerning the disperse
phase the dynamics is controlled by the ratio of the particles relaxation time τp to a characteristic flow
time scale, typically the Kolmogorov time scale τη = (ν/ε)1/2, i.e. the relevant control parameter
is the Stokes number Stη = τp/τη. When the two-way coupling regime is considered other non
dimensional parameters are required to describe the momentum exchange between the two phases
namely the density ratio ρp/ρf –assumed to be much larger than unity– and the mass load fraction
Φ = Mp/Mf . For the simulations in table 1 particles are injected in an already fully developed
turbulent flow. Their position is initialized at random homogeneous points with initial velocity
matching the fluid velocity at particle position. The total number of particles is changed to achieve
different values of the mass load parameter while the Stokes number is kept constant. Samples of
particles statistics are collected after discarding an initial transient. To this purpose 150 statistically
independent snapshots are used to compute the relevant statistical observables which characterize
both the carrier fluid and the disperse phase.

3 PARTICLES CLUSTERING
A visual impression of instantaneous particles configurations is provided in figure 1 where slices

of the domain in selected coordinate planes are displayed for different values of the mass load pa-
rameter Φ at Stη = 1. In all the four cases, the disperse phase is characterized by a multi-scale
distribution of particles concentration and voids. From the figure the shear induced orientation of
the clusters is apparent. For a quantitative description of the anisotropic features of particle clus-
tering we adopt the Angular Distribution Functions (ADF) which measures the number of particle
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pairs at separation r in the direction r̂. The ADF is defined as

g(r, r̂) =
1
r2

dνr

dr

1
n0

, (5)

where n0 = 0.5Np(Np−1)/Vf is the volume density of particles pairs and νr(r, r̂)dΩ is the numbers
of particles pairs contained in the spherical cone of radius r with axis along r̂ and amplitude dΩ. The
spherical average of the ADF g(r) = 1/(4π)

∫
Ω

g(r, r̂)dΩ is called the Radial Distribution Function
(RDF) and has been already used to characterize particles clustering in isotropic conditions. The
ADF extend the tool to anisotropic conditions retaining information on the directionality of the
clusters. The behavior of the RDF near the origin g(r) ∝ r−α can be shown to be related to
important geometrical features of the clusters. In particular D2 = 3− α is the so-called correlation
dimension of the multi-fractal measure associated with the particle density. A positive α indicates
the occurrence of small scale clustering.

Figure 1: Snapshots of particle positions for increasing values of the mass load parameter Φ =
0 0.2 0.4 0.8 from top to bottom. For all the datasets Stη = 1. Left column thin slice in the y − z
plane; right column slice in the x− y plane. The slice thickness is of the order of a few Kolmogorov
scales.
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The RDF is shown in figure 2 for the different values of the mass load parameter Φ. As appar-
ent from the data, the back-reaction progressively attenuates the clustering process at small scales
leading to measure a smaller value of the scaling exponent α. This behavior already emerges at a
qualitative level by looking at the patterns in figure 1 where the clusters are definitely less defined in
the case Φ = 0.8 then at Φ = 0, compare bottom and top panels of the figure, respectively. In any
case clustering, though partially attenuated, is a persistent feature of the two way coupling regime as
measured by the exponent α. In view of turbulence modulation, the anisotropy of particles cluster
will play a crucial role to be discuss in the next section devoted to the analysis of the back reaction
of the disperse phase on the fluid.

We complete the discussion of particle clustering under two-way coupling by characterizing the
anisotropy of the aggregates. This can be done by exploiting the directionality properties of the ADF.
Its angular dependence of g(r, r̂) can be resolved in terms of spherical harmonics [10]

g(r, r̂) =
∞∑

j=0

j∑
m=−j

gjm(r) Yjm(r̂) . (6)

thus achieving a systematic description both in terms of separation r, accounted for by the coeffi-
cients gjm(r), and in terms of directions, inherently described by the shape of the basis functions
Yjm(r̂). Each successive subspace, here labeled j, accounts for increasing levels of anisotropy con-
sistently with the geometrical meaning of the spherical harmonics.

In the right panel of figure 2 we show the most energetic anisotropic projection normalized by the
RDF namely g2−2/g00. This indicator quantifies the average level of anisotropy of particles clusters
at that particular scale. The data show how, going down the scale range, the anisotropy of the clusters
is increased also in the two-way coupling regime. The behavior is in clear contrast with the isotropy
recovery of turbulent velocity fluctuations. Here, when clustering happens to occurs at scales where
velocity fluctuations are almost isotropic, the large scales anisotropic coherent motions still imprint
on particles aggregates. We observe that the back-reaction on the carrier fluid partially reduces
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Figure 2: Left: RDF vs separation, for different mass load ratios Φ at Stη = 1. Right: ratio
between the most energetic anisotropic sector (2,−2) normalized by isotropic sector as a function
of separation. Same data as in the left panel.
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the small scale anisotropy of the disperse phase. The overall behavior is however not substantially
altered from we already described in previous papers on the one-way coupling regime.

4 TURBULENCE MODULATION
The discussion addressed in the previous section concerning anisotropic clustering becomes now

fundamental for its implications for the back reaction of the transported phase on the carrier fluid. As
shown, particle clusters are spatially organized in multi scales sets whose orientation is controlled
by the large scales anisotropic motions in conjunction with the inertial of the suspended particles.
It should be reminded that the classical Kolmogorov like energy cascade, leading to small scales
isotropy recovery of velocity fluctuations, is ineffective in achieving isotropization of particles ag-
gregates.

