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SUMMARY. A theoretical analysis of the effective implicittéring in Finite Volume (FV) methods
for LES is presented. As usual in the LES approach, the ampusatire explicitely filtered before they
are spatial discretized and time integrated. Due to thelfi@tthe spatial discretization introduces a
discretization lengthi,e. a further (implicit) filter, different discretization appaches are discussed.
Final aim of the present research activity lies in discugtire fundamental properties of the subgrid
scale term.

1 INTRODUCTION

Large Eddy Simulation (LES) of turbulent flows is a methodglbased on a formal separation
between large (resolved) and small (unresolved) flow seaiributions, obtained by means of the
application of a low-pass filtering operator on the govegreéquations having the aim of reducing
the degree of freedom of the problem. However, owing to thelirearity of the equations, in order
for the mathematical problem to be closed, the unresolveddtales require some Sub-Grid Scales
(SGS) modelling procedure. Nevertheless, filtering théatdes in LES is often only a formalism
in the writing of the equations and practically the disaation of the domain and operators is used
as implicit grid-filtering [1, 2, 5]. Moreover, numericalpeesentation of the filtered variables is
associated with a finite number of resolved scales and nmangigolution hence any discrete model
can induce significant alterations of the resolved scalgsachic. Thus, while performing LES, the
recognizing of the effective implicit filter in use is a cciéil task. Some authors analysed the suit-
ability of using explicit filtering technique (pre-filterg), despite of their additional computational
effort and loss of resolution, but for which one can exaatlgritify the filter type and control the
truncation errors [1, 2].

This paper focuses on the theoretical recognizing of thecatfe implicit filtering acting while
using integral-based Finite Volume (FV) methods for perfmg LES. Focusing here only on FV-
based LES is a choice dictated by the feasibility of such oekfbr problems of engineering inter-
est, especially because simple generalizations are p@sdiio on complex grids. Furthermore, it is
worthwhile observing nowadays the introduction of sopbéed SGS modelling (e.g., the dynamic
procedure) in commercial CFD codes very common in inddstni@ironments that, however, ex-
ploit only FV methodologies. The goal of the present studyp iénk the formalism of LES filtering
on the equations to the volume average over a small domaimedrl measure\, proper of the
FV approach in integral-based formulation thus assumiagttte filtering is the exact top-hat filter.
For FV-based formulations, although the integral form igeymore complicated to be discretized
than the differential counterpart (according to [3] threeels of approximation are required, inter-



polation, differentiation and integration), it appeard#the most opportune since leading to solve
discrete equation models, which allow mass, momentum dsawelny conservative quantity, to be
a-priori conserved, no matter of what the actual accuracy order iffécte On the contrary, it is
well known that other methods such as Spectral Methods (SNFjrite Difference (FD) ones do
not automatically share such property. Many papers discudge form of the discretization, e.g.,
divergence form, skew-symmetric, etc., and the resultingerical errors (discrete approximation
plus aliasing) [4, 5], conclusions being sometimes notacay. Particularly, it seems that the real
integral-based FV discretization is someway disregardéiddse analyses. A recent paper [5] anal-
ysed combined filtering effects in term of theodified equationlt appears generally accepted that
implicit filtering causes a strong dependence on the typke&tiopted spatial discretization (some-
times with “fortuitous” cancellation of the error effect§)f course, implicit filtering is characterized
also by a formal lack in a grid-independent LES solution bale DNS the limiting situation for
vanishing grid size.

There appear a number of interesting issues for which tledighg of the effective filter shape is
relevantin a practical LES application. They are the urtdeding of the practical scales separation
and the consequent Sub-Grid Scale (SGS) modelling, for pkam fixing a value in case of the
static Smagorinsky eddy viscosity model. Perhaps, alsthiodynamic SGS modelling the choice
of the test-filter width is influenced by the effective primpditter in effect. Last, it is worthwhile
remarking that the comparisons between LES and DNS data@me national when DNS fields are
post-filtered by means of a filter function that mimics the ligipfilter in effect during the LES.

