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SUMMARY. The differential equation of an unsteady laminar motion for a linear viscoelastic 
fluid is solved analytically; the fluid fills the gap between two coaxial cylinders: the internal one 
moves whereas the external is fixed. The start-up is analysed in detail supposing that the internal 
cylinder suddenly rotates with an imposed fixed angular velocity. The memory of the fluid obeys 
to an exponential law ( ) ( )2 expM T Tα β= −  where α  and β  are two parameters defining the 
viscoelastic behaviour of the fluid. The momentum equation is solved applying the Laplace 
transform with respect to time. The two parameters α  andβ , characterising the fluid, can be 
evaluated knowing the behaviour of the torque applied to the external cylinder as function of time. 

1 INTRODUCTION 

Many fluids, which are of interest in engineering, in food industry, or organic fluids like blood, 
have a fading memory. Melts and polymers in molten state show behaviour like that of Newtonian 
fluids in steady shear, but a suddenly imposed deformation causes a material dependent transient 
associated with the dynamics of the macro-molecular chains. 

The physical idea of fading memory is that more recent (“remembered”) deformations of a 
fluid have a greater effect on the present value of the stress. The shear stress is valuable as 
convolution between shear rate and memory. 

 The aim of this paper is to study the start-up of a viscoelastic fluid in Couette axisymmetric 
flow. An analogous problem has been solved for steady state flow in [1] using a Giesekus model 
to characterize the fluid. A start-up and a pulsatile plane Couette flow with fixed walls have been 
studied in [2] with upper-convected Maxwell and Oldroyd-B models. A plane Couette flow with a 
moving wall has been examined in [3] using a Giesekus fluid and the solution is discussed in [4]. 

An ample review on numerical methods to solve viscoelastic flow problems, using mainly the 
Oldroyd-B model, is found in [5] together with a comparison of the predictive capabilities of the 
viscoelastic solver with experimental results.  

An extensive review on the theoretical background and physical interpretation of the damping 
function for non-linear viscoelastic function is in [6]. 

2 PROBLEM STATEMENT 

The relation between shear stress τ  and shear-rate γɺ  for a viscoelastic fluid in Couette flow is 
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where F  is a suitable continuous functional. For linear viscoelasticity the previous relation 
reduces to 
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the function ( )m z  can be considered the memory of the fluid. In order to represent the behaviour 

of a fluid ( )0

0

m m z dz

∞

= ∫  must be limited. 

We consider a fluid which fills the gap between two coaxial circular cylinders: the internal one, 

whose radius is 
i
R , can rotate, whereas the external, of radius 

e
R , is fixed. Using cylindrical 

coordinates , ,r zθ , the z -axis being the cylinder axis, and supposing a laminar axisymmetric flow, 
the momentum equation can be written as 
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where ρ  is the fluid density, u  the tangential velocity and t  the time. 

For a linear viscoelastic fluid  
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where the shear rate is 
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ɺ  (Couette flow). 
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In steady motion the velocity ( )0
w η  is 
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where 
0
W  is the tangential velocity at the internal wall.  

Eq. (4) in dimensionless variables becomes  
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and substituting in (5) 
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that is 
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We examine the motion which arises in the fluid initially at rest when the internal cylinder 

suddenly begins to rotate with constant peripheral velocity 
0
W .  

Taking the Laplace transform with respect to T  of eq. (9), we obtain 
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where the hat indicates transformed functions; eq. (10) can be rewritten as 
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Imposing the boundary conditions 
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the solution of (11) is 
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Y  are the Bessel functions of order one, of first and second kind respectively. 

Imposing the boundary conditions (12) gives  
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J Y Y J
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We can retrieve ( ),w Tη  inverting its Laplace transform ( )ˆ ,w sη : 
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The integral can be evaluated using the residue theorem:  
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The integrand ( )ˆ ,sTe w sη  has a first order pole in 0s =  and a countable infinity of first order 

poles when 0∆ = . The equation 0∆ =  is solvable only numerically and admits a countable 
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For 0s =  the following expression can be found: 
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which gives the asymptotic steady velocity, whereas for 
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being ˆ/f i s M= . 

