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SUMMARY. A theoretical analysis of the effective implicit filtering in Finite Volume (FV) methods
for LES is presented. As usual in the LES approach, the equations are explicitely filtered before they
are spatial discretized and time integrated. Due to the factthat the spatial discretization introduces a
discretization length,i.e. a further (implicit) filter, different discretization approaches are discussed.
Final aim of the present research activity lies in discussing the fundamental properties of the subgrid
scale term.

1 INTRODUCTION
Large Eddy Simulation (LES) of turbulent flows is a methodology based on a formal separation

between large (resolved) and small (unresolved) flow scale contributions, obtained by means of the
application of a low-pass filtering operator on the governing equations having the aim of reducing
the degree of freedom of the problem. However, owing to the non-linearity of the equations, in order
for the mathematical problem to be closed, the unresolved flow scales require some Sub-Grid Scales
(SGS) modelling procedure. Nevertheless, filtering the variables in LES is often only a formalism
in the writing of the equations and practically the discretization of the domain and operators is used
as implicit grid-filtering [1, 2, 5]. Moreover, numerical representation of the filtered variables is
associated with a finite number of resolved scales and marginal resolution hence any discrete model
can induce significant alterations of the resolved scales’ dynamic. Thus, while performing LES, the
recognizing of the effective implicit filter in use is a critical task. Some authors analysed the suit-
ability of using explicit filtering technique (pre-filtering), despite of their additional computational
effort and loss of resolution, but for which one can exactly identify the filter type and control the
truncation errors [1, 2].

This paper focuses on the theoretical recognizing of the effective implicit filtering acting while
using integral-based Finite Volume (FV) methods for performing LES. Focusing here only on FV-
based LES is a choice dictated by the feasibility of such method for problems of engineering inter-
est, especially because simple generalizations are possible also on complex grids. Furthermore, it is
worthwhile observing nowadays the introduction of sophisticated SGS modelling (e.g., the dynamic
procedure) in commercial CFD codes very common in industrial environments that, however, ex-
ploit only FV methodologies. The goal of the present study isto link the formalism of LES filtering
on the equations to the volume average over a small domain of linear measure∆, proper of the
FV approach in integral-based formulation thus assuming that the filtering is the exact top-hat filter.
For FV-based formulations, although the integral form is quite more complicated to be discretized
than the differential counterpart (according to [3] three levels of approximation are required, inter-
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polation, differentiation and integration), it appears tobe the most opportune since leading to solve
discrete equation models, which allow mass, momentum as well as any conservative quantity, to be
a-priori conserved, no matter of what the actual accuracy order is in effect. On the contrary, it is
well known that other methods such as Spectral Methods (SM) or Finite Difference (FD) ones do
not automatically share such property. Many papers discussed the form of the discretization, e.g.,
divergence form, skew-symmetric, etc., and the resulting numerical errors (discrete approximation
plus aliasing) [4, 5], conclusions being sometimes not univocal. Particularly, it seems that the real
integral-based FV discretization is someway disregarded in those analyses. A recent paper [5] anal-
ysed combined filtering effects in term of themodified equation. It appears generally accepted that
implicit filtering causes a strong dependence on the type of the adopted spatial discretization (some-
times with “fortuitous” cancellation of the error effects). Of course, implicit filtering is characterized
also by a formal lack in a grid-independent LES solution being the DNS the limiting situation for
vanishing grid size.

There appear a number of interesting issues for which the discerning of the effective filter shape is
relevant in a practical LES application. They are the understanding of the practical scales separation
and the consequent Sub-Grid Scale (SGS) modelling, for example in fixing a value in case of the
static Smagorinsky eddy viscosity model. Perhaps, also forthe dynamic SGS modelling the choice
of the test-filter width is influenced by the effective primary filter in effect. Last, it is worthwhile
remarking that the comparisons between LES and DNS data are more rational when DNS fields are
post-filtered by means of a filter function that mimics the implicit filter in effect during the LES.