Clearly, in presence of two-way coupling, the support of the reaction field on the fluid is provided
by those sets where most of the disperse phase concentrate. We conclude that the fluid is stirred by
an highly anisotropic, spectrally non-compact forcing, quite an unusual circumstance in turbulence.
In these conditions, the back-reaction of the disperse phase is expected to deeply alter the classical
scenario of turbulence. Energy extraction/injection is now strongly anisotropic and active down to
the smallest scales of the flow leaving no room for setting-up a classical inertial range.

Observe that, in the homogeneous shear flow, the mean velocity profile is imposed both in the
one way and two way coupling regime. The simplest observables which characterize the response
of turbulent fluctuations are the turbulent kinetic energy, the energy dissipation rate and, as always
for shear flows, the Reynolds shear stresses see table 1. Increasing the mass load ratio, turbulence
fluctuations are progressively attenuated. In the classical homogeneous shear flow in statistically
statistically steady state, the production term P0 = −S〈u v〉0 balances viscous dissipation ε0, where
the subscript refers to case Φ = 0 (no back-reaction). When the balance is addressed in the two-
way coupling regime a new term enters the balance, P − ε − εp = 0 where εp = 〈Fp · u〉 is the
amount of energy the fluid looses in part to the particles by accelerating them though the Stokes
force and part by dissipation in the relative friction, see [6] for a similar mechanism in the context of
polymer laden flows. εp is reported in table 1 for several mass load ratio Φ. As anticipated, the energy
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Figure 3: Left: energy spectra vs wavenumber, for different mass load ratios Φ at Stη = 1. Right:
energy co-spectrum. Same data as in the left panel.
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injected into turbulent fluctuations by their interaction with the mean flow is only partially dissipated
by fluctuating velocity gradients. As Φ is increased an increasing part of energy is transfered to the
particles. A clear signature of this effect is found in the velocity energy spectra of figure 3. As
Φ increases turbulent fluctuations are attenuated in an intermediate range of scale they are strongly
enhanced at small scales. In other words, the Stokes drag intercepts energy from the classical cascade
at intermediate scales where velocity fluctuations are attenuated to pumps part of the intercepted
energy back in the fluid at small scales.

The emerging picture of turbulence in presence of a disperse phase consists of standard transfer
across the inertial range via non linear interactions, partial removal of energy from the cascade by the
Stokes drag and partial re-injection of energy in the small scales. Under many respect, the conceptual
picture is similar to the one operating in polymeric solutions.

In addition to the alteration of the cascade, in essence associated with the existence of an alter-
native dissipation channel, in shear flows we observe a definite change in the spectral distribution of
the turbulent shear stress, figure 3.

It provides the scale-by-scale energy production and allows to identify the range of scales directly
affected by the anisotropic forcing its integral amounts to the Reynolds stress). As the mass load
ratio increases, the range of scales affected by anisotropic production is progressively enlarged. In
fact the Stokes drag removes energy from the normal stresses reducing velocity variances to force
the anisotropy. This is the effect of the highly directional small scales clusters. In these conditions
serious doubts are cast on the small scale isotropy assumption in multiphase flow under sensible mass
loads. Quantification of the isotropy recovery rate is provided by the cospectrum to energy spectrum
ratio, identically vanishing in a purely isotropic state. This ratio, shown in figure 4, indicates the
enhancement of anisotropy at small scales at finite mass load in contrast to the nearly isotropic state
achieved at Φ = 0. In the two way coupling regime E12/E decays much more slowly and eventually
increases at small scales in our most severe loading, Φ = 0.8.

This gives reason of the substantial anisotropy measured at the level of velocity gradients by
means of the non-vanishing component εd

αβ of the deviatoric contribution of the pseudo-dissipation
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Figure 4: Ratio between the energy co-spectrum and the energy spectra vs wavenumber, for different
mass load ratios Φ at Stη = 1. Right: norm of the deviatoric part of the pseudo-dissipation tensor
normalized with its value at Φ = 0 as a function of the mass load ratio.
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tensor, εαβ = 2ν〈∂γuα ∂γuβ〉, shown in figure 4 after normalization with its value at Φ = 0. The
data show a dramatic increase in the anisotropy level of the velocity gradients.

5 FINAL REMARKS
In conclusion, as already discussed in a recent paper for passively advected particles, also in the

two-way coupling regime anisotropy imprints on the particle clusters at small scales. The clustering
process is found to be essentially controlled by the Stokes number as in the one-way coupling regime.
In the two-way coupling regime, however, the back-force existing at finite mass load Φ controls the
the scaling exponent of the RDF and the level of anisotropy observed in the particles aggregates.

The momentum exchange between the disperse phase and the carrier fluid has a dramatic effect
and our data indicate that the process of energy cascade typical of turbulent flows is substantially
altered by the particles back-reaction on the carrier fluid. Small scales velocity fluctuations are af-
fected by the directionality of the clusters via the Stokes drag which, under strong coupling, prevails
over the energy transfer mechanisms. In these conditions small scale velocity fluctuations are driven
by an anisotropic, spectrally un-compact forcing operated by particle clusters down to viscous scales.
Consistently, the statistics of the velocity gradient field is found to develop substantial anisotropic
features.

In our feeling, these findings are bound to have major impact on turbulence modeling of multi-
phase flow which, both in the context of Reynolds averaged (RANS) and filtered equations (LES),
heavily rely upon the concepts of inertial energy cascade and of a presumed universal small scale
statistics. Actually, we have shown beyond doubt, we believe, that the cornerstone Kolmogorov the-
ory no longer safely applies, since the classical energy cascade is overewhelmed by the anisotrpy-
enhancing back-reaction of the particles.
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