Conjugated heat transfer in unsteady channel flows

Amilcare Pozzi, Renato Tognaccini
Dipartimento di Ingegneria Aerospaziale, Univessiti Napoli “Federico II”, Italia
E-mail: pozzi@unina.it, togna@unina.it

Keywords Thermo-fluid Dynamics, Conjugated heat transfer, anadytnethods.

SUMMARY. The exact analytical solution of the unsteady ifgpee Thermo-fluid dynamic field
arising in a two-dimensional channel with thick solid waispresented when the thermal field in
the fluid is coupled with the thermal field in the solid. Two essire considered depending on the
boundary condition imposed on the unwetted sides of theradamalls: assigned temperature and
adiabatic condition. The analytically computed tempam#ind heat flux at the solid-fluid interface
are analysed as function of time and of the nondimensiomahpeters governing the problem.

1 INTRODUCTION

In Fluid dynamic problems both temperature and heat flux atid-fluid interface are in general
unknownand should be determined by simultaneous and coupled satutif the Thermo-fluid dy-
namic equations in the fluid and the energy equation in thid.sbhis problem is known in literature
asConjugated heat transfé¢i]. Anyway conjugated phenomena are usually neglectediiial By-
namics because either the temperature or the heat fluxsaignedas boundary conditions. These
effects are, however, relevant in many applications suceasspace and cooling technologies.

The lack of exact analytical solutions of the Thermo-fluidhdsnic field and the difficulty in
the solution of the coupled problem itself implies that emgted problems are usually studied by
approximate or numerical methods [2]. Therefore it is diffico identify “a priori” when conjugated
effects can be neglected and the standard boundary camslitam be used.This problem is further
complicated by the lack of identification of the nondimemnsilpparameters ruling the phenomenon.
Moreover it is important to know how these parameters goveenfield, difficult by numerical
methods.

Just in the recent years exact analytical solutions deagritbnjugated effects have been pub-
lished. Pozzi & Tognaccini[3] found the solution for the gagated heat transfer in the case of an
impulsively accelerated flow from rest to a constant speed an infinite plate of finite thickness in
the case of imposed temperature and of adiabatic conditidghe@unwetted side of the plate. Pozzi
et al[4] showed that, in the cases of plate of infinite thicknessdblutions in both the fluid and
in the solid are self-similar with very simple analyticalpegssions. These papers evidenced that
the key role in conjugated thermal effects is played bythigemal activity ratiodefined as the ratio
between the thermal effusivities in the fluid and in the solid

Pozzi & Tognaccini[5] have recently added another familytte short list of exact analytical
solutions of the Navier-Stokes equations of practicaivaatee. Indeed they presented the solution
of the completely developed unsteady flow in a two-dimerai@hannel when an arbitrary time
varying pressure gradient is imposed (unsteady Poisdlaillg. The solution has been straightfor-
ward extended to the case of a moving wall with arbitrary tifependent velocity (unsteady Couette
flow). In addition, the temperature field has also been aitaljy computed in the case of assigned
time varying temperature at the walls for an arbitrary Ptamgimber in the case of Eckert number
equal to zero and for the relevant case of Prandtl numbel émuoae in the case of arbitrary Eckert
number (whose effects are usually neglected in literature)



With the help of these results, we now present a further stepd analysis of conjugated heat
transfer. Indeed these effects are analytically studieehihe unsteady channel flow with assigned
impulsive pressure gradient is developing between walisidé thickness and the thermal boundary
conditions (constant temperature or adiabatic wall) asggasd on the unwetted side of the chan-
nel. The physical problems in the fluid and in the solid arepbed enabling the continuity of the
temperature and of the heat flux at the solid-fluid interface.

2 THE PHYSICAL PROBLEM

We consider an infinite two-dimensional channel with sectength2 d. Both solid walls of
the channel have thickness We shall consider problems symmetrical with respect toctennel
axis. Attimet = 0 the fluid is impulsively accelerated by imposing a constaesgure gradient
dp/dzx. The boundary conditions for the thermal field are imposetherunwetted side of the thick
walls and are constant along the channel axis, thereforedfution only depends on time and on
the spatial coordinate orthogonal to the wall.

We assume that an incompressible, laminar flow with constiapgerties (kinematic viscosity
and thermal conductivity) arises in the channel. In this case the dynamic field is nopleal with
the temperature one and the momentum equation is lineas Hiecflow is parallel. An analytical
solution of the problem has been proposed in [5].