2 CONTINUOUS AND DISCRETE 1D SAMPLE PROBLEMS
Consider a smooth spatially periodic functionu : [−π, +π) × [0, +∞) → IR of spacex and

time t. As well known, it can written in terms of the Fourier series,which results to be uniformly
convergent. The Fourier coefficientsû are exponentially vanishing fork → ±∞. The functionu is
assumed satisfying the initial value problem:

{
∂tu + ∂xf = g

u(x, 0) = u0(x) given,
(1)

wheref(u) = u2/2 − ν ∂xu is the total flux, given by the sum of convective and diffusive(ν the
kinematic viscosity coefficient) terms andg is a given forcing term, depending on bothx andt but
not on the functionu itself. The initial datau0 is also assumed sufficently smooth.

In correspondence with an even positive integerm (m = 2m′, with m′ positive integer), the ap-
plication of the spectral cut-off filter (indicated with thesubscript ”c”) acting outside the wavenumber
interval[−m′, +m′] to the functionu leads to the new functionuc, or ũ for shortness. It is defined
as:

ũ(x, t | m) =

+m′∑

k=−m′

û(k, t) exp(ikx) =

∫ +π

−π

dξ u(ξ, t)Dm′(x − ξ) , (2)

Dm′(y) = sin(m′′y)/[2π sin(y/2)] (m′′ = m′ + 1/2) being the Dirichlet kernel of orderm′.
Provided that the same integerm is used, this filter is idempotent:̃̃u = ũ. In the following, the
integerm will be related either to the filter width∆ (m′ = [π/∆]) or to the lengthh of a cell in the
discrete formulation of the problem (m′ = π/h). Due to the fact thatu satisfies the problem (1), the

2



following initial value problem is posed for the filtered function ũ (2):




∂tũ + ∂xf̃c = g̃ + sc

sc = ∂x(˜̃u2 − ũ2)/2

ũ(x, 0) = ũ0(x) .

(3)

The problem (3) is obtained by applying the above spectral filter to the corresponding one (1), by
producing in this way the subgrid termsc. It is worth noticing that the fluxfc(ũ) = ũ2/2 −
ν ∂xũ calculated in correspondence to the filtered functionũ appears in the evolution equation: it
possesses nonvanishing Fourier components outside the wavenumber interval[−m′, +m′] in which
ũ is defined, due to the presence of the non-linear term. For this reason, a filtering offc is needed in
order to reduce its wavenumber support to the proper interval [−m′, +m′].

Furthermore, associated tou, its spatial meanum, or u for shortness, on an interval of width∆
(∆′ = ∆/2) will be also considered:

u(x, t | ∆) =

∫ +π

−π

dξ u(ξ, t)G(x − ξ | ∆) :=
1

∆

∫ x+∆′

x−∆′

dξ u(ξ, t) =

+∞∑

k=−∞

û(k, t | ∆) exp(ikx) , (4)

whereG(y | ∆) = H(y + ∆′)H(∆′ − y)/∆, H(y) being the Heaviside function (1 for y > 0, 0 for
y < 0). In general, the filter width∆ can depend onx, so that this filtering does not commute with
spatial derivatives. Moreover, if the filter width is constant, the Fourier coefficientŝu are simply
related to the corresponding ones ofu (û) in the following way:

û(k, t | ∆) =
1

2π

∫ +π

−π

dξ u(ξ, t | ∆) exp(−ikξ) =
sin(k∆′)

k∆′
û(k, t) = Ĝ(k | ∆) û(k, t) . (5)

The above relation clearifies also that this filter is not idempotent, thus:u 6= u.
The filtered function (4) satisfies the new Cauchy problem, written according to the weak formu-

lation: {
∂tu + ∂xf = g

u(x, 0) = u0(x) ,
(6)

which is obtained through filtering the one (1); the evolution equation can be rewritten highlighting
the integral-based formulation:

∂tu(x, t | ∆) +
f(x + ∆′, t) − f(x − ∆′, t)

∆
= g(x, t | ∆) ,

the terms inf being unknown. Two approaches will be discussed below in order to close the above
problem.

