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A temporal instability analysis of a two-fluid rotating viscous column enclosed in a rigid cylinder is
performed by numerically discretizing the equations for the evolution of disturbances in each phase
in the rotating frame of reference. Normal mode analysis applied to such equations leads to two
eigenvalue problems, each valid in the region occupied by the single phase fluid and mutually related
to each other by the interface conditions. The eigenvalue problem has been solved numerically
by suitably discretizing the differential operators by means of a Chebyschev collocation spectral
method. A complete investigation of the preferred modes of instability has been carried out over
a wide range of the parameter space for the case of the higer density fluid located in the annulus.
The behavior of the system in some asymptotic limits of the parameters has been determined and
compared to the solutions of simplified corresponding formulations.

1 INTRODUCTION
Viscous rotating immiscible two-fluid systems have attracted the interest of various scientists,

since the pioneering studies by Lord Rayleigh [1]. The stability of rotating liquid columns has many
applications, ranging from liquid atomization and combustion enhancement to various coating and
painting processes.

The basic problem of the stability of a rotating column in absence of gravity and with stress-
free boundary conditions has been afforded in the last century by a number of scientists, starting
with the work of Hocking and Michael [2] and Hocking [3], who studied the stability of planar
disturbances of a uniformly rotating inviscid liquid column. The subsequent works by Gillis [4]
and Gillis and Kaufman [5] respectively analyzed the stability of viscous columns with respect to
planar and three dimensional disturbances, giving a general stability criterion expressed in terms of
the so-called Hocking parameter, measuring the surface tension to centrifugal effects ratio. Only
recently, however, a complete investigation of the linear temporal stability of a uniformly rotating
viscous liquid column in absence of gravity has been performed by Kubitschek and Weidman [9].

For what it concerns rotating immiscible two-fluid systems,Josephet al. [6] seem to be the
first to give a general stability criterion, obtained by minimizing an appropriate potential function.
Subsequently, Weidman [8] and Weidman, Goto and Fridberg [11] investigated the linear stability
of rigidly rotating immiscible fluids in zero gravity and they were able to obtain a quite complete
map of the preferred modes at the onset of instability for thenon viscous case as a function of the
governing parameters, which are the generalized Hocking parameters for each phase and the density
and radius ratios of the two fluid regions. The complete analysis of the viscous case for the two-fluid
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Figure 1: Geometric configuration: inner surface of radiusR1 is the base flow interface, outer surface
of radiusR2 is the rigid boundary

rotating column has remained elusive, mainly because of thesignificant increase in the analytical
difficulties and in the number of the governing parameters, which have to include a suitably defined
Reynolds number and the viscosity ratio of the two fluids as well. In this paper, a suitable numerical
discretization procedure has been employed in order to perform a quite complete analysis of the
two-fluid rotating column enclosed in a rigid pipe. By focusing on the case of the heavier fluid in the
annulus, the effects of Reynolds number and viscosity and density ratios are analyzed with respect
to the non viscous solution.

2 GOVERNING EQUATIONS AND PARAMETERS
2.1 Problem formulation
A pipe of infinite lenght is filled with two immiscible fluids ofconstant densitiesρi and viscosi-

tiesµi, in such a way that the inner cylindrical core fluid of radiusR1 is sorrounded by a concentric
annulus of the second fluid, which is in turn bounded on the outside by the solid cylinder of radius
R2 (Fig. 1) We adopt the notation thati = 1 and2 refer to core and annular fluids, respectively.
The whole system is in uniform rotation around the cylinder axis. We work in cylindrical polar co-
ordinates(r, θ, z) with corresponding unit vectors in the coordinate directions(er, eθ, ez). Velocity
components are(ur, uθ, uz) and the (constant) angular velocity of rotation isΩ = Ωez. The un-
steady perturbed equations of motions are written in the rotating frame of reference. In each phase
they read (here for semplicity the indexi is employed for fluid properties only):
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Denoting withη (θ, z, t) the location of the interface, the indexi = 1 is for r < η and the index
i = 2 is for r > η Boundary conditions have to be assigned on the axis and at theexternal solid
boundary. On the cylinder axis (r = 0) regularity conditions forur, uθ, uz andP are required and
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will be specified later. At the external boundary velocity has to vanish:

ur = uθ = uz = 0 at r = R2.

