Unsteady Couette flow of viscoelastic fluids
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SUMMARY. The differential equation of an unsteadyninar motion for a linear viscoelastic
fluid is solved analytically; the fluid fills theagp between two coaxial cylinders: the internal one
moves whereas the external is fixed. The starsugnalysed in detail supposing that the internal
cylinder suddenly rotates with an imposed fixedudagvelocity. The memory of the fluid obeys
to an exponential law/ (7] = o’ exp —ﬁT) wherea and 5 are two parameters defining the
viscoelastic behaviour of the fluid. The momentuguation is solved applying the Laplace
transform with respect to time. The two parameterand3, characterising the fluid, can be
evaluated knowing the behaviour of the torque &pgjpio the external cylinder as function of time.

1 INTRODUCTION

Many fluids, which are of interest in engineeriimgfood industry, or organic fluids like blood,
have a fading memory. Melts and polymers in mo$iete show behaviour like that of Newtonian
fluids in steady shear, but a suddenly imposedrdeition causes a material dependent transient
associated with the dynamics of the macro-moleathains.

The physical idea of fading memory is that moreered“remembered”) deformations of a
fluid have a greater effect on the present valughef stress. The shear stress is valuable as
convolution between shear rate and memory.

The aim of this paper is to study the start-up efszoelastic fluid in Couette axisymmetric
flow. An analogous problem has been solved fordstesate flow in [1] using a Giesekus model
to characterize the fluid. A start-up and a pulsgilane Couette flow with fixed walls have been
studied in [2] with upper-convected Maxwell and @lH-B models. A plane Couette flow with a
moving wall has been examined in [3] using a Giasdliid and the solution is discussed in [4].

An ample review on numerical methods to solve \aé¢astic flow problems, using mainly the
Oldroyd-B model, is found in [5] together with angparison of the predictive capabilities of the
viscoelastic solver with experimental results.

An extensive review on the theoretical background physical interpretation of the damping
function for non-linear viscoelastic function is[8].

2 PROBLEM STATEMENT
The relation between shear stressind shear-raté for a viscoelastic fluid in Couette flow is

T(r,t) = th (r,t — z)} (1)
where F is a suitable continuous functional. For lineascaielasticity the previous relation
reduces to
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the functionm(z) can be considered the memory of the fluid. In ptdeepresent the behaviour

of afluid m, = [ m(z)dz must be limited.
0

We consider a fluid which fills the gap between teaaxial circular cylinders: the internal one,
whose radius is? , can rotate, whereas the external, of radius is fixed. Using cylindrical

coordinatesr, d, z , the z -axis being the cylinder axis, and supposing atamaxisymmetric flow,
the momentum equation can be written as
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where p is the fluid densityu the tangential velocity and the time.
For a linear viscoelastic fluid
t .
T:Lm(t—z)v(r,z)dz 4)

where the shear rate is = % _u (Couette flow).
T T

Introducing the dimensionless quantities-r /R, n =7 /R, w=u/V,0=71R /mV,
2
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P ., WhereV is a reference velocity, equation
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In steady motion the velocity, (77) is
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wherel¥, is the tangential velocity at the internal wall.
Eqg. (4) in dimensionless variables becomes
T
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We examine the motion which arises in the fluidtiatly at rest when the internal cylinder
suddenly begins to rotate with constant peripheslcity W/ .

Taking the Laplace transform with respectfitoof eq. (9), we obtain
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where the hat indicates transformed functions(E@) can be rewritten as
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Imposing the boundary conditions

111(1,8) =

% zb(nc,s) = (12)

the solution of (11) is
ﬁ;(n,s):A(s)Jl(in 5/M)+B(5)Yl(in S/M) (13)

where J and Y, are the Bessel functions of order one, of firstl @@cond kind respectively.
Imposing the boundary conditions (12) gives

A= i%\q (m\/s/—M) (14)
g% 1(277\/5/—M) (15)

A s

A= (Ms / ]\Z)Y1 (”7@/5 / M) =Y, (Ms / ]\Z)J1 (inewls / M) (16)
Fig. 1 shows the behaviour cﬁ(g) =J, (5) Y, (ncg) -Y, (g)J1 (77@5) for different values of .
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Figure 1: behaviour ofA for different values of :
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We can retrievew (n,T) inverting its Laplace transforny (n,s) :
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w(n,T) = # eSTﬁ)(n,s)dS a7)
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The integral can be evaluated using the residue ¢ine

w(n,T) = ZRes[e”ﬁ;(n,s)] : (18)
The integrandeSTﬁ)(n,s) has a first order pole in=0 and a countable infinity of first order
poles whenA = 0. The equationA = 0 is solvable only numerically and admits a courgabl

infinity of roots Whem}/s/M = A, (A, are real and can be ordered as an ascending sequen
which tends to infinity), and then

NM(s,)+s, =0 n=123.. (19)
Whenn — oo,
7T
An-%—l - An - 776 _1 (20)
For s = 0 the following expression can be found:
T WS L/ /A
Res[e‘ Tw(n, s)L:O = 1515101 sw (77,5) et = 5 j ! {— — 77] (22)
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which gives the asymptotic steady velocity, whefeas = s,
@
where
N, (n) =W, Y, (nA)3, (m2,) =Y, (0, )3, (0.2, )] (23)
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beingf = iys / M .