In the first one, the convective term is rewritten as∂xu2/2, leading to the divergence form of the
differential LES problem:





∂tu + ∂xfm = g + sm,d + cm,d

sm,d = ∂x(u2 − u2)/2

cm,d = (∂xu2 − ∂xu2)/2+

+ν
[
(∂2

xxu − ∂x∂xu) + ∂x(∂xu − ∂xu)
]

u(x, 0) = u0(x) ,

DIFFERENTIAL APPROACH (7)
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Figure 1: For a sample functionu(x) (blue dashed line) its filtered oneu(x | ∆) (red solid)
with ∆ = π

√
5/10 is drawn vs.x in (a), while in (b) |û(k)| (black line) as well as|û(k | ∆)|

(red) are drawn vs.k.

in general if∆ depends onx. The fluxfm(u) = u2/2 − ν ∂xu is used. Moreover, the subgrid
termsm,d and the termcm,d appear. This latter one is due to the commutation between filtering and
spatial derivatives: it vanishes for constant filter width∆.

In the second approach the spatial mean is kept outside the spatial derivative, according to a finite
volume approach. The Cauchy problem (6) becomes:





∂tu + ∂xfm = g + sm,i

sm,i = ∂x(u2 − u2)/2 + ν ∂2
xx(u − u)

u(x, 0) = u0(x) ,

INTEGRAL APPROACH (8)

in which only the subgrid termsm,i appears: no further commutation terms are involved.
According to the idea of limiting the support ofu in the wavenumber space, the spectral cut-off

filter can be applied to the function (4), thus obtaining the new functionucm, or ũ for shortness:

ũ(x, t | m, ∆) =

+m′∑

k=−m′

û(k, t | ∆) exp(ikx) =

∫ +π

−π

dξ u(ξ, t | ∆)Dm′(x − ξ) . (9)

Notice that̃u = ũ: the spectral cut-off and the spatial mean can be interchanged.
The Cauchy problem which defines the new functionũ can be obtained from the two different

approaches already discussed foru. In the differential formulation the initial value problemreads:




∂tũ + ∂xf̃cm = g̃ + scm,d + ccm,d

scm,d = ∂x

[
(̃ũ)2 − ũ2

]
/2

ccm,d = (∂xũ2 − ∂xũ2)/2+

+ν
[
(∂2

xxũ − ∂x∂xũ) + ∂x(∂xũ − ∂xũ)
]

ũ(x, 0) = ũ0(x) ,

DIFFERENTIAL APPROACH (10)
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where the fluxfcm(ũ) = ũ
2
/2 − ν ∂xũ has been introduced. As in the problem (3), due to the

presence of the non-linear term, the fluxfcm possesses nonvanishing Fourier components outside
the wavenumber support of̃u, i.e. the interval[−m′, +m′]. These components must be cut-off
beforefcm is used in the evolution equation forũ. A subgrid termscm,d appears, as well as the term
ccm,d which is due to the commutation among filtering and spatial derivatives and vanishes if the
filter width ∆ is kept constant. A quite different approach is obtained by adopting the integral point
of view:





∂tũ + ∂xf̃cm = g̃ + scm,i

scm,i = ∂x(
˜̃
u

2 − ũ2)/2 − ν ∂2
xx(ũ − ũ)

ũ(x, 0) = ũ0(x) ,

INTEGRAL APPROACH (11)

which can be easily discretized in terms of finite volumes. Inthe LES problem (11) only the subgrid

termscm,i appears, while the fluxfcm = ũ
2
/2 − ν∂xũ is re-filtered by using the spectral cut-off

filter, due to the doubling of the wavenumber support inducedby the square term.
Finally, the discretization of the Cauchy problems for any filtered function is discussed. The

interval[−π, +π) is divided in an even numbern (n′ = n/2) of equal cells, having widthh = π/n′

(h′ = h/2). Then mean points:xj = −π + h′ + (j − 1)h for j = 1, 2, . . ., n (or X(n) :=
{x1, x2, . . . , xn} for shortness) will be also used below. In the following, a suitable function of space
x and time is semi-discretized onX(n) by considering its values the pointsx = xj for j = 1, . . .,
n asn smooth functions of time. Among the above functions, the ones (2, 9) are only considered,
having a finite wavenumber support (withm′ = π/h = n′). The so-calleddiscretized formsof
these functions are trigonometric interpolants (indicated with a⋆) defined through the values of the
functionsũ and ũ on the nodesX(n), as described below. For the sake of shortness, these sets
of functionsIR → IRn (or n-dimensional column vectors, having time dependent components) are

namedŨ = Ũ [X(n), t] andŨ = Ũ [X(n), t | ∆].
As a sample case, consider the functionũ. Its interpolant is defined by the following formula:

