Viscous corrections for the stability of a two-fluid rotaginolumn
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A temporal instability analysis of a two-fluid rotating v@aes column enclosed in a rigid cylinder is
performed by numerically discretizing the equations fer ¢irolution of disturbances in each phase
in the rotating frame of reference. Normal mode analysidiego such equations leads to two
eigenvalue problems, each valid in the region occupied bgithgle phase fluid and mutually related
to each other by the interface conditions. The eigenvaloblpm has been solved numerically
by suitably discretizing the differential operators by meaf a Chebyschev collocation spectral
method. A complete investigation of the preferred modesistability has been carried out over
a wide range of the parameter space for the case of the higsitglluid located in the annulus.
The behavior of the system in some asymptotic limits of theupeters has been determined and
compared to the solutions of simplified corresponding fdations.

1 INTRODUCTION

Viscous rotating immiscible two-fluid systems have atedcthe interest of various scientists,
since the pioneering studies by Lord Rayleigh [1]. The $tgtwf rotating liquid columns has many
applications, ranging from liquid atomization and combmrsenhancement to various coating and
painting processes.

The basic problem of the stability of a rotating column inexixe of gravity and with stress-
free boundary conditions has been afforded in the last cgtiyra number of scientists, starting
with the work of Hocking and Michael [2] and Hocking [3], whtudied the stability of planar
disturbances of a uniformly rotating inviscid liquid colam The subsequent works by Gillis [4]
and Gillis and Kaufman [5] respectively analyzed the sigbdf viscous columns with respect to
planar and three dimensional disturbances, giving a gesiafzility criterion expressed in terms of
the so-called Hocking parameter, measuring the surfacgoteno centrifugal effects ratio. Only
recently, however, a complete investigation of the lineangoral stability of a uniformly rotating
viscous liquid column in absence of gravity has been peréarby Kubitschek and Weidman [9].

For what it concerns rotating immiscible two-fluid systerdgsephet al. [6] seem to be the
first to give a general stability criterion, obtained by miizing an appropriate potential function.
Subsequently, Weidman [8] and Weidman, Goto and Fridbeljifivestigated the linear stability
of rigidly rotating immiscible fluids in zero gravity and thevere able to obtain a quite complete
map of the preferred modes at the onset of instability fomitve viscous case as a function of the
governing parameters, which are the generalized Hockiranpeters for each phase and the density
and radius ratios of the two fluid regions. The complete aislyf the viscous case for the two-fluid



Figure 1: Geometric configuration: inner surface of raddyss the base flow interface, outer surface
of radiusR; is the rigid boundary

rotating column has remained elusive, mainly because o$itha@ficant increase in the analytical
difficulties and in the number of the governing parametetscivhave to include a suitably defined
Reynolds number and the viscosity ratio of the two fluids al& Wwethis paper, a suitable numerical
discretization procedure has been employed in order toparé quite complete analysis of the
two-fluid rotating column enclosed in a rigid pipe. By foaugion the case of the heavier fluid in the
annulus, the effects of Reynolds number and viscosity anditjeratios are analyzed with respect
to the non viscous solution.

2 GOVERNING EQUATIONS AND PARAMETERS

2.1 Problem formulation

A pipe of infinite lenght is filled with two immiscible fluids afonstant densities; and viscosi-
tiesu;, in such a way that the inner cylindrical core fluid of radiisis sorrounded by a concentric
annulus of the second fluid, which is in turn bounded on theidatby the solid cylinder of radius
Ry (Fig. 1) We adopt the notation that= 1 and?2 refer to core and annular fluids, respectively.
The whole system is in uniform rotation around the cylindds aWe work in cylindrical polar co-
ordinateqr, 6, z) with corresponding unit vectors in the coordinate diratdi@,, eg, e, ). Velocity
components aréu.., up, u,) and the (constant) angular velocity of rotatiorfls= Qe.. The un-
steady perturbed equations of motions are written in thetirag frame of reference. In each phase
they read (here for semplicity the indéis employed for fluid properties only):
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Denoting withn (0, z, t) the location of the interface, the indéx= 1 is for r < 7 and the index
i = 2is forr > n Boundary conditions have to be assigned on the axis and &ixtkenal solid
boundary. On the cylinder axis < 0) regularity conditions fou,., ug, u, and P are required and