The energy equations in the fluid and in the solid assume tlwviag forms:
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wheren is the nondimensional spatial coordinate in the fluid (rexfeed tod) and origin placed
on the channel axig; is the spatial coordinate in the solid lower wall (referesht@b) and origin
placed on the unwetted side of the plate<€ 1 correspondstg = 0), 7 is the non dimensional time
referenced tai? /v, 0 = (T — Ty) /Ty is the temperature in the fluid is the initial temperature
in the fluid), is the temperature in the solid ands the axial fluid velocity referenced #3..; =
—(dp/dx) d* /(2p) (i is the dynamic viscosity)Pr is the Prandtl numbed = V.2 . /(c,To) is
the Eckert numberd, is the specific heat at constant pressure in the fluid)= da,/(Vyerb?) is
the ratio between the reference times in the fluid and in the &o; is the thermal diffusivity in the
solid andL a reference length for the fluid).

The coupling between the thermal field in the fluid and in th&lss obtained by imposing the

continuity of the temperature and of the heat flux at the sitlidl interface in this way:

Or—) = 0r. 1) =0u(r). po(r-1) = 5o (n1). @
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wherep = (b/d)(A/\s) (As is the thermal conductivity in the solid).
The initial conditions for the temperature fields are

0(0,n) =0, 0(0,Y) =0; 3

at the initial time the fluid and solid are in thermal equilitm.
Two cases are studied here, depending on the condition edpms the unwetted side of the
plate:

(a) isothermal casgthe temperature is kept at a constant va#lie 0) = 6. ;

(b) adiabatic casethe heat flux0d/9Y (r,0) = 0.



3 THE TRANSFORMED SOLUTION

3.1 The solution in the fluid

We propose here the solution of the coupled equations (heimglevant case ¢fr = 1.

Denoting with®(s,n) = L.[6(7,n)] the Laplace transform with respect time of the fluid tem-

perature we have
B 4FE' cosh(y/s 1)
O(s,n) = {@w(s) + —] “cosh /s + Op(s,m), (4)
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whereO,,(s) = L[0,(7)] andO,(s,n) = L,[0,(1,n)], whered, is a particular integral of equation
(2) in the fluid forPr = 1:
E
Op(7.m) = =5 [u(r,m) — 271", (5)

u(,n) has been proposed in [5] by an infinite series of Jaégliunctions. The calculation of the
temperature field in physical variables only requires theadge ofo,, at the solid-fluid interface
whereu = 0 and the Laplace transform 6f is trivial.

3.2 The solution in the solid

The solution in the solid depends on the assigned boundawittan imposed on the unwetted
side of the channel wall.

Isothermal case

(s, Y) = Ou(s) sinh (cY) n fe sinh[o(1 — Y)]’ ©)

sinh o S sinh o

where® is the Laplace transform of the temperature in the solidard/s /ts.

Adiabatic case
_ cosh (¢Y")

cosho
Coupling condition
Both transformed solutions in the fluid and in the solid arenawn since depend on the un-
known transformed interface temperature, which can beimdadaby coupling the solutions in the
fluid and in the solid. In the previous equations the continaf the temperature across the solid-
fluid interface has been already taken into accoé@nt & ©,,). By imposing in transformed vari-
ables the continuity of the heat flux we obtain:

00 00
o(5)e = (%) ©
The temperature at the solid-fluid interface can be obtasnbdtituting equations (4),(6) and (7)
in equation (8). Specifying with = p+/t;;, we have:
Isothermal case

1 2EA (tanh/s 1 0 _
Ouls) = cotho + Atanh /s [ 52 ( V5 cosh? \/E) + \/Esinha} ’ ©




Adiabatic case

1 2EA (tanh /s 1
Ou(s) = — . 10
() tanh o + A tanh /s [ 55/2 ( Vs cosh? \/5)} (10)

4 THE TEMPERATURE AT THE SOLID-FLUID INTERFACE
The physical temperatures at the solid-fluid interface dained by performing the inverse
Laplace transforms of equations (9) and (10) which, howearernot straightforward.