ũ⋆(x | Ũ) =

+n′∑

k=−n′

̂̃u⋆
(k, t) exp(ikx) , (12)

the Fourier coefficients of which (̂̃u⋆
) are evaluated by enforcing that the above function takes the

prescribed valuẽu(xj , t | n) in x = xj , for j = 1, . . ., n. In this way, the Fourier coefficients solve
the linear system:




+n′
−1∑

k=−n′

̂̃u⋆
(k, t) exp(ikxj) + ̂̃u⋆

(+n′, t) exp(in′xj) = ũ(xj , t | n) for j = 1, 2, . . ., n

̂̃u⋆
(+n′, t) = −̂̃u⋆

(−n′, t) ,

(13)

where the second condition expresses the property of the discrete Fourier coefficients:̂̃u
⋆
(l +

pn, t) ≡ (−1)p̂̃u⋆
(l, t), for l = 0, ±1, . . ., ±n′ andp relative integer. The system (13) leads to

the definition of thek-th Fourier coefficient:

̂̃u⋆
(k, t) =

1

n

n∑

j=1

ũ(xj , t | n) exp(−ikxj) . (14)
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Notice that a comparison between the above form of thek-th Fourier coefficient (as well as the
corrisponding one for̃u) and the corresponding continous one forũ (or the one (5) foru and then
also forũ) shows that the formula (14) can be obtained by considering apiecewise constant̃u (or u)
and by evaluating the integral of the exponential on thej-th interval asexp(−ikxj) times the width

h. By inserting the form (14) of the Fourier coefficientŝ̃u⋆
inside the definition (12) of̃u⋆ it follows:

ũ⋆(x | Ũ) = h

n∑

j=1

ũ(xj , t | n) Dn′(x − xj) . (15)

As discussed above for the Fourier coefficients, also the discretized form (15) can be obtained from
the corresponding continuous one (2) (or from the equation (9) for the functioñu) by using a piece-
wise constant functioñu (u) and by evaluating the integral inξ of Dn′(x − ξ) on thej-th cell as
hDn′(x − xj).

In order to simplify the notations, in the following then-dimensional vector the components of
which are the squares of the corresponding components ofU will be named asU2. With such a
notation, the values of̃u on X (i.e., Ũ ) satisfy the following non-linearn-dimensional initial value
problem (dependences onX(n) are neglected):





∂tŨ + dxF̃c = G̃ + Sc

Sc = dx(˜̃U2 − Ũ2)/2

Ũ(0) = Ũ0 given,

(16)

obtained by discretizing the corresponding problem (3). Inthe problem (16) the discretized fluxFc

has the form:
Fc(Ũ) = Ũ2/2 − ν dxŨ , (17)

while dx is a discrete operator approximating the first derivative inspace (it will be represented as
D/h,D being ann×n matrix constant in time).̃G andSc aren-dimensional forcing vectors function
of time, obtained by semi-discretizing the corresponding termsg̃ (forcing) andsc (subgrid) defined
in the problem (3). Finally, the solution of the problem (16)enables us to define the semi-discretized
function of timeũ⋆ (12), through the use of its representation (15).

About the continuous formulations, one of the aims of our research is the rewriting of the subgrid
termssc, sm,d, sm,i, scm,d andscm,i in the problems (3, 7, 8, 10) and (11) in terms of the correction
factors on the Fourier coefficients of the productu(ξ, t) u(η, t). For the sake of shortness, only two
relevant intermediate steps of this analysis will be discussed below.