At the interface between the two fluids the continuity of total velocity and of stresses, including
surface tension contributions, requires:

〈ur〉 = 〈uθ〉 = 〈uz〉 = 0 at r = η

〈τ 〉 · n = γκn at r = η

wheren is the unit normal to the interface, pointing from phase1 to phase2, κ the sum of the
principal curvatures,γ the surface tension coefficient, and angle brakets denote jump overη (i.e.
〈a〉 ≡ a1 − a2.). Finally, the kinematic boundary condition at the interface requires:

ur =
∂η

∂t
+

uθ

r

∂η

∂θ
+ uz
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∂z
at r = η.

By assuming a null velocity base flow perturbed with arbitrary small disturbances the linearized
Navier-Stokes equations in the rotating frame of referenceare:
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where(u, v, w) are the components of the velocity perturbation field in cylindrical coordinates and
p is the perturbation pressure. The linearized interface position is R1. Boundary conditions on the
pipe wall are:

u = v = w = 0 at r = R2

while at the interfacer = R1 we require:

〈u〉 = 〈v〉 = 〈w〉 = 0 (1)
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where the linearized expression for the curvature has been employed.δ (θ, z, t) denotes the pertur-
bation of the interface radius (i.e.η (θ, z, t) = R1 + δ (θ, z, t)) and the base pressure radial gradient
jump is given by;

〈
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= 〈ρ〉Ω2R1.
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2.2 Normal mode analysis
As the flow is periodic in both the azimuthal and axial directions, Fourier decomposition of all

flow quantities on these coordinates is assumed. The temporal linear stability problem is studied by
applying the normal mode analysis and disturbances are hence taken in the form:(u, v, w, p, δ) =
(iũ, ṽ, w̃, p̃, δ̃)exp[i(kz + nθ − ωt)] wherek ∈ R andn ∈ Z are, respectively, the axial and az-
imuthal wavenumbers andω is the complex frequency.

Scaling lengths withR1, velocities withΩR1, time withΩ−1 and pressure withρ2 (ΩR1)
2 one

obtains the dimensionless disturbance equations:
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where the same notation has been employed for dimensional and non-dimensional quantities and the
two-phase formulation has been explicited by adding a subscript i to velocity and pressure variables.

Non-dimensional interface conditions, enforced on the linearized interfacer = 1 reads:

〈ũ〉 = 〈ṽ〉 = 〈w̃〉 = 0 (10)
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In these equationsD stands for derivative with respect tor, D∗ is the polar derivativeD∗ = D+1/r,
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cosity and density ratios,χi = µi/µ2, λi = ρi/ρ2, Rei is the Reynolds numberRei = ρ2ΩR2
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andLi = γ/ρiΩ
2R3

1
is the generalized Hocking number, measuring the ratio between surface ten-

sion and centrifugal forces in each fluid at the interface. Sinceλ2 andµ2 are trivially equal to1 we
will drop the subscript when referring toλ1 andµ1.

At the axis of the pipe, due to singularity of the coordinate system kinematic boundary condi-
tions have to be imposed in order to assure that all physical quantities remain bounded and smooth.
Following Ash and Khorrami ([7]) we set, atr = 0:

ũ, ṽ,Dw̃ = 0, p̃ finite for n = 0 (15)

Dũ, ũ + nṽ, w̃, p̃ = 0 for |n| = 1 (16)

ũ, ṽ, w̃, p̃ = 0, for |n| > 1 (17)
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Figure 2: Growth ratevs axial wavenumber. Values of parameters are:χ = 1, L2 = 2, b = 1.2.
Reynolds numberRe1 is: (a):102, (b): 103, (c): 104, (d): 105

At the external boundaryr = b, whereb = R2/R1, we have:

ũ = ṽ = w̃ = 0 (18)

enforced atr = b whereb is the non dimensional external radius:b = R2/R1. Among the various
dimensionless parameters introduced, five of them emerge asindependent and we choose to control
in our parametric analysis the following:λ, χ, Re1, L2, b.