4.1 The isothermal case
In this case equation (9) can be written as follows:

B Op1  Op O
Ouw = 2EA <S—3 — SsT) + 6., (11)
where
tanh /s 1 1 1 1
Op = , Op=—7F5F—— 06.,=—5——, 12
B D, B2 osh? Vs Da cosh? o Dq (12)

with D, = coth o + A tanh /s.
Each term in equation (11) can be expanded in series by taMimgccount for the properties of
the binomial series. In particular, specifying with= (1 — A)/(1 + A):
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whereby, =2[u(l—j)+h+j—r],en =2[u(h—i+s+j—r)+2h—j—2s]andu = 1//ts.
The inverse Laplace transform of each term in these serrea@a be performed.

4.2 The adiabatic case
In the same way, equation (10) can be written as:

Oy Opm
6w22EA< 53 - 85/2)7

(16)



where

tanh /s 1 1
Opp = , Opp = —5——, 17
Ebl D, Eb2 cosh? /s Dy 17)
with D, = tanh o + A tanh /s.
The series expansion of each term in equation (10) is
Opn = 1+A{1+ 1+5) ZZﬁ ( )
h=0r=0

S (-1t (f ) {e—\/g(bh-ﬂu) _e—ﬁ<bh+z>] , (18)
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wherecy, = 2[u(r + s+ h — i) + j — i + 2h — 2r]. The inverse transform can be now easily found.

5 LOCAL AND ASYMPTOTIC ANALYSIS OF THE TEMPERATURE

The local ¢ — 0) and asymptotic{ — oo) solutions can be obtained performing the analysis
in transformed variables by the Abelian and Tauberian #wesr

5.1 Isothermal case
Forr — 0 we have

A1
and
Ou(T)~ E A 72 (22)
VTN

In this case of flow driven by an imposed impulsive pressuaglignt, the temperature at the solid-
fluid interface is continuous and grows#%s On the contrary, the interface temperature was discon-
tinuous at the initial time when the initial velocity had angulsive jump, see [3].

ForT — oo we have

4EA 1 aq
o350 (- 2)
and AEA
B (7) ~ (3\@% ) (1=emrm), (23)

wherea; = A/t + 1/(3ts). Therefore, for large time values, the interface tempeeagxpo-
nentially tends towards a constant valg,.. = 4\’% + 6. which is always higher than the value
imposed on the external wall.
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Figure 1: Temperature at the solid fluid interface versugtifa): isothermal cas@d{ = 1). (b):
adiabatic casell = 1, A = 1, t = 0.5. —: exact solution:- — —: local solution;— - —: asymptotic

solution.

5.2 Adiabatic case

In this case, forr — 0 we have the same behaviour of the interface temperaturevihatave
obtained in the isothermal case, equations (20) and (&.);for small time values the interface
temperature does not depend on the condition imposed omthetted side of the plate. This result
should not surprise, because in the solid, near the ineréee — 0 (small time and length scales),
the unwetted side of the plate looks infinitely far.

ForT — oo we have

4 A 1
Op(s) ~ o~ 24
()~ 3 At 1/ 82 (24)
and
4 A

O, (7) = gEmT (25)

In case of adiabatic external wall of the channel, due to thsihtion of kinetic energy, for large
time values the temperature at the solid-fluid interface tarefore in the fluid and in the solid too)
indefinitely grows linearly.

6 THE HEAT FLUX
The transformed heat flux at the solid-fluid interface can lokaioed differentiating equations

(6) and (7).
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Figure 2: Heat flux at the solid fluid interface versus time): (@othermal cased{ = 1). (b):
adiabatic case.E = 1, A = 1, t;x = 0.5. —: exact solution;— — —: local solution;— - —:
asymptotic solution.
Isothermal case 96
C) 1 0
— = w tho — —1. 26
(5)Y) (s) =0 [6 (s)cothor sinho s (26)
Adiabatic case _
99 (s) = 0Oy (s)tanh o (27)
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6.1 The isothermal case
In this case we have:
00 Op1  Op: Oc u O
— = tho [2EA | —= — —= —0.| — — 28
<8Y)w 7o G[ ( 53 52 )t sinh o /s (28)

Taking again into account for the properties of the binorségiles we have:

cotho =1—2) (—1)?Tle 2uvslpth), (29)
p=0

Therefore a series expansion of the term within square btaatan be straightforward obtained.
Once the series expansion has been obtained, the invemséotra of each term is straightforward

as in the previous section.
The inverse transform of the last term in equation (28) caoltained due to the property of the