will be specified later. At the external boundary velocitg bavanish:
ur=upg=u, =0 at r= Ro.
At the interface between the two fluids the continuity of tatalocity and of stresses, including
surface tension contributions, requires:
(ur) = (ug) = (uz) =0 at r=1
(ty'n=~kn at r=n
wheren is the unit normal to the interface, pointing from phdst phase2, x the sum of the

principal curvaturesy the surface tension coefficient, and angle brakets denotp pvery (i.e.
(a) = a1 — a2.). Finally, the kinematic boundary condition at the intedaequires:
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By assuming a null velocity base flow perturbed with arbjtremall disturbances the linearized
Navier-Stokes equations in the rotating frame of referemee

Uy at r=mn.
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where(u, v, w) are the components of the velocity perturbation field inrjfical coordinates and
p is the perturbation pressure. The linearized interfac&ipods R,. Boundary conditions on the
pipe wall are:

u=v=w=0 at r=Ry

while at the interface = R; we require:

(u) = (v) = (w) =0 1)
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where the linearized expression for the curvature has bextoged.d (0, z, t) denotes the pertur-
bation of the interface radius (i.e.(6, z,t) = R1 + ¢ (0, z,t)) and the base pressure radial gradient

jump is given by;
orP\ 9



2.2 Normal mode analysis

As the flow is periodic in both the azimuthal and axial direot, Fourier decomposition of all
flow quantities on these coordinates is assumed. The tetdpmar stability problem is studied by
applying the normal mode analysis and disturbances areettaken in the form{u, v, w, p, ) =
(it, 0, w, p,0)expli(kz + nd — wt)] wherek € R andn € Z are, respectively, the axial and az-
imuthal wavenumbers andis the complex frequency.

Scaling lengths withR;, velocities withQQ Ry, time withQ~! and pressure with, (QR1)2 one
obtains the dimensionless disturbance equations:

. . PPN i 1\ . 2n_
wil; = 20; — X' 2Dp; + Re; {<Vflk — r_2> Uy — 71)1] (6)
~ ~ . nﬁl | 1 ~ 2n -
T 1—2 - 2 = L 2~ 7
WwY; (7 + )\ r + Rei |:(vn,k ’]“2) (7 r uz:| ( )
. |
wi; = N2kp; + Re‘v;kwi (8)
0 =D + 2 1k, 9)

r

where the same notation has been employed for dimensiodal@ndimensional quantities and the
two-phase formulation has been explicited by adding a sigisdo velocity and pressure variables.
Non-dimensional interface conditions, enforced on thediized interface = 1 reads:

(@) = (@) = () = 0 (10
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(XDt + ki) = 0 (13)

(XD*¥ + nit) = 0. (14)

In these equatior® stands for derivative with respecttpD* is the polar derivativ®* = D+1/r,
V?  is the laplacian in cylindrical coordinates acting on a narmode:
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and¥ = [(\) — Ly (k* + n? — 1)]. The non dimensional quantitias and; are respectively vis-
cosity and density ratios;; = j;/p2, \i = pi/p2, Re; is the Reynolds numbeke; = p2QR? /1,
andL; = v/p;Q2?R3 is the generalized Hocking number, measuring the ratio éetveurface ten-
sion and centrifugal forces in each fluid at the interfacac&\, andyu. are trivially equal tol we
will drop the subscript when referring to andg; .

At the axis of the pipe, due to singularity of the coordinatstem kinematic boundary condi-
tions have to be imposed in order to assure that all physicatiities remain bounded and smooth.
Following Ash and Khorrami ([7]) we set, at= 0:

0,0, Dw = 0,pfinite for n=20 (15)
D, i+ nv,w,p=0 for |n|=1 (16)
a,0,w,p=0, for |n|>1 a7



Figure 2: Growth raters axial wavenumber. Values of parameters aye= 1, Lo = 2,0 = 1.2.
Reynolds numbeRe; is: (a):102, (b): 103, (c): 104, (d): 10°

At the external boundary = b, whereb = Ry /Ry, we have:
u=0=w=0 (18)

enforced at- = b whereb is the non dimensional external radids= R,/R;. Among the various
dimensionless parameters introduced, five of them emerimelapendent and we choose to control
in our parametric analysis the following; x, Re1, Lo, b.