3 NUMERICAL TREATMENT
The system of equations (6-9), together with boundary and interface conditions (10-18), can

be reduced to a single system of equations for the state vector q = (ũ1, ṽ1, w̃1, δ, ũ2, ṽ2, w̃2)
T by

eliminating pressure through equation (8). The corresponding system of equations can be recast in
the matrix form:

ωBq = Aq.

The system has been discretized by a Chebyshev pseudospectral code written inMATLAB program-
ming language, where each phase has been discretized with a different mesh and interface conditions
have been enforced as right and left boundary condition respectively for the inner and outer phase. A
simple linear transformation has been employed in order to map each domain to the interval[−1, 1].

We took advantage of theDMSUITE package by Weideman & Reddy [10] in order to generate
the required differential Chebyshev operators and boundary and interface conditions are enforced
by replacing rows. Kinematic boundary conditions has been imposed as an additional equation
associated to the variableδ. By denoting withN1 andN2 the number of collocation points for
the inner and outer domains, the discretization leads to a generalized matrix eigenvalue problem of
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Figure 3: Growth ratevs axial wavenumber. Values of parameters are:χ = 1, L2 = 5, b = 2.
Reynolds numberRe1 is: (a):10, (b): 102, (c): 103, (d): 104

3N1 +3N2 +1 equations, which is solved with the QZ algorithm implemented in theeig MATLAB

function. Typically, a total number ofN = N1+N2 = 150 discretization points has been employed.

4 RESULTS
For the problem at hand two limiting situations can be considered, namely the non viscous two-

fluid rotating column, and the (viscous) hollow core rotating annulus. The first problem is obtained
by formally settingRei = ∞ and by considering impermeability conditions at pipe wall and conti-
nuity of normal velocity and stresses at the interface. Thisproblem has been successfully treated by
analytical methods by Weidman, Goto and Fridberg [11], who gave a quite complete treatment of
the preferred growth rates for axisymmetric perturbationsin terms of Bessel functions. The repro-
duction of this limiting situation with our code has given excellent results and and this has been one
of the validation steps of our numerics.

The problem of the viscous hollow core rotating annulus is obtained by settingλ = 0 and by
considering stress-free interface conditions for the annular phase. The results in this limiting case
have been obtained with a separate code which discretizes the annular phase and implements the
correct interface conditions.

In presenting the results we will mainly focus on two values of the nondimensional external
radiusb = 1.2 and b = 2. Since the instability characteristics reach an asymptotic value quite
quickly with increasingb, these two values are considered as representative of the narrow and wide
gap limits. Moreover, it has been numerically verified that viscosity ratio has a little influence on
growth rates, apart from the cases of very low values (χ < 0.1). A representative unit value for
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for different Hocking numbers
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Figure 5: Maximum growth rate (left) and its wavenumber (right) vsReynolds number at different
density ratios. Values of parameters are:χ = 1, L2 = 2, b = 1.2.

χ is hence taken for the presentation of the results. Finally,two valuesL2 = 2 andL2 = 5 for
the Hocking number have been considered. They are representative of moderate and high values of
surface tension. Note that, as is documented in the studies of the non viscous case (see for example
Fig. 12 (a) and 13 (a) of [11]), there is a single value forL2 at which the maximum growth rate
curves exhibit a crossover point with respect toλ. This means that for values ofL2 lower than the
crossover valueL2c, stability decreases with increasingλ, while forL2 > L2c increasingλ stabilizes
the system. The two values taken forL2 are representative of the two regimes illustrated.

It is known that in the inviscid limit withλ < 1 the system loses its stability in corrispondence
of axisymmetric disturbanced. Spotty calculations with our codes of non axisymmetric perturba-
tions have shown no instability still in the corresponding viscous case. The analysis here presented
hence focuses on the potentially unstable case of axisymmetric infinitesimal perturbations. We firstly
present some representative results in terms of growth ratevsaxial wavenumber at different density
ratios for various Reynolds numbers.