We now suppose that the memory of the fluid caexpressed by the relation
M (T) = o” exp(—BT) (25)

wherea and § (8 > 0) are suitable rheological parameters of the flart then

~ - az
M(S)_Hﬁ , (26)
f:(z'/oz) s(s-i—ﬁ) : (27)

It results

s z—é:i: %2—042)\2 (28)
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i o’A? >0, s isreal and negative and
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otherwise s is a complex number whose real part is always megafThe sequence is
n n

of
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increasing and then a valug of n exists, such that

A >£ for n > n, (30)
n 2a
and thus
2
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and the corresponding term of the solution oseflatith frequency: /2.
Being
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the shear stress at the external cylinder, where 0, is
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which can be expressed as
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The torque applied to the external cylinder is
M, (T) = 2m,0, (T) (38)

where all terms but the first vanish @&s— oo ; the last terms decrease oscillating in time with

period
P =2m[h =4 [\[4a’X — 3° (39)

When T — oo the torque at the external wall becomes
47rnca2WO

8l -

Knowing the geometry, i.e. the external radiysand the velocity¥, of the internal cylinder,

M_ = limMc(nc,T):— (40)

T—oo

measuringM _ and the greatest period of oscillating terfs = 47/ [4a°X\’ — 3* we can

evaluate the parameters of the fluid, and 3 . It results

. (-1
' =—————f; (41)
mn, W,
[ satisfies the equation
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A isthe smallest which makes non negative the radical quantityl@ji.e.
87°n W,
LR A (44)
e (1)

In eqg. (43) the minus sign must be chosénmust have the same value for every pair of values
A, P ;the solution with plus sign increases increasingand than must be rejected. Then

NM (i —1) M2 (1) e
- 2mn W, - Ay’ W P

n

(45)
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If a period is not clearly identifiable, e.g. whéme damping is very high, eq. (37) must be



considered, expressing and 2 as function of3 andM _ ; measuring the vaIuM_c of M ata

fixed time T, 3 anda can be evaluated.

3 NUMERICAL EXAMPLE

If the plot torque vs. time is like Fig. 2, a petits clearly recognizable and the rheological
parametersy and 3 can be evaluated using a plot like Fig. 3. Fomgxa, supposing = 1.10,

Fig. 2 givesM _ = —131 andl’ = 0.1, and Fig. 3 allows to find ~ 2,3 ~ 2.
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Figure 2: torque at the external cylinder vs. time:
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Figure 3:aandf vs. asymptotic torque for some values of perigd= 1.10)

When the behaviour in time of the torque is likg.H, it is not possible to recognize any period;
measuring the asymptotic torqi _, o can be expressed as a functiongotising (41). At a

fixed a timeT , equation (37) can then be considered as a funatfo? only, and the torque
I\ﬁe =M (T) can be plotted: Fig. 5 has been plotted supposjng-1.10 , evaluating

M_ =-0.0033 from Fig. 4 and choosingl’ =0.8 . At time T =08 Fig. 4 gives

M = —0.01045, which, introduced in Fig. 5, allows to evaluate~ 2 and, using (41} ~ 0.01.

e



0.000
-0.004
©
=
-0.008
-0.012

0.01 0.1 1 10 100 1000
T

Figure 4: torque at the external cylinder vs. timeemi-logarithmic scale, fon, =1.10
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4 CONCLUSIONS

The start-up of a viscoelastic fluid filling the mdetween two coaxial cylinders is analyzed
analytically supposing that the internal cylindaddenly rotates with an imposed fixed peripheral

velocity. The memory of the fluid obeys to an expuotial IawM(T) =a’ exp(—ﬁT) where «

and 8 are two parameters defining the behaviour of thiel.f The momentum equation is solved
applying the Laplace transform with respect to tirttee solution in the image domain has a
countable infinity of first order poles and themdae inverted using the residue theorem. The
solution is expressed as a convergent series, vasichme tends to infinity approaches the steady
distribution. The steady state is not reached nmmoally as Newtonian fluids do, but with
damped oscillations of different frequencies. The tparametersy and 5, characterizing the
fluid, can be evaluated knowing the behaviour efttirque as a function of time.
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