3 NUMERICAL TREATMENT
The system of equations (6-9), together with boundary atetfacce conditions (10-18), can
be reduced to a single system of equations for the staterngcto (a1, 01, w1, d, Ga, U2, w2) by
eliminating pressure through equation (8). The correspanslystem of equations can be recast in
the matrix form:
wBq = Aq.

The system has been discretized by a Chebyshev pseudaedpedi written inMATLAB program-
ming language, where each phase has been discretized wvifterarnt mesh and interface conditions
have been enforced as right and left boundary conditioresely for the inner and outer phase. A
simple linear transformation has been employed in orderap each domain to the intervat1, 1].

We took advantage of themsuITE package by Weideman & Reddy [10] in order to generate
the required differential Chebyshev operators and boynaad interface conditions are enforced
by replacing rows. Kinematic boundary conditions has beepoised as an additional equation
associated to the variable By denoting with/N; and N, the number of collocation points for
the inner and outer domains, the discretization leads tonargézed matrix eigenvalue problem of
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Figure 3: Growth ratevs axial wavenumber. Values of parameters aye= 1, Lo = 5, b = 2.
Reynolds numbeRe; is: (a):10, (b): 102, (c): 103, (d): 10*

3N1 + 3Ny + 1 equations, which is solved with the QZ algorithm implemeritetheei g MATLAB
function. Typically, a total number a¥ = N; + N, = 150 discretization points has been employed.

4 RESULTS

For the problem at hand two limiting situations can be cogr®d, namely the non viscous two-
fluid rotating column, and the (viscous) hollow core rotgtannulus. The first problem is obtained
by formally settingRe; = oo and by considering impermeability conditions at pipe walll @onti-
nuity of normal velocity and stresses at the interface. phidblem has been successfully treated by
analytical methods by Weidman, Goto and Fridberg [11], wheega quite complete treatment of
the preferred growth rates for axisymmetric perturbatiorterms of Bessel functions. The repro-
duction of this limiting situation with our code has givercelent results and and this has been one
of the validation steps of our numerics.

The problem of the viscous hollow core rotating annulus i&inted by settingh = 0 and by
considering stress-free interface conditions for the &rmhase. The results in this limiting case
have been obtained with a separate code which discretieeanthular phase and implements the
correct interface conditions.

In presenting the results we will mainly focus on two valuéshe nondimensional external
radiusb = 1.2 andb = 2. Since the instability characteristics reach an asymptalue quite
quickly with increasing, these two values are considered as representative of trewnand wide
gap limits. Moreover, it has been numerically verified thigtesity ratio has a little influence on
growth rates, apart from the cases of very low values<( 0.1). A representative unit value for
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Figure 4: Maximum growth rate and associated wavenumbesergance to inviscid solutioms A
for different Hocking numbers
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Figure 5: Maximum growth rate (left) and its wavenumberl{tjors Reynolds number at different
density ratios. Values of parameters gye= 1, L, = 2,b = 1.2.

x is hence taken for the presentation of the results. Fintlly, valuesL, = 2 and L, = 5 for
the Hocking number have been considered. They are repatiserdf moderate and high values of
surface tension. Note that, as is documented in the stufliiee @mon viscous case (see for example
Fig. 12 (a) and 13 (a) of [11]), there is a single value forat which the maximum growth rate
curves exhibit a crossover point with respecftoThis means that for values @f, lower than the
crossover valué,., stability decreases with increasingwhile for Ly > Lo, increasing stabilizes
the system. The two values taken foy are representative of the two regimes illustrated.