In Fig. 2 growth rate curves are shown forL2 = 2 andb = 1.2 and in the case of equal vis-
cosities. In this and in the following figures dashed lines refer to the non viscous problem. Apart
from the obvious role of viscosity in reducing the growth rate, Fig. 2 shows that by taking into
account the viscosities of the two fluids some subtle effectsarise, affecting the maximum growth
rate wavenumber and the role of density ratio in enhancing instability. In fact, while the maximum
growth rate is monotonically increasing with density ratioparameterλ in the non viscous case, at
low Reynolds numbers this trend is modified in such a way that lower density ratio configurations
appear as more unstable. There is a single wavenumber at which the growth rate is independent on
the density ratio, and this wavenumber is continuosly shifting to shorter wavenumbers as Reynolds
number increases. This effect is accompained by a less visible non monothonical convergence of the
maximum instability wavenumber toward its inviscid value.

In Fig. 3 analogous results are presented for the higher surface tension case (L2 = 5) and wide

8



10
1

10
2

10
3

10
4

10
5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Re
1

ω
iM

A
X

 

 

λ = 0.2

λ = 0.4

λ = 0.6

λ = 0.8

λ = 1

10
1

10
2

10
3

10
4

10
5

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

Re
1

k M

 

 

λ = 0.2

λ = 0.4

λ = 0.6

λ = 0.8

λ = 1

Figure 6: Maximum growth rate (left) and its wavenumber (right) vsReynolds number at different
density ratios. Values of parameters are:χ = 1, L2 = 5, b = 2.

gap limit (b = 2). It is clearly visible that the crossover point forL2 has been passed, since the
role ofλ on the maximum growth rate is reversed with respect to Fig. 2.In this case viscosity does
not alter the dependence of maximum growth rate withλ. Note that the high Hocking number case
(Fig. 3) reaches its inviscid limit more quickly than the case of Fig. 2. Panels form (a) to (d) in Fig. 3
are relative to Reynolds number values ranging from10 to 104, while in Fig. 2 we plot the cases
from 102 to 105.

In order to better visualize the effects mentioned, extensive calculations have been carried out in
order to obtain the maximum growth rate with respect tok; we employed a Golden section search
algorithm in order to locate maximum growth rates at different Reynolds numbers and density ratios,
usually converging within a few percent of error in 10-15 iterations.

In Fig 4 variations of the maximum gowth rate and its axial wavenumber with Reynolds number
and density ratios are shown for different values of Hockingnumber and forb = 1.2. The figure
clearly shows that the convergence of maximum axial wavenumber to its inviscid value is not mono-
tonic at each fixed value ofλ. Moreover, it can be noted how the maximum growth rate curvesat
low and high values of the Hocking parameter in the non viscous limit are modified by the effects of
viscosity.

Fig 5 reports the variation with Reynolds number of the maximum growth rate and of its associ-
ated axial wavenumber for the parameters of Fig. 2. The crossover point at which the role of density
ratio is reversed is clearly visible in the left plot. This crossover is located at Reynolds number
around103, the inviscid limit being reached at values as high as106. In the right plot it is showed
a non monotonic convergence of the wavenumber of maximum growth rate toward its asymptotic
limit. Fig 6, which is relative to the parameters values of Fig. 3, shows that asL2 exceeds the
crossover pointL2c, the role of density ratio on the maximum instability growthrate is not affected
by viscosity (left panel), while it has still significant effects on the peak wavenumber (right panel).
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5 CONCLUSIONS
In this paper, a temporal stability analysis of a two-fluid rotating column, enclosed in a rigid

cylinder, has been numerically performed by explicitely taking into account the viscosities of the
two fluids. By considering the case of the higer density fluid located in the annulus, a quite complete
investigation of the preferred modes of instability has been carried out over representative ranges
in the parameter space. It is found that viscosity, in addition to its obvious role of reducing growth
rates, plays crucial roles on the selection of the preferredwavenumbers of the fastest growing mode.
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