2 CONTINUOUS AND DISCRETE 1D SAMPLE PROBLEMS

Consider a smooth spatially periodic function [—7, +7) x [0,4+00) — IR of spacer and
time ¢t. As well known, it can written in terms of the Fourier seriesich results to be uniformly
convergent. The Fourier coefficientsare exponentially vanishing fér — +oco. The functionu is
assumed satisfying the initial value problem:

Ou+0,f=g 1
u(z,0) = uo(x) given, @
wheref(u) = u?/2 — v d,u is the total flux, given by the sum of convective and diffusivehe
kinematic viscosity coefficient) terms agds a given forcing term, depending on batlandt but
not on the function itself. The initial datau is also assumed sufficently smooth.
In correspondence with an even positive integefm = 2m’, with m’ positive integer), the ap-
plication of the spectral cut-off filter (indicated with teebscript :.”) acting outside the wavenumber
interval[—m’, +m/] to the functionu leads to the new function,, or @ for shortness. It is defined

as: +m/ +7
ix,t |m)= Y k) exp(ikz) :/ d€ u(€,t) Dy (z — £) )

k=—m' -

Dy (y) = sin(m”y)/[2msin(y/2)] (m” = m’ + 1/2) being the Dirichlet kernel of orde’.
Provided that the same integer is used, this filter is idempotenﬁ = 4. In the following, the
integerm will be related either to the filter width (m’ = [r/A]) or to the length: of a cell in the
discrete formulation of the problemm{ = = /h). Due to the fact that satisfies the problem (1), the



following initial value problem is posed for the filtered fttion @ (2):

Ot + Oy fo = G+ se
Se = 0y (@2 — u2)/2 3)
u(x,0) = ao(x) .

The problem (3) is obtained by applying the above specttal fib the corresponding one (1), by
producing in this way the subgrid termy. It is worth noticing that the fluxf.(a) = u%/2 —
v 0,4 calculated in correspondence to the filtered functiceppears in the evolution equation: it
possesses nonvanishing Fourier components outside trenwaber interval—m’, +m’] in which
« is defined, due to the presence of the non-linear term. Ferdlaison, a filtering of.. is needed in
order to reduce its wavenumber support to the proper inténsa’, +m/].

Furthermore, associated 40 its spatial mean.,,,, orw for shortness, on an interval of width
(A" = A/2) will be also considered:

DO

+7 z4+A'
ot &)= [dsu(e. )G —¢ 1 A) = [deu(en) = 3 Tkt | A) expliha) , (4)
- k_—oo
whereG(y | A) = H(y+ A')H(A' —y)/A, H(y) being the Heaviside function for y > 0, 0 for
y < 0). In general, the filter widti\ can depend om, so that this filtering does not commute with
spatial derivatives. Moreover, if the filter width is constiathe Fourier coefficienta are simply
related to the corresponding onesuofu) in the following way:

sin(kA")

m,awﬂzmmAmmw.@

it 1) =5 [ T de (e t| A) exp(—ike) =

2 J_,

The above relation clearifies also that this filter is not idetent, thusz # w.
The filtered function (4) satisfies the new Cauchy problenittevr according to the weak formu-

lation:
u(z,0) =up(z) ,

which is obtained through filtering the one (1); the evolntémuation can be rewritten highlighting
the integral-based formulation:

(6)

flx+ A t) — f(z— A't)
A

the terms inf being unknown. Two approaches will be discussed below iemta@close the above
problem.

In the first one, the convective term is rewrittervas? /2, leading to the divergence form of the
differential LES problem:

Oz, t | A) +

=gz, t[A),

O+ Op fm =G+ Sm.d + Cm.d

Sm.d = O0p (T — u2) /2

Cma= (0zu? —dyu?)/2+ DIFFERENTIAL APPROACH  (7)
v [(02,u — 0,0,u) + 05(0pu — 0,7) |

u(z,0) = Tuo(z) ,
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Figure 1: For a sample functian(x) (blue dashed line) its filtered ongz | A) (red solid)
with A = 71/5/10 is drawn vs.z in (a), while in (b) |a(k)| (black line) as well asu(k | A)|
(red) are drawn vsk.

in general ifA depends orx. The flux f,,(u) = w?/2 — v 0,7 is used. Moreover, the subgrid
terms,, 4 and the terne,,, ;4 appear. This latter one is due to the commutation betweenifigf and
spatial derivatives: it vanishes for constant filter width

In the second approach the spatial mean is kept outside #tialggerivative, according to a finite
volume approach. The Cauchy problem (6) becomes:

8tﬂ+ aacfm =g+ Smii
Smyi = 0z (W — u?)/2 + v 02, (u — 1) INTEGRAL APPROACH (8)

u(z,0) =o(z) ,

in which only the subgrid term,, ; appears: no further commutation terms are involved.
According to the idea of limiting the support afin the wavenumber space, the spectral cut-off
filter can be applied to the function (4), thus obtaining tee/functionu.,,, orz for shortness:

+m/ +7

a(x,t | m,A) = Z a(k,t | A) exp(ikz) = d¢ u(€,t | A)Dyy (z =€) . 9)

k=—m' -

Notice thatz = @: the spectral cut-off and the spatial mean can be interatng
The Cauchy problem which defines the new functiocan be obtained from the two different
approaches already discusseddoin the differential formulation the initial value problemads:

81‘,% + a’rfcm - 5 + Sem,d + Cem,d

Scm,d:ar [( ) _UQ}/z
Com g = (aT,U,Q _ aTUQ)/2+ DIFFERENTIAL APPROACH (10)
v [(827«{11 - 81"%) + 87" (8rﬂ' - a’rﬂ) ]

ﬁ(x, 0) = ﬁo(x) ,



where the fluxf., (@) = @ /2 — v 9,7 has been introduced. As in the problem (3), due to the
presence of the non-linear term, the flfix, possesses nonvanishing Fourier components outside
the wavenumber support a@f i.e. the interval[—m/, +m/]. These components must be cut-off
beforef.,,, is used in the evolution equation far A subgrid terms.,,.q appears, as well as the term
cem,d Which is due to the commutation among filtering and spatiaiveldves and vanishes if the
filter width A is kept constant. A quite different approach is obtaineddxnypging the integral point

of view:

at% + 8a:.]?cm = 5 + Sem,i
Sem,i = aw(%Q - {LE)/Q -V 3330(% — ’EL)

u(z,0) = To(x) ,

INTEGRAL APPROACH (11)

which can be easily discretized in terms of finite volumeghmLES problem (11) only the subgrid

terms.,, ; appears, while the flux.,, = 52/2 — v, is re-filtered by using the spectral cut-off
filter, due to the doubling of the wavenumber support indunethe square term.

Finally, the discretization of the Cauchy problems for aieffed function is discussed. The

interval[—, +) is divided in an even number(n’ = n/2) of equal cells, having width = 7 /n’
(b = h/2). Then mean pointsz; = —7 +h' + (j — 1)hforj = 1,2,...,n (or X(n) :=
{x1,x2,...,2z,} for shortness) will be also used below. In the following, aiatle function of space
« and time is semi-discretized o¥i(n) by considering its values the points= z; for j =1, ...,
n asn smooth functions of time. Among the above functions, thesq2e 9) are only considered,
having a finite wavenumber support (with' = 7/h = n’). The so-callediscretized form®f
these functions are trigonometric interpolants (indidatéth a*) defined through the values of the
functionsa andu on the nodesX (n), as described below. For the sake of shortness, these sets
of functionsIR — IR" (or n-dimensional column vectors, having time dependent corepts) are
named/ = U[X (n),t] andU = U[X (n),t | A].

As a sample case, consider the functiorits interpolant is defined by the following formula:

+n’
W(x|0)= Y @ (k) exp(ika) (12)

k=—n’

the Fourier coefficients of whichif) are evaluated by enforcing that the above function takes th
prescribed valué(z;,t | n) inx = x;, for j = 1, ..., n. In this way, the Fourier coefficients solve
the linear system:
+n'—1
Z @ (k,t)exp(ikx;) +u (+n',t)exp(in'z;) = a(z;,t |n) forj=1,2,..,n
k=—n' (13)

U (+n,t) = -1 (—n',1)

where the second condition expresses the property of troeetiés Fourier coefficientsﬁ*(l +
pn,t) = (—1)Pﬁ*(l,t), fori = 0, +1, ..., £n’ andp relative integer. The system (13) leads to
the definition of thek-th Fourier coefficient:

n

5*(141,25) = % Z a(z;,t | n) exp(—ikz;) . (14)

=1



Notice that a comparison between the above form ofitiie Fourier coefficient (as well as the
corrisponding one fof) and the corresponding continous one fofor the one (5) fo and then
also forw) shows that the formula (14) can be obtained by considerjsigeewise constarit (or @)
and by evaluating the integral of the exponential onjthle interval as:xp(—ikz;) times the width

h. By inserting the form (14) of the Fourier coefficientsinside the definition (12) of* it follows:

(x| U) = hZﬂxj,Hn n (T —xj) . (15)
j=1

As discussed above for the Fourier coefficients, also theretiged form (15) can be obtained from
the corresponding continuous one (2) (or from the equa@dfof the functioriz) by using a piece-
wise constant functiof (z) and by evaluating the integral ghof D, (x — &) on thej-th cell as
th/ (LL' — {LJ)