 
We now suppose that the memory of the fluid can be expressed by the relation  

 ( ) ( )2 expM T Tα β= −  (25) 

where α  and β  ( 0β > ) are suitable rheological parameters of the fluid, and then  
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otherwise 
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s is a complex number whose real part is always negative. The sequence 
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increasing and then a value 
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and the corresponding term of the solution oscillates with frequency / 2
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h π .  
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the shear stress at the external cylinder, where 0w = , is 
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and then 
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which can be expressed as 
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The torque applied to the external cylinder is  
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where all terms but the first vanish as T → ∞ ; the last terms decrease oscillating in time with 
period 
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When T → ∞  the torque at the external wall becomes 
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Knowing the geometry, i.e. the external radius 
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β  satisfies the equation  
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1
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In eq. (43) the minus sign must be chosen: β  must have the same value for every pair of values 
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Pλ ; the solution with plus sign increases increasing n , and than must be rejected. Then  
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If a period is not clearly identifiable, e.g. when the damping is very high, eq. (37) must be 



considered, expressing α  and 
n
h  as function of β  and 

∞
M ; measuring the value 

e
M  of 

e
M  at a 

fixed time T , β  and α  can be evaluated. 

3 NUMERICAL EXAMPLE 

If the plot torque vs. time is like Fig. 2, a period is clearly recognizable and the rheological 

parameters α  and β  can be evaluated using a plot like Fig. 3. For example, supposing 1.10
e
η = , 

Fig. 2 gives 131
∞
=−M  and 0.1T = , and Fig. 3 allows to find 2α ≃ , 2β ≃ .  
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Figure 2: torque at the external cylinder vs. time: 

red line 1.15
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η = , blue line 1.10
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Figure 3: α and β  vs. asymptotic torque for some values of period ( 1.10

e
η = ) 

 
When the behaviour in time of the torque is like Fig. 4, it is not possible to recognize any period; 

measuring the asymptotic torque 
∞

M , α  can be expressed as a function of β  using (41). At a 

fixed a time T , equation (37) can then be considered as a function of β  only, and the torque 

( )e e
T=M M  can be plotted: Fig. 5 has been plotted supposing 1.10

e
η = , evaluating 

0.0033
∞
= −M  from Fig. 4 and choosing 0.8T = . At time 0.8T =  Fig. 4 gives 

0.01045
e
= −M , which, introduced in Fig. 5, allows to evaluate 2β ≃  and, using (41) 0.01α ≃ .  
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Figure 4: torque at the external cylinder vs. time in semi-logarithmic scale, for 1.10

e
η =  

 

-0.012

-0.008

-0.004

0.000

0 3 6 9 12 15

β

M
e

_

|

 
Figure 5: torque for 1.10

e
η =  and 0.8T =  vs. β 

4 CONCLUSIONS 

The start-up of a viscoelastic fluid filling the gap between two coaxial cylinders is analyzed 
analytically supposing that the internal cylinder suddenly rotates with an imposed fixed peripheral 

velocity. The memory of the fluid obeys to an exponential law ( ) ( )2 expM T Tα β= −  where α  

and β  are two parameters defining the behaviour of the fluid. The momentum equation is solved 
applying the Laplace transform with respect to time: the solution in the image domain has a 
countable infinity of first order poles and then can be inverted using the residue theorem. The 
solution is expressed as a convergent series, which as time tends to infinity approaches the steady 
distribution. The steady state is not reached monotonically as Newtonian fluids do, but with 
damped oscillations of different frequencies. The two parameters α  and β , characterizing the 
fluid, can be evaluated knowing the behaviour of the torque as a function of time.  

 
References 

[1] Ravanchi, M.T., Mirzazadeh, M., Rashidi, F., “Flow of Giesekus viscoelastic fluid in a 
concentric annulus with inner cylinder rotation” Int. J. Heat Fluid Flow 28, 838-845 (2007) 

[2] Duarte, A.S.R., Miranda, A.I.P., Oliveira, P.J., “Numerical and analytical modeling of 
unsteady viscoelastic flows: The start-up and pulsating test case problems”  J. Non-
Newtonian Fluid Mech. 154, 153-169 (2008) 

[3] Raisi A., Mirzazadeh M., Dehnavi A.S., Rashidi F.; An approximate solution for the Couette-



Poiseuille flow of the Giesekus model between parallel plates. Rheol Acta 47, 75-80 (2008) 
[4] Daprà I., Scarpi G., “Couette-Poiseuille flow of the Giesekus model between parallel plates” 

Rheol. Acta 48, 117-120 (2009) 
[5] Baaijens, F.T.P., “Mixed finite element methods for viscoelastic flow analysis: a review” J. 

Non-Newtonian Fluid Mech. 79, 361-385 (1998) 
[6] Rolón-Garrido, V.H., Wagner, M.H. “The damping function in rheology” Rheol. Acta 48, 

245-284 (2009) 