3 EQUIVALENT FILTER FOR THE SUBGRID TERM IN THE PROBLEM (3) FOR ũ

One of the main issues in solving the filtered equations is thedefinition of the resolved convective
term, since it defines that part of wavenumber components in the resolved spectrum. As a matter of
fact, the consequent decomposition in resolved and unresolved terms defines also the action of the
filtered convective term in the SGS one. In fact, this latter represents the residual of the unfiltered
convective term with respect to the resolved one. Generally, the filtered equations defined in spectral
space are defined in literature [1] in terms of the resolved term ∂xũ2. Perhaps, while solving the
problem only for the resolved components, one must be aware that such a truncation implicitly
defines the effective resolved term∂x

˜̃u2 as well as the corresponding SGS term. In the present
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section, the shape of the filterNc such that:

˜̃u2(x, t | m) =

∫

S

dξdη ũ(ξ, t | m) ũ(η, t | m) Nc(x − ξ, x − η | m) (18)

is now deduced. By starting from the definition ofũ, the term˜̃u2 is written as:

˜̃u2(x, t | m) =

+m′∑

p, q = −m′

−m′ ≤ p + q ≤ +m′

û(p, t)û(q, t) exp[i(p + q)x]

=

∫

S

dξdη ũ(ξ, t | m)ũ(η, t | m)
1

(2π)2

∑

p,q∈Lm

exp[ip(x − ξ)] exp[iq(x − η)]

where the lattice on which the sum is carried out is indicatedwith Lm (see Fig. 2-a). The following
form of the filter functionNc is obtained:

Nc(x, y | m) =
1

8π2

sin[(x − y)/2] cos[m′′(x − y)] − sin(x/2) cos(m′′x) + sin(y/2) cos(m′′y)

sin(x/2) sin(y/2) sin[(x − y)/2]
.

(19)
It can be shown thatNc satisfies the important property to be invariant with respect to the convolution
with the product of Dirichlet kernesDm′(ξ)Dm′(η). In Fig. 2 the product of the Dirichlet kernels
Dm′(x)Dm′(y) (b) is compared with the new filterNc(x, y | m) (c), for the same value ofm.
From the analysis of Fig. 2, one can observe the difference from the expected filtering effect (b) and
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Figure 2: In (a), the wavenumber latticeLm is drawn. In (b, c) the level lines of the filters
Dm′(x)Dm′ (y) for m′ = 10 (min: −2.5, max11.2) andNc(x, y | m) (min: −1.2, max: 8.3)
are drawn. Red lines indicate positive levels and green onesnegative, with a step0.1.

the effective one (c). In particular, contributions from neighbourhoods of thediagonals (x = ±y)
are strongly amplified by the effective filterNc. Let us highlight that Fig. 2-c is representative
of the lattice of the same extension and containing exactly the same magnitude of the resolved
coefficients in a practical spectral methods (implicitly inducing the sharp cut-off filter). SGS terms
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are therefore only those outside the lattice. On the other hand, in case one uses local methods such as
Finite Volume one, being implicitly induced a smooth transfer function (the top-hat) the coefficients
contained in the lattice will be decreased accordingly. As aconsequence, one gets in the SGS term
part of the resolved spectrum that is somehow still recoverable.

4 THE WRITING OFũ IN TERMS OFũ

The filter (4) enables us to evaluate the local meanu, by starting from the functionu, for any pos-
sible choice of the filter width∆. On the contrary, by starting from the functionu the recovering of
u is possible if and only if∆/(2π) is not a (positive) rational number. The simple example in which
∆/(2π) = 1/N (with N positive integer) clarifies this statement, even if similarconsiderations can
be carried out for any positive rational numberP/N (P positive integer). In correspondence with
this choice, the Fourier representation ofu is rewritten as:

u(x, t) =

+∞∑

k = −∞
k/N not integer

û(k, t) exp(ikx)

︸ ︷︷ ︸
filtered

+

+∞∑

p = −∞
p 6= 0

û(pN, t) exp(ipNx)

︸ ︷︷ ︸
annihilated

, (20)

by separating the filtered contributions (Fourier components having periods larger than the filter
width, or smaller but not exactly submultiples of it) from the annihilated ones (components having
period which is exactly a submultiple of∆), which describe the kernel of the mean filtering operator
(4). In the first term of equation (20), the Fourier coefficients are easily written in terms of the mean
ones through the rule (5):

û(k, t) =
k∆′

sin(k∆′)
û(k, t) =

û(k, t)