In order to simplify the notations, in the following thedimensional vector the components of
which are the squares of the corresponding componerts will be named ad/2. With such a
notation, the values af on X (i.e., U) satisfy the following non-linean-dimensional initial value
problem (dependences df(n) are neglected):

8tﬁ+dmﬁ‘c = G+S(
Se = d, (U2 — U2)/2 (16)
U(0)=0U, given,

obtained by discretizing the corresponding problem (3thinproblem (16) the discretized flux
has the form: } ) }
F.(U)=U%2-vd,U, (17)

while d,, is a discrete operator approximating the first derivativegace (it will be represented as
D/h, D being am xn matrix constant in time)G andsS, aren-dimensional forcing vectors function
of time, obtained by semi-discretizing the correspondargisg (forcing) ands, (subgrid) defined

in the problem (3). Finally, the solution of the problem (&#8pbles us to define the semi-discretized
function of timea* (12), through the use of its representation (15).

About the continuous formulations, one of the aims of oueagsh is the rewriting of the subgrid
termsse, Sm,d, Sm.i» Scm,a @ndsen, ; in the problems (3, 7, 8, 10) and (11) in terms of the correctio
factors on the Fourier coefficients of the produg, t) u(n, t). For the sake of shortness, only two
relevant intermediate steps of this analysis will be disedelow.

3 EQUIVALENT FILTER FOR THE SUBGRID TERM IN THE PROBLEM (3) FR @

One of the main issues in solving the filtered equations igdfiaition of the resolved convective
term, since it defines that part of wavenumber componentsimgsolved spectrum. As a matter of
fact, the consequent decomposition in resolved and unmeddérms defines also the action of the
filtered convective term in the SGS one. In fact, this lategresents the residual of the unfiltered
convective term with respect to the resolved one. Genethiyfiltered equations defined in spectral
space are defined in literature [1] in terms of the resolvenh @,42. Perhaps, while solving the
problem only for the resolved components, one must be avmatestich a truncation implicitly

defines the effective resolved tertma5 as well as the corresponding SGS term. In the present



section, the shape of the filt&f, such that:
@(a,t | m) = /Sdfdn aE t | m) aln,t | m) Nolz — &, — | m) (18)

is now deduced. By starting from the definitionagfthe terma2 is written as:

—~ +'m/
@(z,t|m) = > alp,t)a(g,t) expli(p+ q)a]

p,q=—m'
-m/ <p+q< +m/

= [ et myatn.t | m) s 3 esplin(e — O] explia(e — )

(27T) P,qELMm

where the lattice on which the sum is carried out is indicatgl £,, (see Fig. 24). The following
form of the filter functionV, is obtained:

1 sin[(z — y)/2] cos|m” (x — y)] — sin(x/2) cos(m” x) + sin(y/2) cos(m”y)
82 sin(z/2) sin(y/2) sin[(z — y)/2] '
(19)
It can be shown thaV/,. satisfies the important property to be invariant with respethe convolution
with the product of Dirichlet kerneB®,,,. (£) D..- (). In Fig. 2 the product of the Dirichlet kernels
D,y (2) Dy (y) (b) is compared with the new filteN.(z,y | m) (¢), for the same value ofn.
From the analysis of Fig. 2, one can observe the differerme the expected filtering effedt)(and

NC(xay | m) =

*-e

TR

>4 94903

Figure 2: In @), the wavenumber lattic€,,, is drawn. In §, ¢) the level lines of the filters
Dy () Do (y) for m’ = 10 (min: —2.5, max11.2) andN.(z,y | m) (min: —1.2, max: 8.3)
are drawn. Red lines indicate positive levels and green negative, with a stef.1.

the effective oned). In particular, contributions from neighbourhoods of thiagonals £ = +y)
are strongly amplified by the effective filtév,.. Let us highlight that Fig. 2-is representative
of the lattice of the same extension and containing exablysame magnitude of the resolved
coefficients in a practical spectral methods (implicitidurcing the sharp cut-off filter). SGS terms



are therefore only those outside the lattice. On the othad hia case one uses local methods such as
Finite Volume one, being implicitly induced a smooth tramdtinction (the top-hat) the coefficients
contained in the lattice will be decreased accordingly. Asm@sequence, one gets in the SGS term
part of the resolved spectrum that is somehow still recdera