Jacobif; function [6] applied forg = 1 andg = 1/2:

{M} = 0a(q.7); (30)
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where

+oo
O3(g.7) = Y e (R (31)
k=—o0
with 0 < ¢ < 1 and applied fog = 1/2.
As for the analysis of the temperature, a local and asympéatalysis of the heat flux can be
performed by the Abelian and Tauberian theorems.7~er 0, the heat flux is given by

AN 8EA 3/2
<8Y)w_3ﬁ\/tfs(1+A)T ‘ (32)
Form — oo: o5 A
AE
- = == _ e T/ar) _
(37), = Gy +0) (1=emm) —0n 49

For small and large time values, due to the dissipation daéticrenergy, the fluid is always heating
the walls of the channel, evendf > 0. For large time values the heat flux become constant and is

owaoo - oe .

6.2 The adiabatic case
The differentiation of equation (16) gives

00y _ O b1 O Ep2 Ou
(3_Y)w =2FAu (tanha 2 tanh o 2 ) + Bou tanh O'T. (34)
Again, since
tanho =1 —2 Z(_l)l’e—%ﬁ(m—l)’ (35)
p=0

we can obtain a series expression for each term of equatijra(gl the inverse Laplace transform
can be analytically obtained.
For7 — 0 the behavior of the heat flux is given by equation (32). Fes oco:
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7 ANALYSIS OF THE RESULTS

The temperature at the solid-fluid interface is plotted inffiggl (a) for the isothermal case and in
figure 1(b) for the adiabatic case. The exact solutions amgpaped with the local and asymptotic
ones. In the isothermal case (with > 0), the temperature grows and reaches a constant asymptotic
value which is higher than the imposed temperatiyréit depends on the Eckert number and on
A). As in the case of Rayleigh flow over a thick plate [8],= pv/Pry/is is the main additional
parameter ruling the conjugated effects. Also in the priesaseA is related to the thermal activity

ratio Er = 1/pcpA/\/PsCp, As:

Er

A= (37)
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Figure 3. Temperature at the solid fluid interface versutfor different values of the Eckert
number. (a): isothermal casg.(= 1). (b): adiabatic case\ = 1, ¢t = 0.5. — - —: E = 0.1; —:
E=1,—-—-——-F=10.

whereRe= pV,..rd/u is the reference Reynolds number of the flow.

In the adiabatic case, i # 0 the interface temperature, as already noted by the asyimptot

analysis, indefinitely grows with linear law.

In figures 2(a) and 2(b) the heat fluxes at the interface veirpgesare plotted, respectively for the
isothermal and adiabatic case. Again the exact solutionrnispared with the local and asymptotic
ones. Itis interesting to note that in the isothermal cagen € 6. > 0, at the initial time the fluid is
heating the wall due to the dissipation of kinetic energyergtis a range of time in which the solid
wall is heating the fluid, but in the asymptotic stage, thedflwill again heat the wall. For large

values ofF, the wall can heat the flow only for high valueségf
Figures 3 and 4 show the interface temperature versus tispectvely for different values df
andA. In each figure both the isothermal and adiabatic cases apoged. It is interesting to note
that a similar behavior of the temperature can be obtainadhbgng F or A.

8 CONCLUSIONS
lem of a flow arising in a 2D channel witlhick walls. The flow is driven by a constant pressure
gradient impulsively set to a constant value at the initrakt The solution of the thermal field has
been obtained in the caseBf = 1 taking into account for the effects of the dissipation ofektin

In this paper we have presented an exact solution of theashstnjugated heat transfer prob-
energy in the fluid (Eckert number different than 0). Two peoftis have been solved depending on
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Figure 4: Temperature at the solid fluid interface versug tfor different values of the thermal
activity ratio. (a): isothermal casé = 1). (b): adiabatic case’ = 1, ¢, = 0.5. —- —: A = 0.1;
—A=1,——-—A=10.

the thermal condition imposed on the unwetted side of thamblavalls: isothermal and adiabatic
case.

The time evolution of the temperature and heat flux at thelsoterface have been analysed and
discussed in terms of the main parameters which are ruliegtfenomena: the Eckert numhkér
and the coupling parametarwhich essentially is related with the thermal activity odtetween the
fluid and the solid.
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