It is known that in the inviscid limit withA < 1 the system loses its stability in corrispondence
of axisymmetric disturbanced. Spotty calculations withi codes of non axisymmetric perturba-
tions have shown no instability still in the correspondigreus case. The analysis here presented
hence focuses on the potentially unstable case of axisyrioirdinitesimal perturbations. We firstly
present some representative results in terms of growttvsateial wavenumber at different density
ratios for various Reynolds numbers.

In Fig. 2 growth rate curves are shown fbg = 2 andb = 1.2 and in the case of equal vis-
cosities. In this and in the following figures dashed linderéo the non viscous problem. Apart
from the obvious role of viscosity in reducing the growtheraFig. 2 shows that by taking into
account the viscosities of the two fluids some subtle effadte, affecting the maximum growth
rate wavenumber and the role of density ratio in enhancisghbility. In fact, while the maximum
growth rate is monotonically increasing with density rgigrameter\ in the non viscous case, at
low Reynolds numbers this trend is modified in such a way thaet density ratio configurations
appear as more unstable. There is a single wavenumber &t ti@growth rate is independent on
the density ratio, and this wavenumber is continuosly itgfto shorter wavenumbers as Reynolds
number increases. This effect is accompained by a lesdevisiim monothonical convergence of the
maximum instability wavenumber toward its inviscid value.

In Fig. 3 analogous results are presented for the higheaseitension casd.¢ = 5) and wide



\ ——— =02
0,61} ——A=04
\ ———\=06

o6 || ——1r=08

——A=1

0.35F i ——2A=02
. ———A=04
0.3f § ———\=06

——A=08
0.25F —— =1

0.2 . . ") 0.54 3 "
10 10 10 10 10 10 10 10 10 10

Figure 6: Maximum growth rate (left) and its wavenumberl{tjors Reynolds number at different
density ratios. Values of parameters ave= 1, Lo = 5,b = 2.

gap limit ¢ = 2). It is clearly visible that the crossover point fép has been passed, since the
role of A on the maximum growth rate is reversed with respect to Fi¢n ghis case viscosity does
not alter the dependence of maximum growth rate wittNote that the high Hocking number case
(Fig. 3) reaches its inviscid limit more quickly than theea$ Fig. 2. Panels form (a) to (d) in Fig. 3
are relative to Reynolds number values ranging franto 104, while in Fig. 2 we plot the cases
from 102 to 10°.

In order to better visualize the effects mentioned, extensalculations have been carried out in
order to obtain the maximum growth rate with respectitove employed a Golden section search
algorithm in order to locate maximum growth rates at difféfiReynolds numbers and density ratios,
usually converging within a few percent of error in 10-15até&ns.

In Fig 4 variations of the maximum gowth rate and its axial e@aymber with Reynolds number
and density ratios are shown for different values of Hockiongnber and fob = 1.2. The figure
clearly shows that the convergence of maximum axial wavdraumo its inviscid value is not mono-
tonic at each fixed value of. Moreover, it can be noted how the maximum growth rate cuates
low and high values of the Hocking parameter in the non visdimoit are modified by the effects of
viscosity.

Fig 5 reports the variation with Reynolds number of the maximgrowth rate and of its associ-
ated axial wavenumber for the parameters of Fig. 2. The ovespoint at which the role of density
ratio is reversed is clearly visible in the left plot. Thisossover is located at Reynolds number
around10?, the inviscid limit being reached at values as high@% In the right plot it is showed
a non monotonic convergence of the wavenumber of maximumvthreate toward its asymptotic
limit. Fig 6, which is relative to the parameters values of.R3, shows that ad, exceeds the
crossover poinLy., the role of density ratio on the maximum instability growdite is not affected
by viscosity (left panel), while it has still significant effts on the peak wavenumber (right panel).



5 CONCLUSIONS

In this paper, a temporal stability analysis of a two-fluidating column, enclosed in a rigid
cylinder, has been numerically performed by explicitelkig into account the viscosities of the
two fluids. By considering the case of the higer density floithted in the annulus, a quite complete
investigation of the preferred modes of instability hasrbearried out over representative ranges
in the parameter space. It is found that viscosity, in additd its obvious role of reducing growth
rates, plays crucial roles on the selection of the prefas@enumbers of the fastest growing mode.
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