4 THE WRITING OF# IN TERMS OFu

The filter (4) enables us to evaluate the local m&dby starting from the function, for any pos-
sible choice of the filter widtl\. On the contrary, by starting from the functiarthe recovering of
u is possible if and only i\ /(27) is not a (positive) rational number. The simple example incivh
A/(2m) = 1/N (with N positive integer) clarifies this statement, even if similansiderations can
be carried out for any positive rational numbefN (P positive integer). In correspondence with
this choice, the Fourier representatiornudé rewritten as:

+o00 too
u(z,t) = Z au(k,t) exp(tkz) + Z u(pN,t) exp(ipNz) , (20)
k= —o0 p=—00
k/N not integer p#0
filtered annihilated

by separating the filtered contributions (Fourier compaséraving periods larger than the filter
width, or smaller but not exactly submultiples of it) fromethnnihilated ones (components having
period which is exactly a submultiple df), which describe the kernel of the mean filtering operator
(4). In the first term of equation (20), the Fourier coeffitgeare easily written in terms of the mean
ones through the rule (5):

a(k,t)

T Gka) @D

kA" = 7k/N being never a multiple of. Notice thatG(k | A) is positive fork = 0, £1, ...,
+(N — 1), while it can change sign outside that interval. Moreovethe ratio A/(27) is not

a rational number, the relation (21) can be applied to eachi€ocoefficient, so that it becomes
possible to write: in terms ofu:

715) exp(ikzx) , (22)

the filter kernel being formed by the null function, only. N
In the case of the spectral cut-off filtered functiar(s, ¢ | m) (4) andu(z,t | m,A) (9), @ is
recovered fronu through the action of an equivalent filter that is computedising the following
integral representation of the cosecant:
1 +o00 Cz/-rr

sz = == - f R 1.
sz = o = OdC 2ic or0 < Re(z)/m <

In order to simplify the discussion, the quantities= 7/A andQ2 = [w] are introduced, so th&A’
is smaller thanr/2. By assumingn’ < 2} (which implies thatn’/(2w) < Q/w < 1), the form
(22) of u with k£ bounded betweerm' and+m’ gives @) = = — &):

a(x,t|m) =



~ i k exp(i k) ~
u(0,¢t | i kz—gl kzzl (kD) u(k,t | A)

+7 m’ m’
= R0t A =i [ de et mA) = {Z p(rikn) _ - expl zk‘n]

o 2w dn sin(kA/) = sin(kA’
— T, A) +
+m ~ 1 +oo dC
d m’ m’
£ (S i P i
N k=0 k=0
+7 _

—T

in which the filter function is evaluated (at the present timaémerically) by reducing the domain of
integration (in¢) to the interval(0, 1). Samples of the calculation of the filtét (23) are shown in
Fig. 3 for two different choices af: andA.
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Figure 3: The filter (23) forn = 20, A = 7/(5v/2) (a) and form = 200, A = 7/(50v/2) (b).

Recognizing the previous transfer functions linking theeféd velocities is someway introduc-
tory to a closure analysis of the filtered equations. Thisimyhe framework of the continuous
form, it is possible addressing the effect of the truncatiowavenumber space when applied on
the top-hat filtered velocity. Such relations express thenterpart of the deconvolution operation
applied on the filtered velocity, provided filtering is smioat wavenumbers space. Simply cut-off
truncation of the unfiltered velocity is not suitable to bg@mssed in the inverse relation. Mainly,
such relations represent the comparison terms one cousicerior analysing the quality of an SGS
closure modelling. They could be used once a model, sucheasctiie similarity one, is introduced
in the filtered equations.



5 CONCLUSIONS

Application of filtering on the continuous equations is no¢ tonly and desired operation to
consider for deducing the LES equations. The effectiverfiteonsequent to formal and practical
operations that need to be assessed. Classical filtersreileced for expressing the LES equation
in differential divergence form. Here, we considered theeaaf filters induced by the integral form
of the equations as well as by the truncation of the Fouriengmments of the nonlinear term. In
fact, the truncation on the single velocity is recognizeteims of local filtering and the building
of the quadratic product of such filtered velocity is therefitself contained in a certain lattice of
wavenumber components. The analysis of this other filteragaisessed too. It was shown that the
resulting filter on the continuous non-linear terms is gdifgerent from that one we expected for the
convective term. This fact is very important, since on a sigeecognize the filtering effect on the
resolved field on the other side we can analyse the effe@sidwual part in the SGS term. Further
analysis is required for understanding the effects of tinepdiag of the fields as well as to address
the filtering induced by the discretization of the operators
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