G(k | ∆)
, (21)

k∆′ = πk/N being never a multiple ofπ. Notice thatG(k | ∆) is positive fork = 0, ±1, . . .,
±(N − 1), while it can change sign outside that interval. Moreover, if the ratio∆/(2π) is not
a rational number, the relation (21) can be applied to each Fourier coefficient, so that it becomes
possible to writeu in terms ofu:

u(x, t) =

+∞∑

k=−∞

û(k, t)

G(k | ∆)
exp(ikx) , (22)

the filter kernel being formed by the null function, only.
In the case of the spectral cut-off filtered functionsũ(x, t | m) (4) andũ(x, t | m, ∆) (9), ũ is

recovered from̃u through the action of an equivalent filter that is computed byusing the following
integral representation of the cosecant:

csc z =
1

sin z
=

1

π

∫ +∞

0

dζ
ζz/π

ζ2 + ζ
for 0 < Re(z)/π < 1.

In order to simplify the discussion, the quantitiesω = π/∆ andΩ = [ω] are introduced, so thatΩ∆′

is smaller thanπ/2. By assumingm′ < 2Ω (which implies thatm′/(2ω) < Ω/ω < 1), the form
(22) ofu with k bounded between−m′ and+m′ gives (η = x − ξ):

ũ(x, t | m) =

8



= û(0, t | ∆) − i∆′
( +m′∑

k=+1

+
−m′∑

k=−1

) i k exp(i k x)

sin(k∆′)
û(k, t | ∆)

= û(0, t | ∆) − i∆′

∫ +π

−π

dξ ũ(ξ, t | m, ∆)
1

2π

d

dη

[ m′∑

k=1

exp(+ikη)

sin(k∆′)
−

m′∑

k=1

exp(−ikη)

sin(k∆′)

]

= û(0, t | ∆) +

+

∫ +π

−π

dξ ũ(ξ, t | m, ∆)
1

4iπω

∫ +∞

0

dζ

ζ2 + ζ
×

× d

dη

{ m′∑

k=0

[
exp(+iη)ζ1/(2ω)

]k −
m′∑

k=0

[
exp(−iη)ζ1/(2ω)

]k
}

=

∫ +π

−π

dξ ũ(ξ, t | m, ∆) F(x − ξ | m, ∆) , (23)

in which the filter function is evaluated (at the present time, numerically) by reducing the domain of
integration (inζ) to the interval(0, 1). Samples of the calculation of the filterF (23) are shown in
Fig. 3 for two different choices ofm and∆.
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Figure 3: The filter (23) form = 20, ∆ = π/(5
√

2) (a) and form = 200, ∆ = π/(50
√

2) (b).

Recognizing the previous transfer functions linking the filtered velocities is someway introduc-
tory to a closure analysis of the filtered equations. This way, in the framework of the continuous
form, it is possible addressing the effect of the truncationin wavenumber space when applied on
the top-hat filtered velocity. Such relations express the counterpart of the deconvolution operation
applied on the filtered velocity, provided filtering is smooth in wavenumbers space. Simply cut-off
truncation of the unfiltered velocity is not suitable to be expressed in the inverse relation. Mainly,
such relations represent the comparison terms one could consider for analysing the quality of an SGS
closure modelling. They could be used once a model, such as the scale similarity one, is introduced
in the filtered equations.
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5 CONCLUSIONS
Application of filtering on the continuous equations is not the only and desired operation to

consider for deducing the LES equations. The effective filter is consequent to formal and practical
operations that need to be assessed. Classical filters are considered for expressing the LES equation
in differential divergence form. Here, we considered the case of filters induced by the integral form
of the equations as well as by the truncation of the Fourier components of the nonlinear term. In
fact, the truncation on the single velocity is recognized interms of local filtering and the building
of the quadratic product of such filtered velocity is therefore itself contained in a certain lattice of
wavenumber components. The analysis of this other filter wasaddressed too. It was shown that the
resulting filter on the continuous non-linear terms is quitedifferent from that one we expected for the
convective term. This fact is very important, since on a sidewe recognize the filtering effect on the
resolved field on the other side we can analyse the effective residual part in the SGS term. Further
analysis is required for understanding the effects of the sampling of the fields as well as to address
the filtering induced by the discretization of the operators.
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